答案:C
课时作业(三十) 正弦定理与余弦定理
一、选择题
12 1.(2009 全国Ⅱ已知 ) ABC中, cotA , 则cosA ( 5 12 5 5 12 A. B. C. D. 13 13 13 13 )
12 5 解析 :由cotA 知A为钝角, cosA . 5 13
解析 :由正弦定理 3sinBcosA cosAsinC cosCsinA 3 sin A C sinB,cosA . 3
3 答案 : 3
题型二 余弦定理的应用
例2 1 (2009 广东)在 ABC中, A、B、C的对边 分别为a、b、c, 若a c 6 2 , A 75, 则b ( A.2 B.4 2 3 C.4 2 3 ) D. 6 2
)
A.直角三角形,但不是等腰三角形
B.等腰三角形,但不是直角三角形
C.直角三角形或等腰三角形 D.等腰直角三角形
解析 :由正弦定理可知 又 a b c sinA sinB sinC
a b c , cosB sinB, cosC sinC, sinA cosB cosC 又B、C为 ABC的内角, B C 45 ABC为等腰直角三角形.
注意:要熟记一些常见结论,如:①三角形三内角A,B,C成等差 数列的充要条件是B=60°;
②若三内角的正弦值成等差数列,则三边也成等差数列;
③△ABC是正三角形的充要条件是三内角A,B,C成等差数列 且对应三边a,b,c成等比数列.
4.已知三角形的两边及一边的对角解三角形
(1)先判断三角形解的情况,在△ABC中,已知a,b,A时,判断方法
)
D.等腰或直角三角形