高中数学函数常用函数图形及其基本性质
- 格式:doc
- 大小:232.50 KB
- 文档页数:4
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
高中阶段常见函数性质汇总函 数 名 称:常数函数解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x)得图象就是平行于x 轴或与x 轴重合(垂直于y 轴)得直线定 义 域:R值 域:{b} 单 调 性:没有单调性奇 偶 性:均为偶函数[当b=0时,函数既就是奇函数又就是偶函数]反 函 数:无反函数周 期 性:无周期性函 数 名 称:一次函数解析式 形 式:f(x )=kx +b (k ≠0,b∈R) 图象及其性质:直线型图象、|k |越大,图象越陡;|k |越小,图象越平缓;当b =0时,函数f(x)得图象过原点;当b =0且k =1时,函数f(x )得图象为一、三象限角平分线;当b=0且k =-1时,函数f (x )得图象为二、四象限角平分线;定 义 域:R值 域:R单 调 性:当k >0时,函数f (x )为R上得增函数;当k<0时,函数f (x)为R上得减函数;奇 偶 性:当b=0时,函数f(x )为奇函数;当b ≠0时,函数f (x)没有奇偶性;反 函 数:有反函数。
[特殊地,当k=-1或b =0且k=1时,函数f (x)得反函数为原函数f (x )本身]周 期 性:无函 数 名 称:反比例函数解析式 形 式:f (x )= (k ≠0)图象及其性质:图象分为两部分,均不与坐标轴相交,当k 〉0时,函数f (x )得图象分别在第一、第三象限;当k<0时,函数f(x )得图象分别在第二、第四象限;双曲线型曲线,x 轴与y 轴分别就是曲线得两条渐近线;图象成中心对称图形,对称中心为原点;图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ;定 义 域:值 域:单 调 性:当k〉0时,函数f (x )为与上得减函数;当k 〈0时,函数f(x )为与上得增函数;奇 偶 性:奇函数反 函 数:原函数本身 周 期 性:无函 数 名 称:变式型反比例函数解析式 形 式:f (x)= (c ≠0且 d ≠0)图象及其性质:图象分为两部分,均不与直线、直线相交,当k〉0时,函数f (x )得图象分别在直线与直线形成得左下与右上部分;当k<0时,函数f (x)得图象分别在直线与直线形成得左上与b右下部分;双曲线型曲线,直线与直线分别就是曲线得两条渐近线;图象成中心对称图形,对称中心为点;图象成轴对称图形,对称轴有两条,分别为、;反 函 数:周 期 性:无函 数 名 称:二次函数 解析式 形 式:一般式: 顶点式:两根式:图象及其性质:①图形为抛物线,对称轴为,顶点坐标为或,与轴得交点为;②当时,抛物线得开口向上,此时函数图象有最低点;当时,抛物线得开口向下,此时函数图象有最高点; ③当时,函数图象与轴有两个交点,当时,函数图象与轴有一个交点,当时,函数图象与轴没有交点; ④横坐标关于对称轴对称时,纵坐标相等;当时,横坐标距对称轴近则函数值小,当时,横坐标距对称轴近则函数值大;⑤函数均可由函数平移得到;定 义 域:R值 域:当时,值域为;当时,值域为单 调 性:当时,上为减函数,上为增函数;当时,上为减函数,上为增函数;奇 偶 性:当时,函数为偶函数;当时,函数为非奇非偶函数反 函 数:定义域范围内无反函数,在单调区间内有反函数周 期 性:无函 数 名 称:指数函数 解析式 形 式:图象及其性质:①函数图象恒过点,与 轴不相交,只就是无限靠近;②函数与得图象关于轴对称;③当时,轴以左得图象夹在在直线与轴之间,轴以右得图象在直线以上;当时,轴以左得图象在直线以上,轴以右得图象夹在在直线与轴之间;f (x )=④第一象限内,底数大,图象在上方;定 义 域:R值 域:单 调 性:当时,函数为增函数;当时,函数为减函数;奇 偶 性:无反 函 数:对数函数周 期 性:无 函 数 名 称:对数函数解析式 形 式: 图象及其性质:①函数图象恒过点,与轴不相交,只就是无限靠近;②函数与得图象关于轴对称;③当时,轴以下得图象夹在在直线与轴之间,轴以上得图象在直线以右;当时,轴以下得图象在直线以右,轴以上得图象夹在在直线与轴之间;④第一象限内,底数大,图象在右方;定 义 域:R值 域:单 调 性:当时,函数为增函数;当时,函数为减函数;[与系数函数得单调性类似,因为两函数互为反函数]奇 偶 性:无 反 函 数:指数函数周 期 性:无函 数 名 称:对钩函数解析式 形 式:图象及其性质:①函数图象与轴及直线不相交,只就是无限靠近;②当时,函数有最低点,即当时函数取得最小值;③当时,函数有最高点,即当时函数取得最大值;定 义 域:值 域:单 调 性:在与上函数为增函数;在与上函数为减函数;奇 偶 性:奇函数反 函 数:定义域内无反函数周 期 性:无 2、3函数单调性(考点疏理+典型例题+练习题与解析)2.3函数单调性【典型例题】例1、(1)则a 得范围为( D)A 。
1.3.2 余弦函数、正切函数的图象与性质第一课时 余弦函数的图象与性质1.余弦函数的图象(1)把正弦曲线向左平移π2个单位就可以得到余弦函数的图象.余弦函数y =cos x 的图象叫做余弦曲线.(2)余弦曲线.除了上述的平移法得到余弦曲线,还可以用:①描点法:按照列表,描点,连线顺序可作出余弦函数图象的方法.②五点法:观察余弦函数的图象可以看出,(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1)这五点描出后,余弦函数y =cos x ,x ∈[0,2π]的图象的形状就基本上确定了.【自主测试1】画出函数y =-cos x ,x ∈[0,2π]的简图.分析:运用五点作图法,首先要找出起关键作用的五个点,然后描点连线. 解:列表:ω>0)的周期为T =2πω.今后,可以使用这个公式直接求这类函数的周期.【自主测试2-1】函数y =2cos x +1的最大值和最小值分别是( ) A .2,-2 B .3,-1 C .1,-1 D .2,-1 答案:B【自主测试2-2】已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R ),下列结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=sin ⎝⎛⎭⎪⎫x -π2=-cos x (x ∈R ),f (-x )=f (x ),∴函数f (x )是偶函数. 答案:D正弦函数与余弦函数的图象和性质的区别与联系(4)sin x +cos x =1题型一 用“五点法”作函数y =A cos(ωx +φ)的图象 【例题1】用“五点法”画出函数y =2cos 2x 的简图.分析:先找出此函数图象上的五个关键点,画出其在一个周期上的函数图象,再进行扩展得到在整个定义域内的简图.解:因为y =2cos 2x 的周期T =2π2=π,所以先在区间[0,π]上按五个关键点列表如下.然后把y =2cos 2x 在[0,π]上的图象向左、右平移,每次平移π个单位长度,则得到y =2cos 2x 在R 上的简图如下.反思在用“五点法”画出函数y =A cos(ωx +φ)的图象时,所取的五点应由ωx +φ=0,π2,π,3π2,2π来确定,而不是令x =0,π2,π,3π2,2π.题型二 三角函数的图象变换【例题2】函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象平移得到,若使平移的距离最短,则应( )A .向左平移π8个单位长度B .向右平移7π8个单位长度C .向左平移π4个单位长度D .向右平移π8个单位长度解析:y =cos ⎝ ⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π4 =sin ⎝ ⎛⎭⎪⎫3π4-2x =-sin ⎝⎛⎭⎪⎫2x -3π4 =sin ⎝ ⎛⎭⎪⎫2x -3π4+π=sin ⎝ ⎛⎭⎪⎫2x +π4 =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8,故函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象向右平移π8个单位长度得到.故选D .答案:D反思一定要注意看清变换的顺序,即看清是以哪个函数图象作为基准. 题型三 函数的定义域问题【例题3】求函数y =36-x 2+lg cos x 的定义域.分析:首先根据函数解析式列出使函数有意义的条件不等式组,然后分别求解,最后求交集即可.解:要使函数有意义,只需⎩⎪⎨⎪⎧36-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-6≤x ≤6,2k π-π2<x <2k π+π2k ∈Z .利用数轴求解,如图所示:所以函数的定义域为⎣⎢⎡⎭⎪⎫-6,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,6. 反思利用数轴或者单位圆取解集的交集或并集非常简捷、清晰,但要注意区间的开闭情况.题型四 余弦函数的最值或值域【例题4】(1)求函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π3,2π3的值域;(2)求函数y =2+cos x2-cos x的最值;(3)求函数y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3的值域.分析:(1)结合y =cos x 的图象在区间⎣⎢⎡⎦⎥⎤-π3,2π3上先增后减即可求解;(2)利用|cos x |≤1这一性质;(3)利用配方法,结合二次函数的性质求解.解:(1)∵y =cos x 在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增,在区间⎣⎢⎡⎦⎥⎤0,2π3上单调递减,∴y ma x =cos 0=1,y min =cos 2π3=-12,∴y =cos x 的值域为⎣⎢⎡⎦⎥⎤-12,1. (2)由y =2+cos x 2-cos x ,求得cos x =2y -1y +1.∵|cos x |≤1,∴⎪⎪⎪⎪⎪⎪2y -1y +1≤1,∴[2(y -1)]2≤(y +1)2.解得13≤y ≤3,∴y ma x =3,y min =13.(3)y =3cos 2x -4cos x +1=3⎝⎛⎭⎪⎫cos x -232-13,∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,∴cos x ∈⎣⎢⎡⎦⎥⎤-12,12, 从而当cos x =-12,即x =2π3时,y ma x =154.当cos x =12,即x =π3时,y min =-14.∴函数y =3cos 2x -4cos x +1的值域为⎣⎢⎡⎦⎥⎤-14,154.反思求函数的最值的方法有以下几种:(1)直接法.根据函数值域的定义,由自变量的取值范围求出函数值的取值范围. (2)利用函数的单调性.(3)利用函数的图象,转化为求函数图象上最高点和最低点的纵坐标的问题.(4)利用换元法,转化为一次函数、二次函数、指数函数、对数函数等基本初等函数问题.题型五 余弦函数图象的应用【例题5】求函数y =cos ⎝⎛⎭⎪⎫2x +π4的对称中心、对称轴方程、单调递减区间和最小正周期.分析:利用整体换元,设t =2x +π4,则问题转化为考查函数y =cos t 的相关性质.解:设t =2x +π4,则函数y =cos t 的图象如图所示.令t =k π(k ∈Z ),则2x +π4=k π(k ∈Z ).故x =k ·π2-π8(k ∈Z )即为所求的对称轴方程.令t =k π+π2(k ∈Z ),则2x +π4=k π+π2(k ∈Z ),则x =k ·π2+π8(k ∈Z ).故⎝ ⎛⎭⎪⎫k ·π2+π8,0(k ∈Z )即为所求的对称中心.当t ∈[2k π,2k π+π](k ∈Z )时,2x +π4∈[2k π,2k π+π](k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). ∵cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π4+2π=cos ⎣⎢⎡⎦⎥⎤2x +π+π4, ∴最小正周期T =π.反思整体换元思想是解决较复杂三角函数问题常用的一种方法,它能将问题化归为对基本三角函数的考查.〖互动探究〗若将本例中的函数改为“y =⎪⎪⎪⎪⎪⎪cos ⎝⎛⎭⎪⎫2x +π4”呢? 解:设t =2x +π4,则问题转化为考查函数y =|cos t |,如图所示:解答过程同例题,可得无对称中心.令t =k ·π2(k ∈Z ),则2x +π4=k ·π2(k ∈Z ),∴对称轴为x =k ·π4-π8(k ∈Z );令t ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ), ∴2x +π4∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8故其单调递减区间为⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8(k ∈Z ).最小正周期T =π2.反思(1)若三角函数式子中带绝对值号,则通常通过观察图象得到周期和单调区间. (2)正弦函数y =sin x 和余弦函数y =cos x 取绝对值后,周期缩为原来的一半,即 ①y =|sin x |的周期为π; ②y =|cos x |的周期为π.1.下列说法不正确的是( )A .正弦函数、余弦函数的定义域是R ,值域是[-1,1]B .余弦函数当且仅当x =2k π(k ∈Z )时取得最大值1,当且仅当x =(2k +1)π(k ∈Z )时取得最小值-1C .正弦函数在每个区间⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z )上都是减函数 D .余弦函数在每个区间[2k π-π,2k π](k ∈Z )上都是减函数 答案:D2.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝ ⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin ⎝ ⎛⎭⎪⎫x +π2 D .y =cos ⎝⎛⎭⎪⎫x +π2答案:A3.(2012·重庆期末)把函数y =cos ⎝⎛⎭⎪⎫2x +π3图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到图象的解析式为( )A .y =cos ⎝ ⎛⎭⎪⎫x +π6B .y =cos ⎝ ⎛⎭⎪⎫x +π3C .y =cos ⎝ ⎛⎭⎪⎫4x +2π3D .y =cos ⎝⎛⎭⎪⎫4x +π3 答案:D4.若函数y =a cos x +b 的最小值为-12,最大值为32,则a =__________,b =__________.解析:由于y ma x =32,y min =-12,且-1≤cos x ≤1,则当a >0时,有⎩⎪⎨⎪⎧a +b =32,-a +b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.当a <0时,有⎩⎪⎨⎪⎧-a +b =32,a +b =-12,解得⎩⎪⎨⎪⎧a =-1,b =12.综上,a =±1,b =12.答案:±1 125.函数y =|cos x |的单调增区间为________,单调减区间为________,最小正周期为________.解析:函数y =|cos x |的图象,如图所示.由图可知它的最小正周期为π.又因为在一个周期⎣⎢⎡⎦⎥⎤-π2,π2上,函数的增区间是⎣⎢⎡⎦⎥⎤-π2,0,减区间是⎣⎢⎡⎦⎥⎤0,π2.而函数的周期是k π(k ∈Z ),因此函数y =|cos x |的增区间是⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ),减区间是⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) ⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) π 6.函数f (x )的定义域为[0,1],则f (cos x )的定义域是__________.解析:由已知0≤cos x ≤1,得2k π-π2≤x ≤2k π+π2(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ) 7.已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π4,x ∈R . (1)用“五点法”画出函数f (x )在长度为一个周期的闭区间上的简图; (2)求函数f (x )的最大值,并求出取得最大值时自变量x 的取值集合; (3)求函数f (x )的单调增区间. 解:(1)列表:(2)当2x -π4=2k π(k ∈Z ),即x =k π+π8(k ∈Z )时,y ma x =3,此时x 取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π8,k ∈Z. (3)当2k π-π≤2x -π4≤2k π(k ∈Z )时,k π-3π8≤x ≤k π+π8,k ∈Z ,故函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).。
数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
第二章 函数§2.1 函数及其性质一、函数的基本性质:1. 函数图像的对称性(1) 奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。
(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。
若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。
(3) 若函数满足()(2)f x f ax =-,则()f x 的图像就关于直线x a =对称;若函数满足()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。
(4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。
2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。
判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性)特别提示:函数(0)ay x a x=+>的图像和单调区间。
3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。
若在所有的周期中存在一个最小的正数,就称其为最小正周期。
(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。
(2) 若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为Ta的周期函数。
(3) 若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。
(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。
(2) /(航+如型三角函数的奇偶性(i ) g (x ) = /沏(颜+如(x€ R)(x)为偶函数匕鼠U 力(而+ 出=j4sin (-<at + 炉)(x W 氏)0 sin 曲匚*0=。
(工 W R )7Tcos 卯=。
=上7T+一1左 e Z )由此得 2 ,同理,式夫4皿皈+双相的 为奇函数 =顺@=0/3=上网海2)(ii )飙# =+劭SwR]妖N = .Aa 式题+钠为偶函数见双t");就= 式以+如为奇函数7T=中=无产+ — (k e Z)3、周期性(1)基本公式(ii) 〃皈+⑺+氏型三角函数的周期竺y =+ G + 5 =加+中出 的周期为何;(一)三角函数的性质1、定义域与值域2、奇偶性(1)基本函数的奇偶性奇函数:y = sinx y= tanx ; 偶函数:y=cosx.(i )基本三角函数的周期的周期为;丁.y=sinx , y=cosx 的周期为 之并 ;y = tanx , y = cotx4-212yy=cotxy=tanx 3-32X 03 27 3,y=cosx-5-4 .7223 2322 5 2“如血的+朗+9=心服如+沟+用的周期为何.(2)认知⑴A =1/W +创型函数的周期y = |月劭(枷+或)| j = A 匚。
5(西+励|(ii )若函数为,(收斗劭 型两位函数之和,则探求周期适于“最小公倍数法”. (iii )探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明.(3)特殊情形研究JT(i ) y = tanx — cotx 的最小正周期为27T(ii ) y=卜由H+|M 幻的最小正周期为,;7T(iii ) y = sin 4x + cos 4x 的最小正周期为,. _由此领悟“最小公倍数法”的适用类型,以防施错对象 .4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期;②写特解:在所选周期内写出函数的增区问(或减区问);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 .揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域(2) y=/(而+初 型三角函数的单调区问的周期为y = (助+切1_r= |达匚祖(姗+阖| 的周期为 7T(ii) > = 1/(耽+如+同3=0)的周期1y 二|金£血(为工卜8]妣+3)+甘¥ = |例如(而+5+上] J = |总二加侬大+的+. 的周期为祠;,7T的周期为:. 均同它们不加绝对值时的周期相同,即对 数的周期不变.注意这一点与(i )的区别.y=八加+◎+上的解析式施加绝对值后,该函此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令u =z 中,将所给函数分解为内、外两层:y = f (u) , u =®x+卯;②套用公式:根据对复合函数单调性的认知,确定出 f (u)的单调性,而后利用(1)中公 式写出关于u 的不等式;③还原、结论:将u =^+W 代入②中u 的不等式,解出x 的取值范围,并用集合或区间 形成结论.正弦、余弦、正切、余切函数的图象的性质:/y sinx y cosxy tanxy cotxy Asin x(A 、 >0)定义域 R R x | x R 且 x k 1 ,k Zx| x R 且x k ,k ZR值域 [1, 1][1, 1]R RA, A周期性 2 22奇偶性奇函数 偶函数奇函数 奇函数当 0,非奇非偶 当0,奇函数单调性[2 2k , —2k ] 2上为增函 数; [2 2k ,3——2k ] 2上为减函 数(k Z )[2k 1 , 2k ]上为增函 数[2k , 2k 1 ]上为减函数(k Z )一k ,一 k 2 2 上为增函数(k Z )k , k 1上为减函数(k Z )2k2(A),2k -2( A)上为增函数;2k 一------ 2— (A), 2k------ 2——(A)上为减函数(k Z )注意:①y sinx 与y sinx 的单调性正好相反;y cosx 与y cosx 的单调性也同样相反.一般 地,若y f(x)在[a,b ]上递增(减),则y f (x)在[a,b ]上递减(增)y忖n x 与y cosx 的周期是.-(k Z),对称中心(k ,0); y cos( x )的对称轴方); y tan( x )的对称中心(工,0).,02③ y sin( x )或 y cos( x )0)的周期T 2y tan x 的周期为2 2 (T _ T 2,如图,翻折无效)④y sin( x )的对称轴方程是x k 程是x k (k Z ),对称中心(ky cos2x 原点对称 y cos( 2x) cos2x⑤ 当 tan tan 1, k ,(k Z) ; tan tan 1, k ,(k Z).⑥y cosx 与y s in x _ 2k是同一函数,而y ( x )是偶函数,则2 1 、,、y ( x ) sin( x k ) cos( x).2⑦函数y tanx 在R 上为增函数.(耳[只能在某个单调区间单调递增 .若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域 关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x) f(x),奇函数:f( x) f(x)) 奇偶性的单调性:奇同偶反.例如:y tanx 是奇函数,y tan(x 1)是非奇非偶.(定义域不 3 关于原点对称)奇函数特有性质:若0 x 的定义域,则f(x)一定有f(0) 0. (0 x 的定义域,则无此性质)⑨y sinx 不是周期函数;y sinx 为周期函数(T ); y cosx 是周期函数(如图);y cosx 为周期函数(T );y cos2x1的周期为(如图),并非所有周期函数都有最小正周期,2y f (x) 5 f (x k),k R . ⑩ y a cos bsinVa 2 b 2sin( ) cos b 有 Va 2 b 2 y .、形如y Asin( x )的函数:11、几个物理量:A 一振幅;f 1—频率(周期的倒数);x 一相包; 一初相;2、函数y Asin( x )表达式的确定:A 由最值确定; 由周期确定; 由图象上的特殊点确定,如 f(x) Asin( x )(A 0,0, | 3.函数 y Asin( x ) B (其中 A 0,0)最大值是A B,最小值是B A,周期是T —,最小正周期T 六频率是f「相位是x,初相是;其图象的对称轴是直线x k 7k Z),凡| "^0的图象如图所小,则f (x)(答:f(x)152sin(-2x -));y=| cos2x+1/2|图象是该图象与直线y B 的交点都是该图象的对称中心4、研究函数y Asin( x )性质的方法:类比于研究y sin x 的性质,只需将y Asin( x ) 中的x 看成y sinx 中的x,但在求y Asin( x )的单调区间时,要特别注意 A 和 的 符号,通过诱导公式先将 化正。
高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
其图像的画法是按定义域的划分分别作图。
1.4.2 正弦函数、余弦函数的性质第2课时 正、余弦函数的性质1.掌握y =sin x ,y =cos x 的性质:周期性、奇偶性,了解其图象的对称性. 2.掌握y =sin x ,y =cos x 的单调性,会结合它们的图象说出单调区间,并能根据单调性比较大小.3.掌握y =sin x ,y =cos x 的最大值、最小值,会求简单三角函数的值域或最值,并能指出取得最大(小)值时自变量x 的值的集合.1.正弦函数的图象与性质正弦函数的图象与性质如下表所示:____当x =____________时,y 取最大值1正弦曲线是中心对称图形,其所有的对称中心坐标为(k π,0)(k ∈Z ),即正弦曲线与x 轴的所有交点;正弦曲线也是轴对称图形,其所有的对称轴方程是x =k π+π2(k ∈Z ),所有对称轴垂直于x 轴,且与正弦曲线交点的纵坐标是正弦函数的最大(小)值.【做一做1】 已知函数y =sin x ,x ∈R ,则下列说法不正确的是( ) A .定义域是RB .最大值与最小值的和等于0C .在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数 D .最小正周期是2π2.余弦函数的图象与性质余弦函数的图象与性质如下表所示:__当x =________时,y 取最大值1余弦曲线是中心对称图形,其所有的对称中心坐标是⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z ),即余弦曲线与x 轴的所有交点;余弦曲线也是轴对称图形,其所有的对称轴方程是x =k π(k ∈Z ),所有对称轴垂直于x 轴,且与余弦曲线交点的纵坐标是余弦函数的最大(小)值.【做一做2】 已知函数y =cos x ,x ∈R ,则下列说法错误的是( ) A .值域为[-1,1]B .是奇函数C .在定义域上不是单调函数D .在[0,π]上是减函数答案:1.R [-1,1] 2k π+π2(k ∈Z ) 2k π-π2(k ∈Z ) 2π 奇 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2【做一做1】 C2.R 2k π(k ∈Z ) 2k π+π(k ∈Z ) 2π 偶 [(2k -1)π,2k π] [2k π,(2k +1)π]【做一做2】 B正、余弦函数的性质与图象的关系剖析:(1)定义域是R ,反映在图象上是所有垂直于x 轴的直线与图象有且只有一个交点.(2)正、余弦函数的单调性,反映在图象上是曲线的上升与下降的情况.(3)正、余弦函数的周期性,反映在图象上是曲线有规律地重复出现.相邻两对称中心的间隔是半个周期,相邻两对称轴的间隔也是半个周期,相邻的对称中心与对称轴的间隔是四分之一个周期.(4)正、余弦函数的奇偶性,反映在图象上是曲线关于原点或y 轴对称,即sin(-x )=-sin x ,cos(-x )=cos x .(5)正、余弦函数的最大值和最小值,反映在图象上,就是曲线的最高点和最低点.题型一 判断三角函数的奇偶性 【例1】 判断下列函数的奇偶性:(1)f (x )=sin x cos x ;(2)f (x )=1+sin x -cos 2x1+sin x.分析:先判断函数的定义域是否关于原点对称,再判断f (-x )与f (x )的关系,进而可确定函数的奇偶性.反思:1.判断函数奇偶性的依据是函数奇偶性的定义,定义域关于原点对称是函数有奇偶性的前提.另外还要注意诱导公式在判断f (x )与f (-x )之间关系时的应用.2.本例(2)中,易忽视f (x )的定义域,违背定义域优先的原则,而进行非等价变形,得f (x )=sin x (1+sin x )1+sin x=sin x ,从而导致结果错误.题型二 求三角函数的单调区间【例2】 求函数y =2sin ⎝⎛⎭⎪⎫3x +π4的单调递减区间. 反思:求函数y =A sin(ωx +φ)的单调区间时,利用整体思想,把ωx +φ看成一个整体,借助于正弦函数的单调区间来解决.题型三 求三角函数的值域(最值) 【例3】 求下列函数的值域: (1)y =3-2cos 2x ,x ∈R ;(2)y =cos 2x +2sin x -2,x ∈R .分析:(1)将2x 看成一个整体,利用余弦函数的值域求得;(2)把sin x 看成一个整体,利用换元法转化为求二次函数的值域.反思:求三角函数的值域的方法:①化为y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b (A >0),则其值域为[-A +b ,A +b ].如本例(1)小题;②把sin x 或cos x 看成一个整体,利用换元法转化为求二次函数在闭区间上的值域,如本例(2)小题.题型四 比较三角函数值的大小 【例4】 比较下列各组数的大小: (1)sin 194°与cos 160°;(2)sin ⎝ ⎛⎭⎪⎫sin 3π8与sin ⎝⎛⎭⎪⎫cos 3π8.分析:(1)先将异名三角函数化为同名三角函数,并且利用诱导公式化到同一单调区间上.(2)先比较sin 3π8与cos 3π8的大小,然后利用正弦函数单调性求解.反思:比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.题型五 易错辨析易错点 忽视x 的系数是-1【例5】 求y =sin ⎝ ⎛⎭⎪⎫π3-x 的单调递增区间.错解:令π3-x =t ,∵y =sin t 的递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ), ∴2k π-π2≤π3-x ≤2k π+π2(k ∈Z ),解得-2k π-π6≤x ≤-2k π+56π,即2k π-π6≤x ≤2k π+5π6(k ∈Z ),即y =sin ⎝ ⎛⎭⎪⎫π3-x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6(k ∈Z ). 错因分析:在π3-x 中,x 的系数-1是负数,应整体代入正弦函数的单调递减区间,求原函数的单调递增区间.答案:【例1】 解:(1)定义域为R .f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),∴f (x )是奇函数.(2)要使函数有意义,自变量x 的取值应满足1+sin x ≠0, ∴sin x ≠-1.∴x ≠2k π+32π,k ∈Z .∴函数的定义域为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ∈R ,且x ≠2k π+3π2,k ∈Z .f ⎝ ⎛⎭⎪⎫π2=1+sin π2-cos2π21+sinπ2=1,但f ⎝ ⎛⎭⎪⎫-π2无意义,∴函数f (x )既不是奇函数也不是偶函数. 【例2】 解:由于函数y =2sin x 的递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ). 令2k π+π2≤3x +π4≤2k π+3π2,得2k π3+π12≤x ≤2k π3+5π12(k ∈Z ). 故所求的单调递减区间为⎣⎢⎡⎦⎥⎤2k π3+π12,2k π3+5π12(k ∈Z ). 【例3】 解:(1)∵-1≤cos 2x ≤1,∴-2≤-2cos 2x ≤2. ∴1≤3-2cos 2x ≤5,即1≤y ≤5.∴函数y =3-2cos 2x ,x ∈R 的值域为[1,5].(2)y =cos 2x +2sin x -2=-sin 2x +2sin x -1=-(sin x -1)2.∵-1≤sin x ≤1,∴函数y =cos 2x +2sin x -2,x ∈R 的值域为[-4,0]. 【例4】 解:(1)sin 194°=sin(180°+14°)=-sin 14°, cos 160°=cos(180°-20°)=-cos 20°=-sin 70°. ∵0°<14°<70°<90°,∴sin 14°<sin 70°, 从而-sin 14°>-sin 70°,即sin 194°>cos 160°. (2)∵cos 3π8=sin π8,∴0<cos 3π8<sin 3π8<1.而y =sin x 在(0,1)内递增,∴sin ⎝ ⎛⎭⎪⎫cos 3π8<sin ⎝⎛⎭⎪⎫sin 3π8. 【例5】 正解:∵y =sin ⎝ ⎛⎭⎪⎫π3-x =-sin ⎝⎛⎭⎪⎫x -π3,∴要求原函数的单调递增区间,只需求y =sin ⎝⎛⎭⎪⎫x -π3的单调递减区间.令2k π+π2≤x -π3≤2k π+3π2(k ∈Z ),∴2k π+5π6≤x ≤2k π+116π(k ∈Z ).∴y =sin ⎝ ⎛⎭⎪⎫π3-x 的单调递增区间是 ⎣⎢⎡⎦⎥⎤2k π+5π6,2k π+116π(k ∈Z ).1.函数y =sin 2cos xx+是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数2.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin11°3.函数y =sin 2x -cos x 的值域是__________. 4.函数y =3-2π32cos 33x ⎛⎫-+ ⎪⎝⎭的最大值为____________,此时自变量x 的取值集合是__________.5.求函数y =π2sin 4x ⎛⎫- ⎪⎝⎭的单调递增区间.答案:1.A 定义域为R ,f (-x )=sin()2cos()x x -+-=sin 2cos xx-+=-f (x ),则f (x )是奇函数.2.C ∵sin 168°=sin(180°-168°)=sin 12°,cos 10°=sin 80°, sin 11°<sin 12°<sin 80°, ∴sin 11°<sin 168°<cos 10°.3.51,4⎡⎤-⎢⎥⎣⎦设cos x =t ,-1≤t ≤1,则y =1-cos 2x -cos x =-t 2-t +1=21524t ⎛⎫-++ ⎪⎝⎭. 由于-1≤t ≤1,则有-1≤y ≤54. 4.5 {x |x =3k π+π,k ∈Z } 当2πcos 33x ⎛⎫+⎪⎝⎭=-1时,y max =3-2×(-1)=5.此时x 的取值集合为{x |x =3k π+π,k ∈Z }. 5.解:y =π2sin 4x ⎛⎫- ⎪⎝⎭=π2sin 4x ⎛⎫-- ⎪⎝⎭.令2k π+π2≤x -π4≤2k π+3π2 (k ∈Z ),得 2k π+3π4≤x ≤2k π+7π4(k ∈Z ).函数y =π2sin 4x ⎛⎫-⎪⎝⎭的递增区间为 3π7π2π,2π44k k ⎡⎤++⎢⎥⎣⎦(k ∈Z ).。
常见函数性质汇总
常数函数 f (x )=b (b ∈R)
图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线
一次函数
f (x )=kx +b (k ≠0,b ∈R) |k|越大,图象越陡;|k|越小,图象越平缓; 图象及其性质:直线型图象。
b=0;k>0;k<0
定 义 域:R 值域:R 单调性:当k>0时, 当k<0时
奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数。
K=±1、b=0的时候 周 期 性:无
补充:一次函数与其它函数之间的lianxi 1、与一元一次函数之间的联系
2、与曲线函数的联合运用
反比例函数 f (x )=
x
k
(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;
当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时
奇 偶 性:奇函数 反 函 数:原函数本身 周 期 性:无 补充:1、反比例函数的性质
2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,李永二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)
3、反函数变形(如右图) f (x )=
d
cx b
ax ++ (c ≠0且 d ≠0)
x
y b O
f (x )=b
x
y
O
f (x )=kx +b x
y
O
f (x )=x
k y
f (x )=
d
cx b
ax ++
(对比标准反比例函数,总结各项内容) 二次函数
一般式:)0()(2
≠++=a c bx ax x f
顶点式:)0()()(2
≠+-=a h k x a x f
两根式:)0)()(()(21≠--=a x x x x a x f
图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为
②当0>a 时,开口向上,有最低点 当0<a 时。
③当 = >0时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。
④)0()(2
≠++=a c bx ax x f 关系 )0()(2
≠=a ax x f
定 义 域:R 值 域:当0>a 时,值域为( );当0<a 时,值域为( )
单 调 性:当0>a 时;当0<a 时. 奇 偶 性:b=/≠0
反 函 数:定义域范围内无反函数,在单调区间内有反函数 周 期 性:无 补充:
1、︱a ︱的大小与和函数图象的走向
2、
3、二次函数的对称问题:关于x 轴对称;关于y 轴对称;关于原点对称;关于(m ,n )对称
4、二次函数常见入题考法:⑴交点 ⑵值域、最值、极值、单调性 ⑶数形结合判断图形走势(选择题)
指数函数
)1,0()(≠>=a a a x f x
,系数只能为1。
图象及其性质:
1、恒过)1,0(,无限靠近x 轴;
2、x
a x f =)(与x
x a a
x f -==)1()(关于y 轴对称;但均不
具有奇偶性。
3、在y 轴右边“底大图高”;在y 轴左边“底大图低”——靠近关系
定 义 域:R 值 域:),0(+∞ 单 调 性:当0>a 时;当0<a 时。
奇 偶 性:无 反 函 数:对数函数)1,0(log )(≠>=a a x x f a 周 期 性:无
x
y
O
f (x )=c bx ax ++2
x
y
O
f (x )=)1(>a a x
f (x )=)10(<<a a x
补充: 1、
2、图形变换
对数函数(和指数函数互为反函数)
)1,0(log )(≠>=a a x x f a
图象及其性质:①恒过)0,1(,无限靠近y 轴;
②x x f a log )(=与x x x f a a
log log )(1-==关于x 轴对称;
③x >1时“底大图低”;0<x <1时“底大图高”(理解记忆)
定 义 域:R 值 域:),0(+∞ 单 调 性:当0>a 时;当0<a 时; 奇 偶 性:无 反 函 数:指数函数)1,0()(≠>=a a a x f x
周 期 性:无
补充:
1、
双钩函数
x
x x f 1
)(+
=(变形式 )
图象及其性质:①两条渐近线: ②最值计算: 定 义 域: 值 域: 单 调 性: 奇 偶 性:奇函数 反 函 数:定义域内无反函数 周 期 性:无
Zhuyi :双沟函数在最值、数形结合、单调性的考察中用得较多,需特别注意最值得算法
幂函数(考察时,一般不会太难)
无论n 取任何实数,幂函数图象必然经过第一象限,并且一定不经过第四象限。
不需要背记,只要能够快速画出n=±1, ±1/2,±3,,1/3,0,的图象就行
如有侵权请联系告知删除,感谢你们的配合!
x
y
O
f (x )=)1(lo
g >a x a
f (x )=)10(lo
g <<a x a
x
y
O
f (x )=
x
x 1+
1
2。