TEM(3)衍射分析
- 格式:ppt
- 大小:2.54 MB
- 文档页数:79
tem衍射花样原理
TEM衍射花样原理
透射电子显微镜(Transmission Electron Microscope,TEM)是一种利用电子束来观察物质结构的高分辨率显微镜。
TEM的分辨率比光学显微镜高得多,可以观察到更小的物质结构。
TEM的一个重要应用是通过衍射花样来研究物质的晶体结构。
TEM衍射花样是指当电子束穿过物质时,由于物质的晶体结构对电子的散射作用,电子束会形成一系列明亮和暗淡的环形花样。
这些花样可以用来确定物质的晶体结构和晶格常数。
TEM衍射花样的形成原理是基于布拉格衍射定律。
布拉格衍射定律是指当X射线或电子束穿过晶体时,会被晶体中的原子散射,形成一系列衍射峰。
这些衍射峰的位置和强度与晶体的晶格常数和原子排列有关。
TEM衍射花样的形成过程可以分为三个步骤。
首先,电子束穿过样品,与样品中的原子相互作用。
其次,电子束被散射,形成一系列衍射峰。
最后,这些衍射峰被记录在衍射图上,形成TEM衍射花样。
TEM衍射花样可以用来确定物质的晶体结构和晶格常数。
通过比较实验得到的衍射花样和理论计算得到的衍射花样,可以确定物质的晶体结构和晶格常数。
这对于研究物质的性质和应用具有重要意
义。
TEM衍射花样是一种重要的研究物质晶体结构的方法。
通过观察TEM衍射花样,可以确定物质的晶体结构和晶格常数,为研究物质的性质和应用提供了重要的信息。
TEM分析中电子衍射花样标定TEM分析中电子衍射花样的标定是指确定其中的晶格参数和晶体结构。
电子衍射是由于电子束通过晶体时,与晶体中的电子相互作用而散射产生的。
电子束通过晶体时,遇到晶体的晶面时,会发生弹性散射,产生衍射现象。
衍射光束的方向、强度和间距在电子显微镜中可以通过观察电子衍射花样来确定,进而得到晶体的晶格参数和结构信息。
在进行电子衍射花样标定之前,首先需要准备一片单晶样品。
单晶样品的制备是一个关键步骤,需要从熔融状态下使样品高度纯净的晶体生长过程中得到。
然后将单晶样品切割成薄片,通常厚度在几十纳米到一百纳米左右。
进行TEM分析时,需要将薄片放置在透明网格上,并将其放入TEM样品船中。
接下来,将TEM样品船放入TEM仪器中,并进行样品的调准和调节。
在TEM仪器中,通过侧向显示出TEM样品的像,调整样品的倾角和旋转角度,使其与电子束的传输轴垂直以及平行于透明栅中的线。
这样才能观察到电子衍射花样。
接下来是电子衍射花样的标定过程。
首先,将TEM仪器调节到电子衍射模式,并将图像显示在荧光屏上。
然后,调节TEM仪器中的操作控制器,使得样品的电子束以其中一种特定的角度来照射样品。
在进行电子衍射花样标定时,可以首先使用标准单晶样品进行实验。
标准单晶样品的晶格参数和结构已经被广泛研究和报道。
通过将标准单晶样品放入TEM仪器中,来测量其电子衍射花样,并将其与实际观察到的电子衍射花样进行对比和校准。
此外,还可以使用获得的电子衍射花样,与理论模拟的电子衍射图案进行比对。
在进行电子衍射花样的标定时,需要考虑到以下几个因素。
首先,样品的薄度和各向异性。
样品的薄度会影响电子束的穿透和样品的衍射效果。
其次,电子束的聚焦和调整,以获得清晰的电子衍射花样。
最后,还需要注意TEM仪器的标定和校准,以确保获得准确的电子衍射花样。
总结起来,TEM分析中电子衍射花样的标定是一个复杂的过程,需要准备好单晶样品,并在TEM仪器中进行样品的调准和调节。
TEM电子衍射的原理TEM是透射电子显微镜(Transmission Electron Microscope)的简称,是一种使用电子束而不是光束进行观察和分析的显微镜。
TEM利用电子束穿过样品并与样品相互作用,然后将电子衍射的图样转换为样品的结构信息。
TEM电子衍射的原理基于布拉格公式,即nλ = 2dsinθ,其中n为衍射级数,λ为入射电子的波长,d为晶格参数,θ为衍射角。
当电子束穿过晶体时,晶格中的原子对电子束起到散射作用,形成衍射图样。
这些衍射图样即可用来分析晶格信息及其结构。
1.电子源:电子转移系统通过高压电子火花或透射电子枪产生一束高速电子流。
电子束由一系列电磁透镜束聚并形成高能束。
2.准直系统:使用透镜系统将电子束准直,以确保它在整个样品上尽可能平行。
3.样品台:样品台是一个用于支撑样品的平台,样品被安置在这个平台上。
平台上提供了一系列探测器,以捕捉散射的电子。
4.电子与样品相互作用:电子束穿过样品并与样品中的原子相互作用。
原子对电子产生散射效应,并产生衍射图样。
5.探测器:使用一系列探测器来收集电子的散射。
这些探测器可以测量衍射电子的强度和角度,以确定晶体结构。
6.图像形成:电子衍射模式进入与样品台相连的CCD摄像机,生成衍射图像。
通过TEM电子衍射,我们可以得到样品的晶体结构、晶格参数、晶面指数、晶体取向等信息。
这对于理解材料的性质和行为非常重要。
另外,TEM还可以结合其他技术如能谱分析和显微成像技术,实现对样品的更全面的表征。
然而,使用TEM电子衍射还会面临一些挑战。
首先,电子束的能量较高,容易对样品造成辐射损伤,因此需要进行谨慎的操作和控制。
其次,电子束在穿过样品时容易受到散射和多次散射的影响,导致失真和模糊的衍射图样。
这需要使用一些衍射技术如选区电子衍射(Selected Area Electron Diffraction)和倾斜衍射(Precession Electron Diffraction)来克服这些问题并提高分辨率。
TEM分析中电子衍射花样的标定原理第一节 电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
tem衍射标定TEM衍射标定是电子显微镜下表征晶体材料结构的一项基础研究技术,它的目的是通过对样品的TEM衍射图案进行标定,并通过在TEM 衍射图案中识别出特征点和迹线,从而准确地求出样品中晶格、晶面间距和晶格旋转角度等结构参数,为后续的表征和研究提供基础支撑。
TEM衍射标定的实现涉及多个步骤,下面将一步步进行介绍:1.样品制备:样品制备是TEM衍射标定的重要前提。
需要选取结晶质量好、形态完整、不含太多的杂质或混杂相的样品。
用特定的方法将样品转化为一定厚度的薄片,并保证其表面光整度和平坦度,以保证高质量的TEM衍射图案。
2.TEM成像:进行TEM成像时需要对TEM设备的条件进行合理的调整,如选择合适的电压、电流、收集器的角度、透镜和能量散射器的参数等。
此外,在对样品进行成像时还需要进行图像补偿、去噪和染色等处理,以保证得到的TEM衍射图案质量可靠。
3.TEM衍射图案校准:获得TEM衍射图案后,需要对其进行校准,以获得高精度的样品结构参数。
具体而言,校准过程分为以下两个步骤:(1)标定物距:通过对TEM衍射图案中表征散斑尺寸的标准样品(通常是一个晶体,其晶格常数已知)进行测量,求得样品到屏幕的距离(即物距)。
(2)确定镜头的对中:将标准样品对称地拍摄两个不同的图像,然后通过对两幅图像进行对准和测量,确定不同影响因素对TEM镜头对中的影响,从而保证TEM衍射图案的准确性。
4.图像分析和参数计算:在进行TEM衍射图案校准之后,需要对图像进行分析和参数计算,从而得出样品的晶格参数、晶格旋转角度和晶面间距等重要结构参数。
具体而言,这需要先识别TEM衍射图案中的各种衍射点、特征点和迹线,并使用衍射补偿和显微补偿等方法进行重建,然后利用衍射谱学或倾斜拍摄等方法进行参数计算。
总之,TEM衍射标定技术在表征晶体材料结构和研究晶体材料性质中发挥着重要的作用,通过以上的步骤可以获得高质量和高精度的TEM衍射图案和相关的样品结构参数。
tem衍射斑确定晶体结构-概述说明以及解释1.引言1.1 概述TEM衍射斑是一种用于确定晶体结构的重要技术工具。
随着科学技术的不断发展和进步,TEM衍射斑在晶体学领域的应用日益广泛。
本文旨在深入探讨TEM衍射斑在晶体结构确定中的原理和应用,以及其在该领域中的优势和局限性。
TEM衍射斑是通过透射电子显微镜观察到的样品表面上的衍射图样。
当电子束通过一个晶体样品时,由于晶体的结构和原子排列方式的作用,电子束会发生衍射现象,形成一系列明暗交替的衍射斑。
这些衍射斑的分布和形态可以被捕捉、记录下来,并通过分析和计算来得到有关晶体结构的信息。
TEM衍射斑的原理可以追溯到布拉格的衍射理论,根据该理论,当入射波长、入射角和晶体的晶格常数满足一定条件时,衍射斑会形成。
这种衍射现象的出现使得我们可以通过观察和解读衍射斑的图像来推断晶体的结构和晶格参数。
在晶体学中,TEM衍射斑被广泛应用于晶体结构的确定和分析。
通过对TEM衍射斑的测量和解析,研究人员可以获取晶格常数、晶胞参数和晶体的空间对称性等关键信息。
这些信息对于了解物质的结构、性质和功能具有重要意义,对材料科学、化学和生物学等学科的发展有着重大影响。
TEM衍射斑在晶体结构确定中具有许多优势。
首先,TEM衍射斑具有高分辨率和高灵敏度,可以观察到微小晶体的衍射斑图样,进而提供准确的晶体参数数据。
其次,TEM衍射斑技术操作简便,可以实现实时观测和记录,有利于对晶体的动态性质和相变过程进行研究。
此外,由于TEM 衍射斑的图像特征明显,对于晶体结构的分析和解读也较为直观和准确。
然而,TEM衍射斑也存在一定的局限性。
首先,TEM衍射斑对样品的要求较高,需要获取高质量的晶体样品,并且对样品的制备和处理过程要求严格。
其次,TEM衍射斑的解析和计算较为复杂,需要借助专门的软件和算法进行处理。
此外,由于TEM衍射斑对电子束的束缚条件较为严格,对于非晶态材料等晶体外形不规则的样品,会出现衍射图样的模糊和多重衍射等现象。
TEM透射电镜中的电子衍射及分析TEM透射电镜(Transmission Electron Microscopy)是一种高分辨率的显微镜,它利用电子束穿透样品,并通过电子衍射和显微成像技术来观察样品的内部结构和晶格信息。
本文将通过一个实例来介绍TEM透射电镜中的电子衍射及分析过程。
实例:研究纳米材料的晶格结构研究目标:使用TEM透射电镜研究一种纳米材料的晶格结构,确定其晶格常数和晶体结构。
实验步骤:1.样品制备:首先,需要制备纳米材料的TEM样品。
常见的制备方法包括溅射,化学气相沉积和溶液法等。
在本实验中,我们将使用溶液法制备纳米颗粒样品,并将其沉积在碳膜上。
2.装载样品:将TEM样品加载到TEM透射电镜的样品台上,并进行适当的调整,以使样品位于电子束的路径中。
3.调整TEM参数:调整透射电镜的参数,如电子束的亮度,聚焦和对比度等。
这些参数的调整对于获得良好的电子衍射图像至关重要。
4. 获得电子衍射图:通过调整TEM中的衍射镜,观察和记录电子衍射图。
可以使用选区衍射(Selected Area Diffraction,SAD)模式,在样品上选择一个小区域进行衍射。
电子束通过纳米颗粒样品时,会与晶体的原子排列相互作用,并在相应的探测器上形成衍射斑图。
5.解析电子衍射图:利用电子衍射图分析软件,对获得的电子衍射图进行解析。
通过测量衍射斑的位置和相对强度,可以推断出样品的晶格常数和晶体结构。
6.确定晶格常数:根据衍射斑的位置,使用布拉格方程计算晶格常数。
布拉格方程为:nλ = 2dsin(θ)其中,n是衍射阶数,λ是电子波长,d是晶体平面的间距,θ是入射角。
通过测量不同衍射斑的位置和计算,可以得到晶格常数及其误差范围。
7.确定晶体结构:根据衍射斑的相对强度以及已知的晶格常数,可以利用衍射斑的几何关系推断样品的晶体结构。
常见的晶体结构包括立方晶系、六方晶系等。
8.结果分析:根据实验获得的数据,进行晶格常数和晶体结构的分析和比较。
透射电镜衍射斑点分析简介透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种通过电子束与样品相互作用,利用透射方式观察样品内部结构的高分辨率显微镜。
TEM的一个重要应用就是利用电子的衍射现象来研究样品的晶体结构。
在TEM中,电子束通过样品时会与样品中的原子相互作用,形成衍射斑点(diffraction spots)。
衍射斑点的分析可以提供许多有关样品结构的信息,包括晶格常数、晶体对称性、晶体缺陷等。
在本文中,我们将介绍透射电子显微镜衍射斑点的分析方法,包括数据采集、图像处理和衍射斑点解析。
数据采集在TEM中进行衍射斑点分析之前,首先需要采集衍射图像。
具体的数据采集方法可以根据样品和仪器的特性进行调整,但通常的步骤如下:1.确保样品准备充分,如将样品制成薄片,使电子束能够透过样品而不发生重叠散射。
2.调整TEM仪器的参数,如对准电子束、选择合适的放大倍数和调整聚焦等。
3.选择合适的衍射模式,如选区电子衍射(Selected Area ElectronDiffraction,SAED)模式或更广的场发射电子衍射(Convergent BeamElectron Diffraction,CBED)模式。
4.通过调整TEM的光学系统,将衍射斑点聚焦到相机上,并进行曝光,采集图像数据。
图像处理获得衍射图像后,接下来需要进行图像处理,以便更好地观察和分析衍射斑点。
图像处理的主要步骤包括:1.图像校正:根据TEM仪器的参数,进行图像校正,消除畸变和噪声。
2.区域选择:根据需要分析的衍射斑点和背景,选择感兴趣的区域,并进行裁剪和缩放。
3.对比度增强:通过调整图像的亮度和对比度,增强衍射斑点的清晰度。
4.噪声去除:使用滤波算法去除图像中的噪声,以便更好地观察衍射斑点。
图像处理的目的是提取出清晰、准确的衍射斑点图像,为后续的分析提供更好的数据基础。
衍射斑点解析通过合适的图像处理,可以得到清晰的衍射斑点图像。
tem衍射花样原理
TEM衍射花样原理
电子衍射是一种将电子束照射到物体表面,然后测量衍射花样的方法。
TEM 衍射是一种特殊的电子衍射技术,它使用透射电子显微镜(TEM)来观察衍射花样。
TEM衍射可以用来研究物体的结构和性质,特别是晶体的结构和成分。
TEM衍射的原理是利用电子束与物体发生相互作用时发生的衍射现象。
当电子束通过物体时,会与物体中的原子和分子相互作用。
这种相互作用会导致电子束的散射和衍射。
TEM衍射的衍射花样是由电子束与物体中的原子和分子相互作用所产生的干涉图案。
这些花样可以提供关于物体的结构和性质的重要信息。
通过对衍射花样的测量和分析,可以确定物体的晶体结构、晶格常数、晶面间距和晶体中原子的排列方式等信息。
TEM衍射技术是一种非常有用的工具,可以用于研究许多不同类型的物体和材料。
它已经广泛应用于材料科学、化学、物理学、生物学以及其他领域的研究中。
TEM衍射技术的发展使得研究人员能够更深入地了解物体的结构和性质,从而推动了许多领域的前沿研究。
TEM透射电镜中的电子衍射及分析实例TEM(透射电子显微镜)是一种利用电子束来研究物质结构的仪器。
它通过透射电子的衍射来获得高分辨率的图像,可以观察到物质的晶体结构、晶格缺陷、成分分布等信息。
下面将介绍几个常见的TEM电子衍射及分析实例。
1.晶体结构分析:TEM电子衍射可以用于确定物质的晶体结构。
例如,我们可以用TEM观察纳米颗粒的晶体结构,通过衍射斑图的形状和位置可以确定晶体的点群、空间群以及晶胞参数。
这对于研究纳米颗粒的生长机制、性能优化等具有重要意义。
2.晶格缺陷分析:晶格缺陷对材料的性质具有重要影响。
TEM电子衍射可以用于观察晶格缺陷并进行分析。
例如,通过对衍射斑图的解析,可以确定晶格缺陷的类型(例如位错、晶格错配等)、位置以及密度。
这对于研究材料的力学性能、电学性能等具有重要意义。
3.单晶取向分析:TEM电子衍射可以用于确定单晶的晶面取向。
通过选取合适的照射条件(如照射角度、光斑尺寸等),观察到的衍射斑图可以得到晶面的取向信息。
这对于材料的晶面取向控制、物理性质优化等具有重要意义。
4.晶体成分分析:TEM电子衍射可以用于确定材料的成分。
通过观察材料的纹理和衍射斑图的位置等信息,可以获得材料的成分分布。
例如,TEM电子能谱(EDS)结合电子衍射可以同时确定材料的晶体结构和成分,对于研究复杂多相体系具有重要意义。
5.界面结构研究:TEM电子衍射可以用于研究材料的界面结构。
通过选择合适的照射条件,观察到的衍射斑图可以提供界面的结构和晶面取向信息。
这对于研究界面的稳定性、反应动力学等具有重要意义。
总之,TEM电子衍射是一种非常重要的材料分析技术,它可以提供关于晶体结构、晶格缺陷、成分分布、晶面取向和界面结构等信息。
通过对衍射斑图的定性和定量分析,我们可以深入了解材料的性质和行为,为材料设计和性能优化提供指导。
这些实例只是TEM电子衍射应用的一部分,随着技术的发展,相信将会有更多更广泛的应用出现。
版面很多网友由于刚接触TEM的衍射花样,所以有一些基础问题觉得需要这里讲一下,简单衍射花样的标定,所谓简单,就是各个晶系里面的单晶衍射花样,没有缺陷,没有超结构,没有厚样品造成的高阶劳埃带,只是物质的纯相造成的衍射花样。
有了这个基础,理解了一些,往下才能做的扎实。
1. 一般的物质衍射花样都是已知的物质,顶多也就是已知的几种里面的一个。
所以在确定哪几个物种之后,去找一下相关物质的PDF卡片,网上有一个软件PCPDFWIN,可以方便查讯电子版的PDF卡,下载位置,看看这个帖子,24楼里面我提到了下载的具体目录:/bbs/shtml/20060418/398715/2. 找到了相应的PDF卡,那么就是要测量衍射花样了。
衍射花样的拍摄要严格按照操作规程来,尤其要注意在拍摄时样品聚焦尽量准确。
另外,无论底片拍摄还是CCD拍摄,一定要保证用标准样品做了校正。
3. 接下来就是测量衍射点对应的d值。
对于底片来说就是测量衍射点到中心透射斑的实际距离R,然后根据d = (L×电子波长)/R,其中L是相机常数,底片上写着,单位是cm,电子波长一般的电镜书上都有,200 kV电镜是0.00251 nm。
代入计算即可得到相应的d值。
选取两个相邻且最靠近中心斑点的衍射点,二衍射斑点以夹角接近或者等于90度为好。
选取测量d值之后,二者同中心斑点连线的夹角也要测量一下。
对于CCD相机拍摄的衍射花样,对应的都有标尺,d值测量就是量取衍射点到透射斑的距离后取倒数即可。
角度测量可以通过量取衍射点到中心斑连线对应control对话框的R值(角度),二者相减即得。
4. 将计算的d值和PDF卡相对应,看最接近哪个面的数值,querida说过,这个测量会有一定的误差,有相近值时,需要通过夹角来确定。
方法是,选取两个比较可能的面,然后代入相应晶系对应的公式,计算夹角,如果和测量值很接近,就算是找对了。
Ustb版主说过,计算值和测量值应该相差很小,0.1-0.2度的范围。
透射电子显微镜(Transmission Electron Microscope, TEM)中的标准衍射花样分析是材料科学、物理学和纳米技术等领域中用于确定晶体结构和取向的重要手段。
TEM通过高能电子束穿透样品并与其内部原子晶格相互作用,当电子波受到晶格周期性排列的原子散射后,会在特定方向上形成强度分布的衍射斑点或花样。
在TEM中观察到的标准衍射花样主要包括以下特征和分析内容:1.斑点位置:每个衍射斑点对应一个特定的布拉格衍射条件(布拉格定律),即2dsinθ = nλ,其中d为晶面间距,θ是入射电子与衍射晶面法线之间的夹角,n是整数,λ是电子波长。
根据斑点的位置可以推算出样品的晶面间距和晶体结构参数。
2.斑点强度:斑点的亮度或强度反映了相应晶面的反射系数大小,这与原子种类、排列方式以及电子束的性质有关。
强斑点通常对应于密集的原子平面或者有较大散射能力的原子。
3.花样类型:o单晶衍射花样表现为一组规则排列的斑点,可以根据斑点分布解析出晶体的三维空间群和结构。
o多晶或非晶样品可能产生弥散环状花样,而非清晰的斑点。
o孪晶衍射花样会显示由于孪晶界的存在而产生的特殊对称性和额外的衍射斑点,这些斑点可用来识别孪晶结构及其取向关系。
4.选区衍射(Selected Area Electron Diffraction, SAED):利用光阑限制电子束以研究样品局部区域的衍射花样,这对于分析微小区域内或具有复杂结构的样品尤其重要。
5.Zonal Axis Mapping (Z-Contrast Imaging):某些情况下,TEM还可以结合相位衬度成像等技术,通过衍射花样来揭示样品内部的成分分布及缺陷信息。
6.花样指数化:通过对衍射花样进行标定和斑点的索引,可以精确地确定晶体的取向和结构。
7.晶粒尺寸和应变分析:通过分析衍射斑点的宽度、形状变化,可以获取样品中原子层面的微观应力状态以及晶粒大小的信息。
总结来说,TEM标准衍射花样的详细分析涉及多个步骤,包括花样捕获、图像处理、斑点定位与索引、结构解析和物理参数提取等,对于理解和表征材料的微观结构至关重要。
TEM电子衍射及分析引言透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种高分辨率的显微镜,利用电子束通过样品并对透射电子进行衍射、成像和分析等操作。
TEM电子衍射是一项重要的研究技术,可以用于研究材料的结晶结构和晶体缺陷等特性。
本文将介绍TEM电子衍射的原理及常用的分析方法。
TEM电子衍射原理TEM电子衍射是指入射电子束通过样品后,由于与样品内部结构的相互作用,电子将发生衍射现象。
衍射过程中,入射电子束的波动性质被样品晶体结构所限制,形成衍射斑图。
通过观察衍射斑图的形态和分布,可以了解样品晶体的结构信息。
TEM电子衍射的原理可以用布拉格方程来描述:nλ =2d*sinθ 其中,n为衍射级数,λ为入射电子的波长,d为晶格的间距,θ为衍射角度。
TEM电子衍射图解析TEM电子衍射图是由衍射斑图组成的,通过对衍射斑图的解析,可以得到样品晶体的一些重要信息。
1.衍射斑的亮度:衍射斑的亮度反映了样品晶体中存在的晶格缺陷、位错等信息。
亮斑表示高度有序的结构,而暗斑则表示晶格缺陷存在。
2.衍射斑的分布:衍射斑的分布可以提供样品晶体的晶面方向信息。
通过观察衍射斑的位置和排列方式,可以确定样品晶体的晶体结构。
3.衍射斑的形状:衍射斑的形状可以指示晶格的对称性。
正交晶系的衍射斑为圆形,其他晶系的衍射斑形状则会有所不同。
TEM电子衍射分析方法除了观察TEM电子衍射图来获得晶体结构信息外,还有一些常用的分析方法。
1.衍射索引:通过观察衍射斑的位置和分布,结合晶体结构学的知识,利用衍射索引方法确定晶格参数、晶胞参数,从而得到样品晶体的晶体结构信息。
2.选区电子衍射:通过在选定的区域内进行电子衍射,可以得到该区域的晶格结构和取向信息。
这种方法可以用来研究样品中不同区域的晶体结构差异。
3.电子衍射支撑:通过在TEM观察区域选择多个点进行电子衍射,得到它们的衍射斑的位置和分布等信息。