《大学物理振动》PPT课件
- 格式:ppt
- 大小:2.52 MB
- 文档页数:36
大学物理振动课件•振动基本概念与分类•简谐振动特性分析•非简谐振动处理方法目录•波动现象与波动方程•光学中振动与波动应用•声学中振动与波动应用•总结回顾与拓展延伸01振动基本概念与分类振动定义及特点振动的定义物体在平衡位置附近所做的往复运动称为振动。
振动的特点周期性、重复性、稳定性。
振动分类方法自由振动、受迫振动。
按振动系统分类简谐振动、非简谐振动。
按振动规律分类直线振动、扭转振动。
按振动方向分类物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐振动。
简谐振动的定义回复力与位移成正比,且方向相反;加速度与位移成正比,且方向相反;速度与位移成反比。
简谐振动的特点不满足简谐振动条件的振动称为非简谐振动。
非简谐振动的定义回复力不满足与位移成正比的规律;加速度与位移的关系不满足简谐振动的规律;振动图像不是正弦或余弦曲线。
非简谐振动的特点简谐振动与非简谐振动02简谐振动特性分析简谐振动方程建立与求解建立简谐振动方程通过受力分析和牛顿第二定律,建立简谐振动的微分方程。
对于一维简谐振动,方程形式为$mfrac{d^2x}{dt^2} + kx = 0$,其中$m$ 为振子质量,$k$ 为弹性系数。
方程的求解通过求解微分方程,得到简谐振动的通解为$x(t) = Acos(omega t + varphi)$,其中$A$ 为振幅,$omega$ 为角频率,$varphi$ 为初相位。
1 2 3表示振动物体离开平衡位置的最大距离,反映了振动的强弱程度。
振幅$A$表示振动物体完成一次全振动所需的时间,反映了振动的快慢程度。
周期$T$表示单位时间内振动物体完成全振动的次数,与周期互为倒数关系,即$f = frac{1}{T}$。
频率$f$振幅、周期、频率等参数意义相位差与波动传播关系相位差的概念两个同频率的简谐振动之间存在的相位之差。
当两个振动的相位差为$2npi$($n$为整数)时,它们处于同相;当相位差为$(2n+1)pi$ 时,它们处于反相。