1 从独立粒子核壳层到原子核集体模型
- 格式:pdf
- 大小:99.62 KB
- 文档页数:2
核壳模型与原子核结构的解释原子核是构成物质的基本单位之一,它的结构和性质一直以来都是科学家们关注的焦点。
在20世纪初,研究人员发现原子核中存在着不同的质子和中子,这引发了对原子核结构的深入研究。
核壳模型是一种用来解释原子核结构的理论,它为我们提供了深入理解原子核的框架。
核壳模型最早由丹麦物理学家尼尔斯·玻尔在1920年提出。
他认为原子核的质子和中子分别占据着不同的能级,就像电子在原子中的能级一样。
这些能级被称为核壳,每个核壳可以容纳一定数量的质子和中子。
当一个核壳被填满时,原子核就会变得特别稳定。
核壳模型的一个重要预测是核壳闭合效应。
当某个核壳被完全填满时,原子核的结构就会变得非常稳定,而在其他情况下,原子核就会相对不稳定。
这解释了为什么有些核素比其他核素更加稳定,而且在自然界中更常见。
核壳模型的成功在于它能够解释许多实验观测到的现象。
例如,它可以解释为什么质子和中子的数量对原子核的稳定性有如此重要的影响。
当质子和中子的数量接近某个核壳的填充情况时,原子核就会变得非常稳定。
这也解释了为什么质子和中子的数量相等的核素(例如氦-4)在自然界中非常常见。
此外,核壳模型还可以解释原子核的形状和振动模式。
根据核壳模型,当原子核的质子和中子数量接近某个核壳的填充情况时,原子核就会呈现出球形的形状。
而当质子和中子数量远离核壳填充情况时,原子核的形状就会发生变化,可能呈现出椭球形或者其他非球形的形状。
这种形状变化可以通过核壳模型中的振动模式来解释。
然而,核壳模型并不是完美的。
它无法解释一些实验观测到的现象,例如原子核的超越稳定性和核素的同位素依赖性。
为了解决这些问题,科学家们提出了许多改进的核壳模型,例如壳模型的扩展和核素间的相互作用等。
总之,核壳模型为我们提供了解释原子核结构的重要框架。
它解释了为什么原子核的质子和中子数量对其稳定性有如此重要的影响,以及为什么原子核的形状会发生变化。
虽然核壳模型还存在一些问题,但它仍然是研究原子核结构的基础理论之一。
嗦夺市安培阳光实验学校高二物理原子的核式结构模型人教实验版【本讲教育信息】一. 教学内容:选修3—5第十八章原子结构第一节电子的发现第二节原子的核式结构模型第三节氢原子光谱第四节玻尔的原子模型二. 知识内容(一)1. 阴极射线:阴极射线的本质是带负电的粒子流,后来,组成阴极射线的粒子被称为电子。
2. 电子的发现:1897年英国的物理学家汤姆孙发现了电子,并求出了这种粒子的比荷。
(二)1. 汤姆孙的原子模型:原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型”或“枣糕模型”。
2. a粒子散射实验:(1)a粒子:a粒子是从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍。
(2)实验现象:绝大多数a粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数a粒子(约占八千分之一)发生了大角度偏转,偏转的角度甚至大于900,也就是说它们几乎被“撞了回来”。
(3)卢瑟福核式结构模型:原子中带正电的部分体积很小,但几乎占有全部质量,电子在正电体的外面运动。
按照卢瑟福的理论,正电体被称为原子核,卢瑟福的原子模型因而被称为核式结构模型。
3. 原子核的电荷与尺度:(1)电荷:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。
(2)尺度:对于一般的原子核,核半径的数量级为10-16m,而整个原子半径的数量级是10-10m,两者相差十万倍之多,可见原子内部是十分“空旷”的。
(三)1. 光谱:(1)定义:把光按波长的大小分开,获得光的波长(频率)成分和强度分布的记录。
即光谱。
(2)分类:光谱分为线状谱和连续谱。
(3)特征:线状谱是一条条分立的亮线;连续谱是一条连续的光带。
2. 原子光谱:(1)定义:各种原子的发射光谱都是线状谱,不同原子的亮线位置不同,把这些亮线称为原子的特征谱线。
(2)光谱分析:每种原子都有自己的特征谱线,我们可以用它来鉴别物质和确定物质的组成成分,这种方法称为光谱分析。
原子核壳模型在核物理与核化学中,核壳层模型是一个利用泡利不相容原理的结构来描述的原子核的能量级别的一个模型。
类似的壳层模型最早于1932年,由Dmitry Ivanenko 与E. Gapon —起提出,而后在1949年核壳层模型由几个物理学家研究及提出,最主要的几个人是尤金维格纳、玛丽亚格佩特-梅耶和约翰内斯延森,由于发现核壳层模型理论和对称性原理,因此于1963年颁发诺贝尔物理学奖。
核壳层模型部分是类似于原子的电子壳层描述原子中的电子的安排,当壳层填满时特别稳定,核壳层模型描述原子中次原子粒子的排布,当质子与中子填满某个核壳层,该核素更稳定。
当在一个稳定的原子核加入核子(质子或中子)时,也有一定的结合能,但其量值明显小于前一个核子。
发现幻数:2, 8, 20 , 28 , 50 , 82 , 126当质子或中子为幻数时有较高的结合能,这就是核壳层模型的起源。
质子和中子的核壳层是相互独立的。
因此,质子或中子可以只有其中一个为幻数,此时称为幻核,也可以两者皆是幻数,则为双幻核。
由于在核轨域填充有一些变化,目前最大的幻数是126,并推测有184个中子,但只有114个质子,这在搜索所谓的稳定岛中扮演了一个重要的角色。
目前已发现一些半幻数,特别是Z = 40时,核壳填充的各种元素,此外,16也可能是一个幻数。
核壳层模型基本信息原子核-内部结构模型表在核物理与核化学中,核壳层模型是一个利用泡利不相容原理的结构来描述的原子核的能量级别的一个模型。
2、 通过分析实验资料发现,原子核具有类似元素周期性的情况,含中子数或质子数为 & 20、28、50、82以及中子数为126的原子核特别稳定,在自然界中的含量也比相邻的核 素丰富。
原子核的某些性质随中子 (或质子)数的增加呈现的变化也在经过上述那些值后发 生突变。
上述这些数值, 人们称之为幻数。
幻数的存在表明, 平均场的概念对原子核也是有 意义的,可以把原子核里的核子看作是在由其他核子共同产生的某个单粒子平均场中作近乎 独立的运动,并认为平均场所不能概括的核子之间的剩余相互作用是比较弱的,可以当作微扰来处理,这就是壳层模型的基本思想。
2 原子的核式结构模型疱丁巧解牛知识·巧学一、汤姆孙原子模型当时,无法直接通过实验探测原子内部的奥秘,汤姆孙运用经典力学的理论,根据电荷之间的作用力与距离的平方成反比进行了大量计算,以求证电子稳定分布应处的状态,他认为,既然电子那么小,又那么轻,原子带正电的部分应充斥整个原子,很小很轻的电子镶嵌在球体的某些固定位置(图18-2-1).电子图带的负电被原子内带的正电抵消,因此原子呈电中性.如果原子失去电子或得到电子,就会变成离子,电子一方面要受正电荷的吸引,另一方面又要互相排斥,因此必然有一个处于平衡的状态,电子在它们的平衡位置附近做简谐运动,可以发射或吸收特定频率的电磁波.汤姆孙原子结构模型图18-2-1模型可以帮助我们理解一些无法直接观察的事物.一个好的原子模型应该能够解释所有的关于原子和物体的信息.当获得越来越多的信息时,模型也会慢慢改变.联想发散汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实所否定.不过它的意义却极其深远,电子的发现使我们认识到原子是有结构的,并用汤姆孙的原子模型可以粗略解释原子发光问题,为我们揭开了原子结构的研究的帷幕.二、α粒子的散射实验1909—1911年卢瑟福和他的助手做了用α粒子轰击金箔的实验,获得了重要的发现.1.实验装置整个实验在真空中进行,高速的α粒子流垂直射到很薄的金箔上,由于受到金原子中带电微粒的库仑力的作用,一些α粒子通过金箔后必然会改变原来的运动方向,产生偏转.当α粒子穿过金箔后,打在荧光屏上闪光,然后通过显微镜观察,如图18-2-2所示.图18-2-2联想发散整个实验过程在真空中进行.α粒子后来被证明是氦原子核,带正电,由两个中子和两个质子组成,其质量约为电子的7 300倍.金箔很薄,α粒子很容易穿过.2.实验现象与结果α粒子通过金箔时,绝大多数不发生偏转,仍沿原来的方向前进,少数发生较大的偏转,极少数偏转角超过90°,有的甚至被弹回,偏转几乎达到180°.α粒子散射实验令卢瑟福万分惊奇,按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多,α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的纸被反弹回来这一不可思议的现象,卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型. 学法一得原子的结构就像一个“黑箱”里面的信息是无法直接获取的.研究黑箱问题的一般方法是有目的地向黑箱输入一些信息,观测黑箱反馈回来的输出信息,进而推断出黑箱内的结构和运行机制.三、原子的核式结构的提出1.推理过程卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.按照卢瑟福的核式结构学说,可以很容易地解释α粒子的散射实验现象,如图18-2-3所示.图18-2-3按照这个模型,由于原子核很小,大部分α粒子穿过金箔时都离核很远,受到的斥力很小,它们的运动几乎不受影响;只有极少数α粒子从原子核附近飞过,明显地受到原子核的库仑斥力而发生大角度的偏转.2.核式结构模型在原子的中心有一个带正电的原子核,它几乎集中了原子全部质量,而电子则在核外空间绕核旋转.原子内部是十分“空旷”的.原子直径的数量级为10-10m,原子核直径的数量级为10-15m,两者相差十万倍,而体积的差别就更大了,若原子相当于一个立体的足球场的话,则原子核就像足球场中的一粒米.深化升华原子核所带的单位正电荷数等于核外的电子数,所以整个原子是中性的.电子绕着原子核旋转所需向心力就是核对它的库仑引力.3.大多数α粒子都是“侵入”金原子核和电子之间的空间里,它们受到的库仑力很小,运动方向的改变也就很小.只有极少数的α粒子会非常接近金原子核,这时它们之间强烈的斥力就迫使α粒子发生较大的偏转,甚至被弹回.误区提示不要认为α粒子与金原子核直接发生碰撞,偏转的原因是库仑斥力影响的结果.4.从α粒子散射实验的数据估算出原子核大小的数量级为10-15—10-14m,原子大小的数量级为10-10m.学法一得学习时注意把实验结果与核式结构模型的内容之间建立联系,避免机械记忆.四、原子核的电荷与尺度原子核的电荷数等于核外电子数,接近于原子序数,原子核大小的数量级为10-15m,原子大小数量级为10-10m,两者相差十万倍之多,可见原子内部十分“空旷”.典题·热题知识点一卢瑟福α粒子散射实验例1 卢瑟福α粒子散射实验的结果( )A.证明了质子的存在B.证明了原子核是由质子和中子组成的C.证明了原子的全部正电荷和几乎全部质量都集中在一个很小的核里D.说明了原子中的电子只能在某些轨道上运动解析:该题要考查的是α粒子散射实验对人类认识原子结构的贡献.只要考生了解α粒子散射实验的结果及核式结构的建立过程,不难得出正确答案.α粒子散射实验发现了原子内存在一个集中了全部正电荷和几乎全部质量的核,数年后卢瑟福发现核内有质子并预测核内存在中子.答案:C方法归纳α粒子散射实验是物理学发展史上的一个重要的实验,它的实验结果使人们关于物质结构的观念发生了根本性变化,从而否定了汤姆孙原子结构的葡萄干面包模型,导致了卢瑟福核式结构模型的确立,教材中关于α粒子散射实验装置和实验方法的描述十分详尽,对实验结果的说明层次非常清楚:绝大多数α粒子穿过,基本上不发生偏转;少数发生偏转;极少数发生大角度偏转.关于这种重要的实验要记住. 例2 α粒子散射实验中,使α粒子散射的原因是( )A.α粒子与原子核外电子碰撞B.α粒子与原子核发生接触碰撞C.α粒子发生明显衍射D.α粒子与原子核的库仑斥力作用解析:本题考查α粒子散射实验,α粒子与原子核外电子的作用是很微弱的,A 项错误.由于原子核的质量和电荷量很大,α粒子与原子核很近时,库仑斥力很强,足可以使α粒子发生大角度偏转甚至反向弹回,使α粒子散射的原因是库仑斥力,B 项错误,D 项正确.答案:D方法归纳 卢瑟福提出的原子核式结构正是建立在α粒子散射实验的基础上的.绝大多数α粒子不发生偏转,这说明原子的内部非常空旷.少数发生较大的偏转,极少数偏转角超过90°,有的甚至被弹回,偏转几乎达到180°,这是α粒子与原子核带正电的库仑斥力的作用,这说明原子中正电荷都集中在一个很小的区域内,α粒子穿过单个原子时,才有可能发生大角度的散射.知识点二 α粒子散射实验与电场、电势能等知识的综合例3 如图18-2-4所示,在α粒子散射实验中,α粒子穿过某一金属原子核附近的示意图,A 、B 、C 分别位于两个等势面上,则以下说法中正确的是( )图18-2-4A.α粒子在A 处的速度比B 处的速度小B.α粒子在B 处的动能最大,电势能最小C.α粒子在A 、C 两处的速度大小相等D.α粒子在B 处的速度比在C 处的速度要小解析:α粒子由A 经B 运动到C ,则由于受到库仑斥力的作用,α粒子先减速后加速,所以A 项错误,D 项正确.库仑斥力对α粒子先做负功后做正功,使动能先减小后增大,电势能先增大后减小,B 项错误.AC 处于同一个等势面上,从A 到C 库仑力不做功,速度大小不变,C 项正确.答案:CD巧妙变式 若α粒子穿过某一带负电的点电荷附近,则运动情况又如何呢?(若α粒子穿过某一带负电的点电荷附近,由于受到库仑引力的作用,则α粒子一直向负点电荷靠近,最后落在上面,发生中和,则在此过程中库仑引力做正功,动能增大,电势能减小.)例4 已知电子质量为9.1×10-31 kg ,带电量为-1.6×10-19 C ,当氢原子核外电子绕核旋转时的轨道半径为0.53×10-10 m 时,求电子绕核运动的速度、频率、动能和等效的电流强度.解析:电子绕原子核做匀速圆周运动,电子与核之间的库仑力充当电子绕核旋转的向心力.由向心力公式可求出速度和周期,继而再求出频率、动能、等效电流强度.根据库仑力提供电子绕核旋转的向心力.可知: k 202r e =m 02r v v=e m r k 0=1.6×10-19×31-10-9109.1100.53109⨯⨯⨯⨯m/s=2.18×106 m/s 而v=2πfr 0即f=02r v π=10-6100.533.142102.18⨯⨯⨯⨯Hz=6.55×1015 HzE k =21mv 2=21·02r ke =21×10-29100.5319)-10(1.6109⨯⨯⨯⨯J=2.16×10-8 J 设电子运动周期为T ,则T=V r 02π=6-10102.18100.533.142⨯⨯⨯⨯ s=1.5×10-16 s 电子绕核的等效电流强度:I=t q =T e =16--191015101.6⨯⨯A=1.7×10-3 A. 方法归纳 本题通过构建理想的物理模型,综合考查匀速圆周运动、电场力和电流强度等知识. 知识点三 α粒子与动量守恒定律、能量恒定律综合例5 1909—1911年英国物理学家卢瑟福与其合作者做了用α粒子轰击金箔的实验.发现绝大多数α粒子穿过金箔后仍沿原来的方向前进;少数α粒子却发生了较大角度的偏转;极少数α粒子偏转角度超过了90°;有的甚至被弹回,偏转角几乎达到了180°.这就是α粒子散射实验.为了解释这个结果,卢瑟福在1911年提出了原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转.请你利用α粒子散射实验结果估算原子核的大小(保留一位有效数字).(下列公式或数据为已知:点电荷的电势U=kQ/r,k=9.0×109 Nm 2/C 2,金原子序数79,α粒子质量m α=6.64×10-27 kg ,α粒子速度v=1.6×107 m/s ,电子电量e=1.6×10-19 C.解析:由于是估算,我们可以取极少数被弹回的α粒子为研究对象.当α粒子的速度减为0时,α粒子与金原子核间的距离最小约等于金原子核的半径.利用能量转化与守恒定律进行计算.对于极少数被弹回的α粒子,受到很强的排斥力,可以认为它几乎接近原子核;它先做减速运动,当速度减为0后,反向加速.当α粒子的速度减为0时,α粒子与金原子核间的距离最小,约等于金原子核的半径;此过程中α粒子的动能转化为电势能.21m αv 2=rkeQ ,解得:r=22v m keQ α 代入数据解得:r=4×10-14m.巧解提示 将α粒子靠近金原子核类比为B 物体连接一弹簧静止在光滑水平面上,并与一墙相靠,A 以v 0的速度冲向B.A 先做减速,当速度减为0时,反向加速.当A 的速度减为0时,A 、B 间距离最小,A 的动能转化为弹性势能.两个带电粒子只在电场力作用下的相对运动,与碰撞中的弹簧模型相似,只有电场力做功系统动能与电势能的总和保持不变.处理这类问题常用动量守恒定律、能的转化与守恒,有时还需结合牛顿运动定律.图18-2-5问题·探究思想方法探究问题原子物理学研究的是微观现象,比较抽象.通过原子核结构的探索过程,总结研究微观世界的方法?探究过程:微观世界的原子和原子核的结构无法直接通过实验直接观察到,只能依据实验现象,通过科学的思维和研究方法进行间接研究原子核的微观结构.即由实验结果→分析猜测→提出模型→实验验证→建立新理论→构建正确的模型是探索微观结构的基本方法.探究结论:由实验结果→分析猜测→提出模型→实验验证→建立新理论→构建正确的模型是探索微观结构的基本方法.高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
1.从独立粒子核壳层模型到原子核集体模型一个亘古不变、极具魅力的话题:自从人类有了思维,人们就开始不停地追问“我们的世界究竟由什么组成?”古希腊哲学家泰勒斯提出:水是万物的始基;赫拉克利特认为:火是万物的本原;德谟克利特则宣称:世界万物都是由不可分割的颗粒(原子)和虚空所组成。
我国古代的“五行说”认为,宇宙万物皆由金、木、水、火、土构成;“元气说”则认为,客观的元气是构成宇宙万物的本原。
粒子物理学中的“标准模型”理论,经受了相当成功的实验检验,被认为是迄今为止最有效的一个唯象理论,但是这个理论仍然存在着许多基本的疑难问题有待解决。
诸如希格斯粒子的存在和本质,粒子质量的来源,夸克和轻子更深层次的特征标度,标准模型更深层次上的基本规律等,都是今后主要的研究领域。
寻找超出标准模型的新理论,将成为高能物理近期探索的一个重要任务核物理研究一开始,就面临着一个重要的问题,这就是核子间相互作用的性质。
人们注意到,大多数原子核是稳定的,而通过对不稳定原子核的γ衰变、β衰变和α衰变的研究发现,原子核的核子之间必然存在着比电磁作用强得多的短程、且具有饱和性的吸引力。
此外,大量实验还证明,质子-质子、质子-中子、中子-中子之间的相互作用,除了电磁力不同外,其它完全相同,这就是核力的电荷无关性。
1935年,汤川秀树(YukawaHideki 1907~1981)提出,核子间相互作用是通过交换一种没有质量的介子实现的。
1947年,π介子被发现,其性质恰好符合汤川的理论预言。
介子交换理论认为,单个π介子交换产生核子间的长程吸引作用(≥3×10-13cm),双π介子交换产生饱和中程吸引作用(1~3×10-13cm),而ρ、ω分子交换产生短程排斥作用(<1×10-13cm),π介子的自旋为零,称为标量介子,ρ、ω介子的自旋为1,称为矢量介子,它们的静止质量不为零,这确保了核力的短程性,而矢量介子的非标量性又保证了核力的自旋相关性。
第2节原子的核式结构模型1.α粒子散射实验结果:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°。
2.原子结构模型:在原子的中心有一个很小的核叫原子核,原子的所有正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕核旋转。
3.原子核由质子和中子组成,原子核的电荷数等于原子核中的质子数。
4.原子半径的数量级为10-10m,原子核半径的数量级为10-15 m。
一、汤姆孙的原子模型汤姆孙于1898年提出了原子模型,他认为原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌在球中。
汤姆孙的原子模型,小圆点代表正电荷,大圆点代表电子。
汤姆孙的原子模型被称为西瓜模型或枣糕模型,该模型能解释一些实验现象,但后来被α粒子散射实验否定了。
二、α粒子散射实验1.α粒子α粒子是从放射性物质中发射出来的快速运动的粒子,含有两个单位的正电荷,质量为氢原子质量的4倍。
2.实验方法用α粒子源发射的α粒子束轰击金箔,用带有荧光屏的放大镜,在水平面内不同方向对散射的α粒子进行观察,根据散射到各方向的α粒子所占的比例,可以推知原子中正、负电荷的分布情况。
3.实验装置4.实验现象(1)绝大多数的α粒子穿过金箔后,基本上仍沿原来的方向前进。
(2)少数α粒子发生了大角度偏转;偏转的角度甚至大于90°,它们几乎被“撞了回来”。
5.实验意义卢瑟福通过α粒子散射实验,否定了汤姆孙的原子模型,建立了核式结构模型。
三、卢瑟福的核式结构模型1.核式结构模型:1911年由卢瑟福提出,原子中带正电的部分体积很小,但几乎占有全部质量,电子在正电体的外面运动。
2.原子核的电荷与尺度1.自主思考——判一判(1)汤姆孙的枣糕式模型认为原子是一个球体,正电荷弥漫性地均匀分布在整个球体内。
(√)(2)α粒子带有一个单位的正电荷,质量为氢原子质量的2倍。
(×)(3)α粒子散射实验证实了汤姆孙的枣糕式原子模型。
1.从独立粒子核壳层模型到原子核集体模型
一个亘古不变、极具魅力的话题:自从人类有了思维,人们就开始不停地追问“我们的世界究竟由什么组成?”古希腊哲学家泰勒斯提出:水是万物的始基;赫拉克利特认为:火是万物的本原;德谟克利特则宣称:世界万物都是由不可分割的颗粒(原子)和虚空所组成。
我国古代的“五行说”认为,宇宙万物皆由金、木、水、火、土构成;“元气说”则认为,客观的元气是构成宇宙万物的本原。
粒子物理学中的“标准模型”理论,经受了相当成功的实验检验,被认为是迄今为止最有效的一个唯象理论,但是这个理论仍然存在着许多基本的疑难问题有待解决。
诸如希格斯粒子的存在和本质,粒子质量的来源,夸克和轻子更深层次的特征标度,标准模型更深层次上的基本规律等,都是今后主要的研究领域。
寻找超出标准模型的新理论,将成为高能物理近期探索的一个重要任务核物理研究一开始,就面临着一个重要的问题,这就是核子间相互作用的性质。
人们注意到,大多数原子核是稳定的,而通过对不稳定原子核的γ衰变、β衰变和α衰变的研究发现,原子核的核子之间必然存在着比电磁作用强得多的短程、且具有饱和性的吸引力。
此外,大量实验还证明,质子-质子、质子-中子、中子-中子之间的相互作用,除了电磁力不同外,其它完全相同,这就是核力的电荷无关性。
1935年,汤川秀树(YukawaHideki1907~1981)提出,核子间相互作用是通过交换一种没有质量的介子实现的。
1947年,π介子被发现,其性质恰好符合汤川的理论预言。
介子交换理论认为,单个π介子交换产生核子间的长程吸引作用(≥3×10-13cm),双π介子交换产生饱和中程吸引作用(1~3×10-13cm),而ρ、ω分子交换产生短程排斥作用(<1×10-13cm),π介子的自旋为零,称为标量介子,ρ、ω介子的自旋为1,称为矢量介子,它们的静止质量不为零,这确保了核力的短程性,而矢量介子的非标量性又保证了核力的自旋相关性。
核力性质及核组成成分的研究,为进一步揭示原子核的结构创造了条件。
在早期的原子核模型中,较有影响的有玻尔的液滴模型、费密气体模型、巴特勒特和埃尔萨斯的独立粒子模型以及迈耶和詹森的独立粒子核壳层模型。
其中最成功的是独立粒子核壳层模型。
在1948~1949年间,迈耶(Mayer,MariaGoeppert1906~1972)通过分析各种实验数据,重新确定了一组幻数,即2、8、20、28、50和82。
确定这些幻数的根据是:①原子核是这些幻数的化学元素相对丰度较大;②幻核的快中子和热中子的截面特别小;③幻核的电四极矩特别小;④裂变产物主要是幻核附近的原子核;⑤原子的结合能在幻核附近发生突变;⑥幻核相对α衰变特别稳定;
⑦β衰变所释放的能量在幻核附近发生突变。
在费密的启发下,迈耶在平均场中引入强的自旋-轨道耦合力,利用该力引起的能级分裂成功地解释了全部幻数的存在。
接着,詹森(Jensen,Johannes Hans Daniel1907~1973)也独立地得到了相同的结果。
在迈耶与詹森合著的《原子核壳层基本原理》一书中,他们利用核壳层模型成功地解释了原子核的幻数、自旋、宇称、磁矩、β衰变和同质异能素岛等实验事实。
由于原子核壳层结构模型所获得的成功,及其在核物理研究中的重要作用,迈耶和詹森共同获得1963年诺贝尔物理学奖。
核壳层模型是在大量的关于核性质、核谱以及核反应实验数据综合分析的基础上提出的,它对原
子核内部核子的运动给出了较清晰的物理图象。
这一模型的核心是平均场思想。
它认为,就像电子在原子中的平均场中运动一样,在原子核内,每个核子也近似地在其它核子的平均场中做独立的运动,因此原子核也应具有壳层结构,通常把这一模型称为独立粒子核壳层模型。
平均场的思想使核壳层模型取得了多方面的成功,但是它也具有不可避免的局限性,因为核子之间的相互作用不可能完全由平均场作用代替。
除了平均场以外,核子之间还有剩余相互作用。
随着核物理研究的发展,在50年代以后,陆续发现一些新的实验事实,如大的电四极矩、磁矩、电磁跃迁几率、核激发能谱的振动谱、转动谱以及重偶偶核能谱中的能隙等,它们都不能用独立粒子的核壳层模型解释。
1953年,丹麦物理学家、著名物理学家N.玻尔之子阿·玻尔(Bohr,Aage Niels1922~)与他的助手莫特森(Mottelson,BenRoy1926~)及雷恩沃特(Rainwater,LeoJames1917~)共同提出了关于原子核的集体模型。
这一模型认为,除平均场外,核子间还有剩余的相互作用,剩余作用引起核子之间关联,这种关联是对独立粒子运动的一种补充,其中短程关联引起核子配对。
描述这种关联的核子对模型已经得到大量的实验支持。
核子间的长程关联将使核变形,并产生集体运动,原子核转动和振动能谱就是这种集体运动的结果,而重核的裂变以及重离子的熔合反应又是原子核大变形引起的集体运动的结果。
原子核的集体模型认为,每个核子在核内除了相对其它核子运动外,原子核的整体还发生振动与转动,处于不同运动状态的核,不仅有自己特定的形状,还具有不同的能量和角动量,这些能量与角动量都是分立的,因而形成能级。
正因如此,与只适用于球形核的独立粒子壳层模型相比,原子核的集体模型有了很大的发展。
用它可以计算核液滴的各种形状对应的能量和角动量。
此外,当核由高能级向低能级跃迁时,能量通常还能以γ射线的形式释放出来,这一特征正与大量处于稳定线附近的核行为相符。
此外,根据这一模型,当核形状固定时,转动惯量不变,随着角动量加大,核形状变化,转动惯量相应改变,导致转动能级变化,因此,这一模型对变形核转动能级的跃迁规律的研究,已成为研究奇异核的基础。
原子核集体模型解决了独立粒子核壳层模型的困难,成功地解决了球形核的振动、变形核的转动和大四极矩等实验事实,为原子核理论的发展作出重要的贡献,为此,阿·玻尔、莫特森与雷恩沃特共同获得了1975年诺贝尔物理学奖。