第3章飞机结构件制造工艺
- 格式:ppt
- 大小:14.28 MB
- 文档页数:109
模型飞机的构造原理与制作工艺模型飞机是一种可以飞行的小型飞机模型,是模型制作爱好者喜欢制作的一种模型。
模型飞机的构造原理和制作工艺十分重要,这不仅关系到模型飞机的飞行性能,也关系到模型制作的难易程度和成品的质量。
一、构造原理模型飞机的构造原理和真实飞机的构造原理相似,主要包括机翼、机身、尾翼、发动机等部分。
1.机翼机翼是模型飞机的主要承载构件,是模型飞机能否起飞和飞行的关键。
机翼主要由前缘、后缘、主梁和副翼组成。
前缘是机翼的前端,通常呈半圆形或锥形,可以减小阻力;后缘是机翼的后端,通常呈平直或斜面状,可以产生升力;主梁是机翼的中央支架,用于支撑机翼的重量和受力;副翼是机翼表面上的小翼,可以调整机翼的升力和飞行姿态。
2.机身机身是模型飞机的主要支撑结构,通常呈流线型,可以减小阻力。
机身主要由前部、中部和后部组成。
前部通常是放置发动机和电池的位置,中部是机身的主要支撑结构,后部是放置尾翼的位置。
3.尾翼尾翼是模型飞机的控制装置,主要包括垂直尾翼和水平尾翼。
垂直尾翼通常位于机尾顶部,可以控制左右方向;水平尾翼通常位于机尾后方,可以控制上下方向。
4.发动机发动机是模型飞机的动力装置,通常是电动机或燃油发动机。
电动机通常使用电池供电,燃油发动机通常使用汽油或航空燃料供电。
发动机的功率和转速决定了模型飞机的飞行性能。
二、制作工艺制作模型飞机的工艺通常分为设计、制造和装配三个步骤。
1.设计设计是制作模型飞机的第一步,通常需要绘制模型飞机的草图或图纸。
设计时需要考虑模型飞机的大小、重量、气动性能等因素,并根据飞机的用途和个人喜好确定机型、机翼形状、机身长度、尾翼大小等参数。
2.制造制造是制作模型飞机的主要步骤,需要选用合适的材料和工具。
常用的材料有木材、聚酯树脂、碳纤维等,常用的工具有锯子、刨子、钳子、飞机模型切割机等。
制造时需要根据草图或图纸将材料切割成需要的形状和尺寸,然后进行打孔、钻孔、粘合等工艺操作,最终制造出机翼、机身、尾翼等部件。
第三章 铆接和铆接结构装配普通铆接概述一、普通铆接的概念和过程普通铆接是指常用的凸头或埋头铆钉铆接,铆接过程为:制铆钉孔-制埋头窝-放铆钉 -铆接。
见课本图。
二、普通铆接的缺点增加了结构重量;降低了强度,容易引起变形;疲劳强度低;密封性能差。
导致其它连接方法迅速发展,如胶接,点焊和胶接点焊等三、铆接的优点连接强度比较稳定;容易检查和排除故障(与胶接焊接比较);使用工具比较简单,价廉; 适用于比较复杂的结构的连接。
四、铆接的发展1.无头铆钉干涉配合铆接技术可以提高接头的疲劳寿命,满足现代飞机的疲劳性能和密封 性要求。
2.各种形式的自动钻孔设备和铆接设备为不断提高铆接的机械化和自动化程度,提高铆接 质量提供了条件。
第一节 普通铆接工艺过程一、钻孔和锪窝1.对铆钉孔的要求1.1 铆钉孔的质量要求孔径公差 1.2 孔的椭圆度 1.3孔的垂直度 1.4孔边毛刺 1.5 孔的粗糙度1.2 不同直径的铆钉孔的加工方法d<5mm 钻孔、扩孔; d>6mm 或夹层厚度>15mm 钻孔、扩孔、铰孔。
2.影响钻孔质量的主要因素教案1.1 工件材料 1.2 钻头转速、 1.3 进刀量 1.4刀具的锋利程度2.确定铆钉孔的位置2.1 铆钉孔位置包含内容边距、排距(行距)、 孔距2.2 铆钉孔钻孔的方法1)按划线钻孔( 钻孔的方向)2)按导孔钻孔——导孔通常是制在孔的边距较小、材料较硬或较厚的零件上,在零件制造 阶段就制出,装配定位后,钉孔按导孔钻出 。
例如蒙皮和长桁的铆钉孔,是按长桁的导孔 钻出。
3)按钻模钻孔3.锪窝3.1 埋头窝的深度要求埋头窝的深度为负差,铆后铆钉头只允许铆钉头高出蒙皮表面。
3.2 埋头窝的制作方法一般使用锪窝方法,锪窝有专用的锪窝钻。
为保证埋头窝深度公差,应采用能限制窝深的锪 窝钻套。
当蒙皮厚度<0.8mm 时采用冲窝方法。
二、制孔工具设备1.风钻以压缩空气为动力,将高压空气经导管进入机身汽缸,推动活塞做高速往复运动,打击并 回转钻杆。
飞机机翼制造方案及工艺方法1. 引言本文档介绍了一种飞机机翼的制造方案及工艺方法。
机翼作为飞机的重要部件,对于飞行性能和安全性至关重要。
因此,在制造机翼时需要采用可靠的方案和高效的工艺方法。
2. 制造方案2.1 机翼结构设计首先,需要设计合适的机翼结构。
该结构应考虑到机翼的载荷分布、气动特性和材料力学性能等因素。
通过使用CAD软件和有限元分析方法,可以进行结构设计和优化。
2.2 材料选择选择适当的材料对于机翼制造非常重要。
一般而言,常见的材料包括铝合金、复合材料等。
根据不同飞机类型和设计要求,选择合适的材料。
2.3 制造工艺流程制造工艺流程也是制造机翼的关键因素。
该流程应包括以下步骤:- 材料准备和切割:根据机翼的尺寸和形状要求,准备合适的材料,并进行切割。
- 成型和冷弯:通过成型工艺和冷弯工艺,使材料成型成机翼的曲线形状。
- 拉伸和压缩:使用拉伸和压缩工艺,进一步调整材料形状并提高机翼的强度和稳定性。
- 铆接和焊接:通过铆接和焊接将机翼各部分连接起来,形成整体结构。
- 表面处理和涂装:对机翼进行表面处理和涂装,保护材料和提高外观质量。
3. 工艺方法3.1 先进制造技术为了提高机翼的制造效率和质量,可以采用一些先进的制造技术,如机器人自动化技术、3D打印技术等。
这些技术可以减少人工操作,提高精度和一致性。
3.2 质量控制对于机翼制造,质量控制至关重要。
通过采用严格的质量控制措施,如检测技术、错误预防和纠正措施等,可以确保机翼达到设计要求并符合航空标准。
4. 结论本文提出了一种飞机机翼的制造方案及工艺方法。
通过合适的机翼结构设计、材料选择和先进的制造技术,可以有效提高机翼的制造效率和质量,满足飞机飞行性能和安全性的要求。
参考文献:[1] Smith, J. Aircraft Wing Design. AIAA, 2010.[2] Johnson, R. Advanced Manufacturing Techniques for Aerospace Industry. Springer, 2018.。
飞机制造工艺流程概览航空工业作为现代工业化的重要组成部分,其发展与飞机制造工艺密不可分。
飞机制造工艺流程是指将设计好的飞机型号逐步转化为产品的一系列步骤。
本文将从飞机设计、结构制造、系统组装和测试验收等方面,对飞机制造工艺流程进行概述。
一、飞机设计飞机设计是整个制造过程的核心环节。
在这个阶段,飞机的外形、气动、结构、系统等参数都要进行全面考虑。
首先是进行总体设计,确定飞机的类型、用途、性能指标等,然后进行气动设计,确定飞机的主翼、尾翼、机身等外形参数。
接下来是结构设计,包括主翼、尾翼、机身等部位的强度、刚度、耐久性等设计。
最后是系统设计,包括发动机、供电、航电、防冰等系统的设计。
设计好的飞机参数将成为后续制造工艺的基础。
二、结构制造结构制造是将设计好的飞机外形和结构参数转化为实际的零部件和组件的过程。
这个阶段有许多不同的工艺,如下面所述:1. 主翼制造:主翼是飞机的重要组成部分,一般是由铝合金和复合材料制成。
首先是用金属材料进行钣金加工,包括剪切、冲孔、折弯等步骤。
然后是铆接工艺,将各个结构件进行连接。
最后是复合材料的制造和成型,将复合材料纤维与树脂进行混合,再经过模具成型。
2. 机身制造:机身是飞机的主体部分,起承载和保护作用。
机身的制造采用类似的工艺,如钣金加工、铆接和焊接等,但由于机身尺寸较大,需要更复杂的工艺和设备。
3. 尾翼制造:尾翼的制造过程与主翼类似,同样包括钣金加工、铆接和复合材料制造等步骤。
但由于尾翼的形状和尺寸不同,会有一些独特的工艺要求。
4. 其他零部件制造:除了主翼、机身和尾翼,飞机还包括许多其他的零部件,如起落架、舵面、进气口等。
这些零部件的制造也需要各自的特定工艺,包括锻造、铸造、注塑成型等。
三、系统组装在结构制造完成之后,飞机的各个系统将会被组装到结构上。
这个过程需要精确的操作和配合,确保各个系统能够正常工作。
1. 发动机组装:飞机的发动机是提供动力的关键部件。
发动机的组装包括各种部件的安装,并进行针对性的调试和测试。
航空制造工艺规范手册第1章总论 (4)1.1 航空制造概述 (4)1.1.1 定义 (4)1.1.2 发展历程 (4)1.1.3 特点 (5)1.1.4 发展趋势 (5)1.2 工艺规范体系 (5)1.2.1 工艺规程 (5)1.2.2 工艺标准 (5)1.2.3 工艺指导书 (5)1.2.4 工艺细则 (6)1.2.5 工艺管理制度 (6)第2章金属材料及其加工工艺 (6)2.1 金属材料的选择 (6)2.2 铸造工艺 (6)2.3 锻造工艺 (6)2.4 焊接工艺 (7)第3章非金属材料及其加工工艺 (7)3.1 非金属材料的选择 (7)3.1.1 塑料材料:聚酰亚胺(PI)、聚碳酸酯(PC)、聚醚醚酮(PEEK)等; (7)3.1.2 陶瓷材料:氧化铝(Al2O3)、碳化硅(SiC)、氮化硅(Si3N4)等; (7)3.1.3 复合材料:碳纤维增强塑料(CFRP)、玻璃纤维增强塑料(GFRP)等。
(7)3.2 塑料成型工艺 (7)3.2.1 注塑成型:注塑成型是将熔融的塑料材料注入金属模具中,经过冷却、固化后获得所需形状的塑料制品。
该方法适用于大批量生产,具有高效、精度高等优点。
(7)3.2.2 压缩成型:压缩成型是将预热的塑料粉末或颗粒放入金属模具中,在加热和压力作用下,使塑料材料充满模具型腔,经过冷却、固化后获得所需形状的塑料制品。
该方法适用于形状复杂、尺寸精度要求高的产品。
(7)3.2.3 吹塑成型:吹塑成型是将熔融的塑料材料吹入模具中,利用空气压力使塑料材料贴合模具内壁,经过冷却、固化后获得所需形状的塑料制品。
该方法适用于生产中空或薄壁塑料制品。
(7)3.2.4 挤出成型:挤出成型是将熔融的塑料材料通过挤出机连续挤出,经过成型模具获得所需截面形状的连续制品。
该方法适用于生产线材、管材、板材等。
(7)3.3 陶瓷成型工艺 (8)3.3.1 湿法成型:湿法成型是将陶瓷粉料与有机粘结剂混合,经过混炼、成型、干燥、烧结等过程获得陶瓷制品。
飞行器制造工艺完整知识点解析南京航空航天大学 011110301第一章1.飞机结构组成。
机体(包括机翼、机身、及尾翼等部件)、飞机操纵系统、飞机动力装置、机载设备等。
2.机翼的作用和组成;作用:机翼是产生升力和滚转操纵力矩的主要部件,也是现代飞机存储燃油的地方。
机翼作为飞机的主要气动面,是主要的承受气动载荷部件,其结构高度低,承载大。
通常在机翼上有用于横向操纵的副翼、扰流板,机翼的前缘和后缘还有各种形式的襟翼,用于增加升力或改变机翼的升力分布。
组成:由蒙皮和骨架组成。
机翼结构属薄壁型结构形式,构造上主要由蒙皮和骨架结构组成;蒙皮和骨架结构的功用;蒙皮功用:直接功用是保持机翼外形和承载。
气动载荷直接作用在蒙皮上,蒙皮将作用在上面的局部气动力传给结构骨架。
在总体承载时,蒙皮和翼梁或翼墙的服板组合在一起,形成封闭的盒式薄壁结构承受翼面扭矩,与长桁一起,形成壁板,承受翼面弯矩引起的轴力。
骨架功用:骨架的功用:是形成和保持翼面外形,承受和传递外载荷骨架结构有哪些构件。
骨架结构中,纵向构件有:翼梁、长桁和墙(腹板),横向构建有翼肋(普通肋、加强肋)3.机身的作用和组成,机身是指飞机机体结构中除各机翼结构之外的机体结构部分。
主要用于装载和传力,同时将机翼、尾翼、发动机和起落架等部件连接在一起,此外,可以安置空勤组人员和旅客、装载燃油、武器、各种仪器设备和货物等。
前机身主要是由雷达罩、设备舱、座舱、进气道、油箱、前起落架舱等组成。
中机身一般由进气道、油箱、部分发动机舱、设备舱和武器舱组成。
后机身主要是用于支持尾翼、装载发动机及部分设备。
机身结构构造上的组成:蒙皮、纵向骨架、横向骨架。
内部骨架的种类和作用。
骨架的结构:纵向构件有翼梁,长桁和墙;横向构件有普通肋和加强肋。
桁梁式结构:桁架只承受拉压力,蒙皮起维型作用,小轻型飞机采用;桁条式结构:长桁与蒙皮组成壁板承受弯曲轴力,蒙皮承受剪力和扭矩引起的剪流;桁梁式结构:桁梁承受弯曲轴向力,蒙皮长桁承受小部分轴力,蒙皮承受剪力;梁式结构:大梁承受主要载荷,蒙皮只承受剪力;硬壳式结构:蒙皮承受结构总体弯曲、剪切和扭转载荷。
1.1机翼的组成、典型结构形式及特点。
作用:机翼是飞机产生升力和滚转操纵力矩的主要部件,同时也是现代飞机存储燃油的地方。
机翼作为飞机的主要气动面,是主要的承受气动载荷部件,其结构高度低,承载大。
组成:机翼一般由机翼主盒、襟翼、扰流片、副翼、前缘襟翼、发动机吊挂等部分组成。
基本元件:机翼蒙皮、机翼桁条、翼梁、纵墙、翼肋典型结构形式(1)蒙皮骨架式(薄壁结构)1)梁式结构优点:1.梁间跨度大,便于利用内部容积;2.蒙皮上开口方便,对结构承弯能力影响较小;3.机翼、机身,对接点少,连接简单。
缺点:蒙皮承弯作用利用不充分;蒙皮失稳后易出现皱纹,增大阻力;生存性比其他承弯材料分散性大的结构形式低。
2)单块式结构优点:蒙皮在气动载荷作用下变形较小;材料向剖面外缘分散;抗弯、抗扭强度及刚度均有所提高,安全可靠性比梁式结构好。
缺点:结构比较复杂。
大开口后,需加强周围结构以补偿承弯能力。
与机身连接时,接头必须沿周边分布,结合点多,连接复杂。
为了充分发挥单块式结构的受力特性,左、右翼面最好连成整体贯穿机身。
3)多墙式结构优点:抗弯材料分散在剖面上下缘,有较高的结构效率;局部刚度及总体刚度大;受力高度分散(多墙抗剪、蒙皮分散受弯及多闭室承扭)破损安全性好,生存性高。
缺点:不宜大开口;与机身连接点多。
(2)整体壁板式(厚壁式)整体壁板结构的特点:1.蒙皮容易实现变厚度,加强筋可以合理布置,蒙皮材料离翼剖面中心最远,受力效果好,强度、刚度较大;2.构造简单、质量轻;3.铆缝少,表面光滑,气动外形好;4.零件少,装配协调容易。
5.整体壁板结构除了用金属材料制造以外,用复合材料制造也有很大的发展前景。
(3)夹层结构1)夹层盒结构2)夹层板结构特点:采用夹层板作为原件1.2机身的组成、典型结构形式及特点。
组成:(1)蒙皮(2)纵向骨架(3)横向骨架典型结构形式:(1)桁架式结构特点:一般为静定结构,故结构生存性差,空间利用困难,目前仅在小型或者轻型飞机上使用。
第三章 机 身机身用来固定机翼、尾翼、起落架等部件,使之连成一个整体。
同时,它还用来装载人员、燃料、武器,各种设备及其他物资。
根据机身的上述功用,要求机身有足够的内部容积和长度,为了减小飞机的阻力,机身外形应光滑,突起物、开口应尽量少。
在保证结构具有足够的强度、刚度和抗疲劳强度的情况下,力求重量最轻。
第一节 机身的外载荷和力图一、机身的外载荷作用在机身上的外载荷主要有空气动力,机翼、尾翼和起落架等结构的固定接头传来的力,机身内部装载和部件质量力,机身结构本身的质量力。
其中空气动力和机身结构质量力为分布力,其余为集中力,这和机翼外载荷相似,但对于机身来说,它的外载荷有两个特点。
首先,在机身上起主要作用的是集中载荷,由机翼、尾翼以及其它部件传给机身的集中力很大。
相比之下机身上分布的空气动力就较小,而且一般机身截面接近圆形,其上空气动力的分布大致是对称的,基本上能在机身局部自相平衡而不再传给机身的其它部分。
可以说,空气动力对机身总体影响不大(座舱等突出部位除外)。
机身本身结构质量力也较小,计算时通常把它折算到结构附近的集中载荷上去。
因此,分析机身受载时主要考虑集中力。
其次,侧向作用于机身的载荷,对机身结构受力也很重要。
这是因为:一方面机身剖面接近圆形,各方向抗弯刚度相差不多,不象机翼水平方向的抗弯刚度比垂直方向大得多。
另一方面机身所受的侧向载荷与垂直方向的载荷相差也不大。
而且侧向载荷要使机身严重受扭,不可忽视。
机身的载荷通常可分对称和非对称两种。
与机身对称面对称的载荷,称为对称载荷;反之则称为非对称载荷。
(一)对称载荷1、飞机在垂直平面内作曲线飞行时的机身对称载荷飞机在垂直平面内作垂直飞行时,机身除了要承受由机翼、尾翼固定接头传来的对称载荷外,还要接受作用于对称面的装载(人员、燃油、设备)以及结构本身的质量力。
当飞机具有对重心的角加速度时,机身上各部件、装载的载荷因数部件n 等于飞机重心的载荷因数n 加上角加速度引起的附加载荷因数部件n ∆。