解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y =(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 .
当x=1,y=3时,原式=6×27-6×9=108.
方法总结 整式的乘法主要包括单项式乘以单项式、单项式乘以多项
式及多项式乘以多项式,其中单项式乘以单项式是整式乘法的 基础,必须熟练掌握它们的运算法则.
转化
有理数的乘法和同底数幂的乘
法.
针对训练
7.计算:(4a-b)•(-2b)2..
解: 原式=(4a-b)•4b2=16ab2-4b3.
整体思想
例5 若2a+5b-3=0,则4a·32b= 8 . 【解析】已知条件是2a+5b-3=0,无法求出a,b的值因此可以 逆用积的乘方先把4a·32b.化简为含有与已知条件相关的部分, 即4a·32b=22a·25b=22a+5b.把2a+5b看做一个整体,因为2a+5b3=0,所以2a+5b=3,所以4a·32b=23=8.
=-1-(2 ×0.5)300 ×0.5 =-1-0.5 =-1.5. 3. 比较大小:420与1510.
解:∵420=(42)10=1610, 1610>1510, ∴420>1510.
考点二 整式的乘法
例2 计算:[x(x2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 【解析】在计算整式的加、减、乘、除、乘方的运算中,一要 注意运算顺序;二要熟练正确地运用运算法则.
针对训练
1.下列计算不正确的是( D ) A.2a3 ·a=2a4 C. a4 ·a3=a7
B. (-a3)2=a6 D. a2 ·a4=a8
2. 计算:0.252015 ×(-4)2015-8100 ×0.5301. 解:原式=[0.25 ×(-4)]2015-(23)100 ×0.5300 ×0.5