高三数学一轮总复习第九章平面解析几何第五节椭圆课件理
- 格式:ppt
- 大小:2.48 MB
- 文档页数:27
第2课时 直线与椭圆的位置关系直线与椭圆的位置关系(自主练透)1.(一题多解)若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5解析:选D.法一:由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m≤1且m ≠5,故m ≥1且m ≠5.法二:由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立. 由于m >0 且m ≠5,所以m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解:将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y 22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过判断定点在椭圆内部或椭圆上来判定直线和椭圆有交点.弦长问题(师生共研)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |=4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.【解】 (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2, 解得a =2,b =3, 所以椭圆的方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=4+3=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 的方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以|AB |=k 2+1|x 1-x 2|=k2+1·(x1+x2)2-4x1x2=12(k2+1)3+4k2.同理,|CD|=12⎝⎛⎭⎪⎫1k2+13+4k2=12(k2+1)3k2+4.所以|AB|+|CD|=12(k2+1)3+4k2+12(k2+1)3k2+4=84(k2+1)2(3+4k2)(3k2+4)=487,解得k=±1,所以直线AB的方程为x-y-1=0或x+y-1=0.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2]=⎝⎛⎭⎪⎫1+1k2[(y1+y2)2-4y1y2](k为直线的斜率).已知椭圆M:x2a2+y2b2=1(a>b>0)的离心率为63,焦距为2 2.斜率为k 的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k=1,求|AB|的最大值.解:(1)由题意得⎩⎪⎨⎪⎧a2=b2+c2,ca=63,2c=22,解得a=3,b=1.所以椭圆M的方程为x23+y2=1.(2)设直线l的方程为y=x+m,A(x1,y1),B(x2,y2).由⎩⎪⎨⎪⎧y=x+m,x23+y2=1,得4x2+6mx+3m2-3=0,所以x1+x2=-3m2,x1x2=3m2-34.所以|AB|=(x2-x1)2+(y2-y1)2=2(x2-x1)2=2[(x1+x2)2-4x1x2]=12-3m22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6.中点弦问题(多维探究) 角度一 由中点弦确定直线方程或曲线方程(1)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________.(2)焦点是F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________.【解析】 (1)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为P (x 0,y 0),通解:有x 212+y 21=1,x 222+y 22=1.两式作差,得(x 2-x 1)(x 2+x 1)2+(y 2-y 1)(y 2+y 1)=0.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 2-y 1x 2-x 1=k AB ,代入后求得k AB =-x 02y 0. 即2=-x 02y 0,所以x 0+4y 0=0.优解:由k AB ·k OP =-b 2a 2得2·y 0x 0=-12,即x 0+4y 0=0.故所求的轨迹方程为x +4y =0,将x +4y =0代入x 22+y 2=1得:x 22+⎝ ⎛⎭⎪⎫-x 42=1,解得x=±43,又中点在椭圆内,所以-43<x <43.(2)通解:设所求的椭圆方程为y 2a 2+x 2b 2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,且x 1+x 22=27,y 1+y 22=-37.将A ,B 两点坐标代入椭圆方程中,得⎩⎪⎨⎪⎧y 21a 2+x 21b2=1,y 22a 2+x22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2×y 1+y2x 1+x 2=-2×-6747=3,所以a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,故所求椭圆的标准方程为y 275+x 225=1. 优解:设弦的中点为M ,由k AB ·k OM =-a 2b2得2×2×27-127=-a 2b 2,得a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,所以所求的方程为y 275+x 225=1.【答案】 (1)x +4y =0⎝ ⎛⎭⎪⎫-43<x <43 (2)y 275+x 225=1 角度二 对称问题如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.【解】 设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.因为直线AB 过椭圆的左焦点F ,所以方程有两个不等实根,记A (x 1,y 1),B (x 2,y 2),AB 的中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k22k 2+1,y 0=k (x 0+1)=k2k 2+1,所以AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2.因为k ≠0,所以-12<x G <0,所以点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.(1)处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:(2)解决对称问题除掌握解决中点弦问题的方法外,还要注意“如果点A ,B 关于直线l 对称,则l 垂直于直线AB 且A ,B 的中点在直线l 上”的应用.1.过椭圆x 216+y 24=1内一点P (3,1),且被点P 平分的弦所在直线的方程是________.解析:设所求直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1,两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0. 因为P (3,1)是A (x 1,y 1),B (x 2,y 2)的中点, 所以x 1+x 2=6,y 1+y 2=2, 故k AB =y 1-y 2x 1-x 2=-34, 直线AB 的方程为y -1=-34(x -3),即3x +4y -13=0. 答案:3x +4y -13=02.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.求实数m 的取值范围.解:由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63.椭圆与向量的综合问题(师生共研)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,O 为坐标原点,求△OCD 的面积.【解】 (1)因为过焦点且垂直于长轴的直线被椭圆截得的线段长为433,所以2b 2a =433.因为椭圆的离心率为33,所以c a =33, 又a 2=b 2+c 2,解得b =2,c =1,a = 3. 所以椭圆的方程为x 23+y 22=1. (2)由(1)可知F (-1,0), 则直线CD 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y 得(2+3k 2)x 2+6k 2x +3k 2-6=0. 设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.又A (-3,0),B (3,0), 所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2=8,解得k =± 2.从而x 1+x 2=-6×22+3×2=-32,x 1x 2=3×2-62+3×2=0.所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =⎝ ⎛⎭⎪⎫-322-4×0=32,|CD |=1+k 2|x 1-x 2|=1+2×32=332.而原点O 到直线CD 的距离为d =|k |1+k2=21+2=63, 所以△OCD 的面积为S =12|CD |×d =12×332×63=324.解决椭圆中与向量有关问题的方法(1)将向量条件用坐标表示,再利用函数、方程知识建立数量关系. (2)利用向量关系转化成相关的等量关系.(3)利用向量运算的几何意义转化成图形中位置关系解题.(2020·河南郑州二模)已知动点M 到两定点F 1(-m ,0),F 2(m ,0)的距离之和为4(0<m <2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎪⎫3,12. (1)求m 的值;(2)若直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,且OA →·OB →=2(O 为坐标原点),求k 的值.解:(1)由0<m <2,得2m <4,可知:曲线C 是以两定点F 1(-m ,0),F 2(m ,0)为焦点,长半轴长为2的椭圆,所以a =2,设曲线C 的方程为x 24+y 2b2=1,把点N ⎝⎛⎭⎪⎫3,12代入得34+14b 2=1,解得b 2=1,由c 2=a 2-b 2,解得c 2=3,所以m = 3.(2)由(1)知曲线C 的方程为x 24+y 2=1,设A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,消去y 得⎝ ⎛⎭⎪⎫14+k 2x 2+22kx +1=0,则有Δ=4k 2-1>0,得k 2>14.x 1+x 2=-82k 1+4k 2,x 1x 2=41+4k2, 则OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+2=6-4k21+4k2=2. 得k 2=13>14,所以k 的值为±33.[基础题组练]1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( )A .至多为1B .2C .1D .0解析:选B.由题意知,4m 2+n2>2,即m 2+n 2<2, 所以点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2.2.椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( ) A .-23B .-32C .-49D .-94解析:选A.设以P 为中点的弦所在的直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),斜率为k ,则4x 21+9y 21=144,4x 22+9y 22=144,两式相减得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)·(y 1-y 2)=0,又x 1+x 2=6,y 1+y 2=4,y 1-y 2x 1-x 2=k ,代入解得k =-23. 3.已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A.223B .423C. 2D .2解析:选B.由条件知c =1,e =c a =22,所以a =2,b =1,椭圆方程为x 22+y 2=1,联立直线方程与椭圆方程可得交点坐标为(0,1),⎝ ⎛⎭⎪⎫43,-13,所以|AB |=423.4.(2020·石家庄质检)倾斜角为π4的直线经过椭圆x 2a 2+y2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF →=2FB →,则该椭圆的离心率为( )A.32 B .23 C.22D .33解析:选B.由题可知,直线的方程为y =x -c ,与椭圆方程联立⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x -c ,得(b 2+a 2)y2+2b 2cy -b 4=0,由于直线过椭圆的右焦点,故必与椭圆有交点,则Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=-2b 2c a 2+b2,y 1y 2=-b4a 2+b 2,又AF →=2FB →,所以(c -x 1,-y 1)=2(x 2-c ,y 2),所以-y 1=2y 2,可得⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b2,-2y 22=-b4a 2+b 2.所以12=4c2a 2+b 2,所以e =23,故选B. 5.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4B .3C .2D .1解析:选D.因为(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,所以PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n ,则m +n =4,m 2+n 2=12,2mn =4,mn =2, 所以S △F 1PF 2=12mn =1.6.已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.解析:由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1).由方程组⎩⎪⎨⎪⎧y =2(x -1),x 25+y 24=1,消去y ,整理得3x 2-5x =0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=53,x 1x 2=0.则|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553.答案:5537.直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为________.解析:由点差法可求出k 1=-12·x 中y 中,所以k 1·y 中x 中=-12,即k 1k 2=-12. 答案:-128.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.解析:由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-ba,由于OP ∥AB ,所以-y 0c =-b a ,y 0=bc a,把P ⎝ ⎛⎭⎪⎫-c ,bc a 代入椭圆方程得(-c )2a 2+⎝ ⎛⎭⎪⎫bc a 2b 2=1, 所以⎝ ⎛⎭⎪⎫c a 2=12,所以e =c a =22.答案:229.已知椭圆E 的一个顶点为A (0,1),焦点在x 轴上,若椭圆的右焦点到直线x -y +22=0的距离是3.(1)求椭圆E 的方程;(2)设过点A 的直线l 与该椭圆交于另一点B ,当弦AB 的长度最大时,求直线l 的方程. 解:(1)由题意得b =1.右焦点(c ,0)(c >0)到直线x -y +22=0的距离d =|c +22|2=3,所以c = 2.所以a =b 2+c 2=3,所以椭圆E 的方程为x 23+y 2=1.(2)当直线l 的斜率不存在时,|AB |=2,此时直线l 的方程为x =0.当直线l 的斜率存在时,设直线l 的方程为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1,x 23+y 2=1得(1+3k 2)x 2+6kx =0,所以x A =0,x B =-6k1+3k2, 所以|AB |=1+k 26|k |1+3k 2,|AB |2=36k 2(1+k 2)(1+3k 2)2.令t =1+3k 2,t ∈(1,+∞),则|AB |2=4×⎣⎢⎡⎦⎥⎤-2⎝ ⎛⎭⎪⎫1t 2+1t+1,所以当1t =14,即k 2=1,得k =±1时,|AB |2取得最大值为92,即|AB |的最大值为322,此时直线l 的方程为y =x +1或y =-x +1.因为2<322,所以当弦AB 的长度最大时,直线l 的方程为y =x +1或y =-x +1.10.(2020·安徽五校联盟第二次质检)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点坐标分别为F 1(-1,0),F 2(1,0),P 为椭圆C 上一点,满足3|PF 1|=5|PF 2|且cos ∠F 1PF 2=35.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于A ,B 两点,点Q ⎝ ⎛⎭⎪⎫14,0,若|AQ |=|BQ |,求k 的取值范围. 解:(1)由题意设|PF 1|=r 1,|PF 2|=r 2,则3r 1=5r 2,又r 1+r 2=2a ,所以r 1=54a ,r 2=34a . 在△PF 1F 2中,由余弦定理得,cos ∠F 1PF 2=r 21+r 22-|F 1F 2|22r 1r 2=⎝ ⎛⎭⎪⎫54a 2+⎝ ⎛⎭⎪⎫34a 2-222×54a ×34a =35, 解得a =2,因为c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k2,且Δ=48(3+4k 2-m 2)>0,①设AB 的中点为M (x 0,y 0),连接QM ,则x 0=x 1+x 22=-4km 3+4k 2,y 0=kx 0+m =3m3+4k2, 因为|AQ |=|BQ |,所以AB ⊥QM ,又Q ⎝ ⎛⎭⎪⎫14,0,M 为AB 的中点,所以k ≠0,直线QM 的斜率存在,所以k ·k QM =k ·3m3+4k 2-4km 3+4k 2-14=-1,解得m =-3+4k24k,②把②代入①得3+4k 2>⎝ ⎛⎭⎪⎫-3+4k 24k 2,整理得16k 4+8k 2-3>0,即(4k 2-1)(4k 2+3)>0,解得k >12或k <-12,故k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞.[综合题组练]1.(一题多解)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A.12 B .22 C.32D .55解析:选C.法一:设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程,得⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.因为k AB =y 1-y 2x 1-x 2=1,且x 1+x 2=-8,y 1+y 2=2,所以b 2a 2=14,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=32,故选C.法二:将直线方程x -y +5=0代入x 2a 2+y 2b2=1(a >b >0),得(a 2+b 2)x 2+10a 2x +25a 2-a 2b2=0,设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-10a2a 2+b 2,又由中点坐标公式知x 1+x 2=-8,所以10a 2a 2+b 2=8,解得a =2b ,又c =a 2-b 2=3b ,所以e =c a =32.故选C.2.(一题多解)(2020·广东深圳一模)已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线与椭圆交于P ,Q 两点,PQ ⊥PF 1,且|QF 1|=2|PF 1|,则△PF 1F 2与△QF 1F 2的面积之比为( )A .2- 3B .2-1 C.2+1D .2+ 3解析:选D.法一:可设|PF 1|=t ,则|QF 1|=2|PF 1|=2t , 由椭圆的定义可得|PF 2|=2a -t ,|QF 2|=2a -2t , |PQ |=4a -3t ,则|PQ |2+|PF 1|2=|QF 1|2,即(4a -3t )2+t 2=4t 2,即有4a -3t =3t ,解得t =43+3a ,则△PF 1F 2与△QF 1F 2的面积之比为12|PF 1|·|PF 2|12|QF 1|·|QF 2|·sin 30°=12·43+3a ·2+233+3a 12·83+3a ·23-23+3a ·12=1+33-1=2+ 3.故选D.法二:同法一得出t =43+3a ,则S △PF 1F 2S △QF 1F 2=12|F 1F 2||y P |12|F 1F 2||y Q |=|y P ||y Q |=|PF 2||QF 2|=2a -t2a -2t =2a -43+3a2a -2×43+3a=(2+23)a (23-2)a=2+ 3.故选D.3.(一题多解)(2020·安徽蚌埠一模)已知F 1,F 2是椭圆x 24+y 23=1的左,右焦点,点A的坐标为⎝⎛⎭⎪⎫-1,32,则∠F 1AF 2的平分线所在直线的斜率为________. 解析:法一:因为F 1,F 2是椭圆x 24+y 23=1的左,右焦点,所以F 1(-1,0),F 2(1,0),又A ⎝ ⎛⎭⎪⎫-1,32, 所以AF 1⊥x 轴,所以|AF 1|=32,则|AF 2|=52,所以点F 2(1,0)关于l (∠F 1AF 2的平分线所在直线)对称的点F ′2在线段AF 1的延长线上,又|AF ′2|=|AF 2|=52,所以|F ′2F 1|=1,所以F ′2(-1,-1),线段F ′2F 2的中点坐标为⎝⎛⎭⎪⎫0,-12,所以所求直线的斜率为32-⎝⎛⎭⎪⎫-12-1-0=-2.法二:如图.设∠F1AF2的平分线交x轴于点N,∠F1AN=β,∠ANF2=α.因为tan 2β=|F1F2||AF1|=232=43=2tan β1-tan2β,所以tan β=12或-2(舍).在Rt△AF1N中,tan β=|F1N||AF1|,即|F1N|32=12,所以|F1N|=34,所以k l=tan α=tan(π-∠ANF1)=-tan∠ANF1=-|AF1||F1N|=-3234=-2.答案:-24.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则椭圆的离心率的取值范围为________.解析:设椭圆的方程为x2a2+y2b2=1(a>b>0),∠B1PA2为钝角可转化为B2A2→,F2B1→所夹的角为钝角,则(a,-b)·(-c,-b)<0,得b2<ac,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a-1>0即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,15.在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴、y 轴上滑动,CP →=2PD →.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线与曲线E 相交于A ,B 两点,OM →=OA →+OB →,当点M 在曲线E 上时,求四边形AOBM 的面积.解:(1)设C (m ,0),D (0,n ),P (x ,y ). 由CP →=2PD →,得(x -m ,y )=2(-x ,n -y ).所以⎩⎨⎧x -m =-2x ,y =2(n -y ),得⎩⎨⎧m =(2+1)x ,n =2+12y ,由|CD →|=2+1,得m 2+n 2=(2+1)2, 所以(2+1)2x 2+(2+1)22y 2=(2+1)2,整理,得曲线E 的方程为x 2+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由OM →=OA →+OB →, 知点M 的坐标为(x 1+x 2,y 1+y 2). 由题意知,直线AB 的斜率存在.设直线AB 的方程为y =kx +1,代入曲线E 的方程,得 (k 2+2)x 2+2kx -1=0, 则x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2. y 1+y 2=k (x 1+x 2)+2=4k 2+2.由点M 在曲线E 上,知(x 1+x 2)2+(y 1+y 2)22=1,即4k 2(k 2+2)2+8(k 2+2)2=1,解得k 2=2. 这时|AB |=1+k 2|x 1-x 2|=3[(x 1+x 2)2-4x 1x 2]=322,原点到直线AB 的距离d =11+k2=33, 所以平行四边形OAMB 的面积S =|AB |·d =62. 6.(2020·郑州模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,原点到过点A (0,-b )和B (a ,0)的直线的距离为32. (1)求椭圆的方程;(2)设F 1,F 2为椭圆的左、右焦点,过F 2作直线交椭圆于P ,Q 两点,求△PQF 1内切圆半径r 的最大值.解:(1)直线AB 的方程为x a +y-b=1, 即bx -ay -ab =0. 原点到直线AB 的距离为|-ab |(-a )2+b2=32, 即3a 2+3b 2=4a 2b 2,① 由e =c a =63,得c 2=23a 2,② 又a 2=b 2+c 2,③所以联立①②③可得a 2=3,b 2=1,c 2=2. 故椭圆的方程为x 23+y 2=1.(2)由(1)得F 1(-2,0),F 2(2,0), 设P (x 1,y 1),Q (x 2,y 2).易知直线PQ 的斜率不为0,故设其方程为x =ky +2, 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x =ky +2,x 23+y 2=1,(k 2+3)y 2+22ky -1=0.故⎩⎪⎨⎪⎧y 1+y 2=-22kk 2+3,y 1y 2=-1k 2+3.④而S △PQF 1=S △F 1F 2P +S △F 1F 2Q =12|F 1F 2||y 1-y 2|= 2 (y 1+y 2)2-4y 1y 2,⑤ 将④代入⑤,得S △PQF 1=2⎝ ⎛⎭⎪⎫-22k k 2+32+4k 2+3=2 6 k 2+1k 2+3. 又S △PQF 1=12(|PF 1|+|F 1Q |+|PQ |)·r =2a ·r =23r ,所以2 6 k 2+1k 2+3=23r ,故r = 2 k 2+1k 2+3=2k 2+1+2k 2+1≤12, 当且仅当k 2+1=2k 2+1,即k =±1时取等号.故△PQF 1内切圆半径r 的最大值为12.。
基础知识整合1.椭圆的概念在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做错误!椭圆.这两定点叫做椭圆的错误!焦点,两焦点间的距离叫做错误!焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若错误!a>c,则集合P表示椭圆;(2)若错误!a=c,则集合P表示线段;(3)若错误!a<c,则集合P为空集.2.椭圆的标准方程和几何性质续表椭圆的常用性质(1)设椭圆错误!+错误!=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)过椭圆的焦点且垂直于长轴的弦之长为错误!.(5)椭圆离心率e=错误!.1.已知椭圆错误!+错误!=1,长轴在y轴上,若焦距为4,则m等于()A.4B.5C.7 D.8答案D解析椭圆焦点在y轴上,∴a2=m—2,b2=10—m.又c=2,∴m—2—(10—m)=c2=4.∴m=8.2.(2018·广西模拟)若椭圆C:错误!+错误!=1(a>b>0)的短轴长等于焦距,则椭圆的离心率为()A.错误!B.错误!C.错误!D.错误!答案C解析因为椭圆的短轴长等于焦距,所以b=c,所以a2=b2+c2=2c2,所以e=错误!=错误!,故选C.3.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于错误!,则椭圆C的方程是()A.错误!+错误!=1B.错误!+错误!=1C.错误!+错误!=1D.错误!+错误!=1答案D解析依题意,设椭圆方程为错误!+错误!=1(a>b>0),所以错误!解得a2=9,b2=8.故椭圆C 的方程为错误!+错误!=1.4.(2019·西安模拟)已知点P(x1,y1)是椭圆错误!+错误!=1上的一点,F1,F2是其左、右焦点,当∠F1PF2最大时,△PF1F2的面积是()A.错误!B.12C.16(2+错误!)D.16(2—错误!)答案B解析∵椭圆的方程为错误!+错误!=1,∴a=5,b=4,c=错误!=3,∴F1(—3,0),F2(3,0).根据椭圆的性质可知当点P与短轴端点重合时,∠F1PF2最大,此时△PF1F2的面积S=错误!×2×3×4=12,故选B.5.椭圆3x2+ky2=3的一个焦点是(0,错误!),则k=________.答案1解析方程3x2+ky2=3可化为x2+错误!=1.a2=错误!>1=b2,c2=a2—b2=错误!—1=2,解得k=1.6.设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F 2,∠PF1F2=30°,则C的离心率为________.答案错误!解析设|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=错误!x.又|PF1|+|PF 2|=2a,|F1F2|=2c.∴2a=3x,2c=错误!x,∴C的离心率为e=错误!=错误!.核心考向突破考向一椭圆定义的应用例1(1)(2018·湖北八校联考)设F1,F2为椭圆错误!+错误!=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则错误!的值为()A.错误!B.错误!C.错误!D.错误!解析由题意知a=3,b=错误!,c=2.设线段PF1的中点为M,则有OM∥PF2,∵OM⊥F1F2,∴PF2⊥F1F2,∴|PF2|=错误!=错误!.又∵|PF1|+|PF2|=2a=6,∴|PF1|=2a—|PF2|=错误!,∴错误!=错误!×错误!=错误!.故选B.(2)设F1,F2分别是椭圆E:错误!+错误!=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E 于A,B两点,|AF1|=3|F1B|,且|AB|=4,△ABF2的周长为16.则|AF2|=________.答案5解析由|AF1|=3|F1B|,|AB|=4,得|AF1|=3.∵△ABF2的周长为16,∴4a=16,∴a=4.则|AF1|+|AF2|=2a=8,∴|AF2|=8—|AF1|=8—3=5.触类旁通椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF1|·|PF2|,通过整体代入可求其面积等.即时训练1.(2019·甘肃联考)设A,B是椭圆C:错误!+错误!=1的两个焦点,点P是椭圆C与圆M:x2+y2=10的一个交点,则||PA|—|PB||=()A.2错误!B.4错误!C.4错误!D.6错误!答案C解析由题意知,A,B恰好在圆M上且AB为圆M的直径,∴|PA|+|PB|=2a=4错误!,|PA|2+|PB|2=(2c)2=40,∴(|PA|+|PB|)2=|PA|2+|PB|2+2|PA||PB|,解得2|PA||PB|=8,∴(|PA|—|PB|)2=|PA|2+|PB|2—2|PA||PB|=32,则||PA|—|PB||=4错误!,故选C.2.已知椭圆C:错误!+错误!=1,点M与椭圆C的焦点不重合.若M关于椭圆C的焦点的对称点分别为A,B,线段MN的中点在椭圆C上,则|AN|+|BN|=________.解析取MN的中点为G,点G在椭圆C上.设点M关于椭圆C的焦点F1的对称点为A,点M关于椭圆C的焦点F2的对称点为B,则有|GF1|=错误!|AN|,|GF2|=错误!|BN|,所以|AN|+|BN|=2(|GF 1|+|GF2|)=4a=12.考向二椭圆的标准方程例2(1)(2019·杭州模拟)已知椭圆C:错误!+错误!=1(a>b>0)的左、右焦点为F1,F2,离心率为错误!,过F2的直线l交C于A,B两点.若△AF1B的周长为4错误!,则C的方程为()A.错误!+错误!=1B.错误!+y2=1C.错误!+错误!=1D.错误!+错误!=1答案A解析由题意及椭圆的定义知4a=4错误!,则a=错误!,又错误!=错误!=错误!,∴c=1,∴b2=2,∴C的方程为错误!+错误!=1.选A.(2)已知A错误!,B是圆:错误!2+y2=4(F为圆心)上一动点,线段AB的垂直平分线交BF于点P,则动点P的轨迹方程为________.答案x2+错误!y2=1解析如图,由题意知|PA|=|PB|,|PF|+|BP|=2.所以|PA|+|PF|=2且|PA|+|PF|>|AF|,即动点P的轨迹是以A,F为焦点的椭圆,a=1,c=错误!,b2=错误!.所以动点P的轨迹方程为x2+错误!y2=1.触类旁通求椭圆方程的常用方法(1)定义法,定义法的要点是根据题目所给的条件确定动点的轨迹满足椭圆的定义.2待定系数法,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2+ny2=1m>0,n>0,m≠n,再用待定系数法求出m,n的值即可.即时训练3.(2019·青岛模拟)已知F1(—1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为()A.错误!+y2=1B.错误!+错误!=1C.错误!+错误!=1D.错误!+错误!=1答案C解析如图,|AF2|=错误!|AB|=错误!,|F1F2|=2,由椭圆定义,得|AF1|=2a—错误!. 1在Rt△AF1F2中,|AF1|2=|AF2|2+|F1F2|2=错误!2+22.2由12得a=2,∴b2=a2—c2=3.∴椭圆C的方程为错误!+错误!=1,应选C.4.设F1,F2为椭圆C:错误!+错误!=1(a>b>0)的左、右焦点,经过F1的直线交椭圆C于A,B两点,若△F2AB是面积为4错误!的等边三角形,则椭圆C的方程为________.答案错误!+错误!=1解析l经过F1垂直于x轴,得yA=错误!,在Rt△AF1F2中,∠AF2F1=30°,得错误!=错误!×2c,错误!×2c×错误!=4错误!,a2=b2+c2,解得a2=9,b2=6,c2=3.所求的椭圆方程为错误!+错误!=1.考向三椭圆的几何性质例3(1)(2018·全国卷Ⅰ)已知椭圆C:错误!+错误!=1的一个焦点为(2,0),则C的离心率为()A.错误!B.错误!C.错误!D.错误!答案C解析根据题意,可知c=2,因为b2=4,所以a2=b2+c2=8,即a=2错误!,所以椭圆C的离心率为e=错误!=错误!.故选C.率e的取值范围是________.答案错误!解析∵c2—b2+ac<0,∴c2—(a2—c2)+ac<0,即2c2—a2+ac<0,∴2错误!—1+错误! <0,即2e2+e—1<0,解得—1<e<错误!.又∵0<e<1,∴0<e<错误!.∴椭圆的离心率e的取值范围是错误!.触类旁通椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.即时训练5.(2018·全国卷Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF 2,且∠PF2F1=60°,则C的离心率为()A.1—错误!B.2—错误!C.错误!D.错误!—1答案D解析在△F1PF2中,∠F1PF2=90°,∠PF2F1=60°,设|PF2|=m,则2c=|F1F2|=2m,|PF 1|=错误!m,又由椭圆定义可知2a=|PF1|+|PF2|=(错误!+1)m,则离心率e=错误!=错误!=错误!=错误!—1.故选D.6.(2019·江苏模拟)已知椭圆错误!+错误!=1(a>b>0),A为左顶点,B为上顶点,F为右焦点且AB⊥BF,则这个椭圆的离心率等于________.答案错误!解析由题意得A(—a,0),B(0,b),F(c,0),∵AB⊥BF,∴错误!·错误!=0,∴(a,b)·(c,—b)=ac—b2=ac—a2+c2=0,∴e—1+e2=0,解得e=错误!.考向四直线与椭圆的位置关系角度错误!弦的中点问题例4(2018·全国卷Ⅲ)已知斜率为k的直线l与椭圆C:错误!+错误!=1交于A,B两点.线段AB 的中点为M(1,m)(m>0).(1)证明:k<—错误!;(2)设F为C的右焦点,P为C上一点,且F错误!+F错误!+F错误!=0.证明:|错误!|,|错误!|,|错误! |成等差数列,并求该数列的公差.解(1)证明:设A(x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1.两式相减,并由错误!=k得错误!+错误!·k=0.由题设知错误!=1,错误!=m,于是k=—错误!.1由题设得m< 错误!=错误!,且m>0,即0<m<错误!,故k<—错误!.(2)由题意得F(1,0).设P(x3,y3),则由(1)及题设得(x3—1,y3)+(x1—1,y1)+(x2—1,y2)=(0,0),x3=3—(x1+x2)=1,y3=—(y1+y2)=—2m<0.又点P在C上,所以m=错误!,从而P错误!,|F错误!|=错误!.于是|F错误!|=错误!=错误!=2—错误!.同理|F错误!|=2—错误!.所以|F错误!|+|F错误!|=4—错误!(x1+x2)=3.故2|F错误!|=|F错误!|+|F错误!|,即|错误!|,|错误!|,|错误!|成等差数列.设该数列的公差为d,则2|d|=||错误!|—|错误!||=错误!|x1—x2|=错误!错误!.2将m=错误!代入1得k=—1.所以l的方程为y=—x+错误!,代入C的方程,并整理得7x2—14x+错误!=0.故x1+x2=2,x1x2=错误!,代入2解得|d|=错误!.所以该数列的公差为错误!或—错误!.角度错误!弦长的问题例5(2019·陕西咸阳模拟)在平面直角坐标系xOy中,已知椭圆C:错误!+错误!=1(a>b>0)过点P(2,1),且离心率e=错误!.(1)求椭圆C的方程;(2)直线l的斜率为错误!,直线l与椭圆C交于A,B两点.求△PAB面积的最大值.解(1)∵e2=错误!=错误!=错误!,∴a2=4b2.又椭圆C:错误!+错误!=1(a>b>0)过点P(2,1),∴错误!+错误!=1,∴a2=8,b2=2.故所求椭圆方程为错误!+错误!=1.(2)设l的方程为y=错误!x+m,点A(x1,y1),B(x2,y2),联立错误!整理,得x2+2mx +2m2—4=0.∵Δ=4m2—8m2+16>0,解得|m|<2.∴x1+x2=—2m,x1x2=2m2—4.则|AB|=错误!× 错误!=错误!.点P到直线l的距离d=错误!=错误!.∴S△PAB=错误!d|AB|=错误!×错误!×错误!=错误!≤错误!=2.当且仅当m2=2,即m=±错误!时取得最大值.触类旁通1解决直线与椭圆的位置关系的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.(3)直线与椭圆相交时常见问题的处理方法涉及问题处理方法弦长根与系数的关系、弦长公式(直线与椭圆有两交点)中点弦或弦点差法(结果要检验Δ>0)的中点即时训练7.(2019·广西联考)已知椭圆C:错误!+错误!=1(a>b>1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为错误!,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A,B两点,线段AB的中点为P.(1)求椭圆C的标准方程;(2)过点P垂直于AB的直线与x轴交于点D错误!,求k的值.解(1)由题易得,过椭圆短轴的一个端点与两个焦点的圆的半径为错误!.设椭圆的右焦点的坐标为(c,0),依题意知错误!又因为b>1,解得a=2,b=错误!,c=1,所以椭圆C的标准方程为错误!+错误!=1.(2)由题意,过椭圆C的右焦点的直线l的方程为y=k(x—1),将其代入错误!+错误!=1,得(3+4k2)x2—8k2x+4k2—12=0.设A(x1,y1),B(x2,y2),则x1+x2=错误!,x1x2=错误!,所以y1+y2=k(x1+x2)—2k=错误!.因为P为线段AB的中点,所以点P的坐标为错误!.又因为直线PD的斜率为—错误!,所以直线PD的方程为y—错误!=—错误!错误!.令y=0,得x=错误!,所以点D的坐标为错误!,则错误!=错误!,解得k=±1.8.(2019·云南昆明模拟)已知中心在原点O,焦点在x轴上的椭圆E过点C(0,1),离心率为错误!.(1)求椭圆E的方程;(2)直线l过椭圆E的左焦点F,且与椭圆E交于A,B两点,若△OAB的面积为错误!,求直线l的方程.解(1)设椭圆E的方程为错误!+错误!=1(a>b>0),由已知得错误!解得a2=2,b2=1,所以椭圆E的方程为错误!+y2=1.(2)由已知,直线l过左焦点F(—1,0).当直线l与x轴垂直时,A错误!,B错误!,此时|AB|=错误!,则S△OAB=错误!×错误!×1=错误!,不满足条件.当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2).由错误!得(1+2k2)x2+4k2x+2k2—2=0,所以x1+x2=—错误!,x1x2=错误!.因为S△OAB=错误!|OF|·|y1—y2|=错误!|y1—y2|,由已知S△OAB=错误!得|y1—y2|=错误!.因为y1+y2=k(x1+1)+k(x2+1)=k(x1+x2)+2k=k· 错误!+2k=错误!,y1y2=k(x1+1)·k(x2+1)=k2(x1x2+x1+x2+1)=错误!,所以|y1—y2|=错误!=错误!=错误!,所以k4+k2—2=0,解得k=±1,所以直线l的方程为x—y+1=0或x+y+1=0.1.已知点F1,F2是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,那么|错误!+错误!|的最小值是()A.0 B.1C.2D.2错误!答案C解析解法一:设P(x0,y0),则错误!=(—1—x0,—y0),错误!=(1—x0,—y0),所以错误!+错误!=(—2x0,—2y0),所以|错误!+错误!|=错误!=2错误!=2错误!.因为点P在椭圆上,所以0≤y 错误!≤1,所以当y错误!=1时,|错误!+错误!|取最小值2.解法二:由错误!+错误!=错误!+错误!+错误!+错误!=2错误!求解.故选C.2.已知F是椭圆错误!+错误!=1的左焦点,P是此椭圆上的动点,A(1,1)是一定点,求|PA|+|PF|的最大值和最小值.解由题意知a=3,b=错误!,c=2,F(—2,0).设椭圆右焦点为F′,则|PF|+|PF′|=6,所以|PA|+|PF|=|PA|—|PF′|+6.当P,A,F′三点共线时,|PA|—|PF′|取到最大值|AF′|=错误!,或者最小值—|AF′|=—错误!.所以|PA|+|PF|的最大值为6+错误!,最小值为6—错误!.3.在椭圆错误!+错误!=1上求一点,使它到直线2x—3y+15=0的距离最短.解设所求点坐标为A(3错误!cosθ,2错误!sinθ),θ∈R,由点到直线的距离公式得=错误!,当θ=2kπ+错误!,k∈Z时,d取到最小值错误!,此时A点坐标为(—3,2).答题启示椭圆中距离的最值问题一般有3种解法:(1)利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e);(2)根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);(3)用椭圆的参数方程设动点的坐标,转化为三角问题求解.对点训练1.设P,Q分别为圆x2+(y—6)2=2和椭圆错误!+y2=1上的点,则P,Q两点间的最大距离是()A.5错误!B.错误!+错误!C.7+错误!D.6错误!答案D解析解法一:设椭圆上任意一点为Q(x,y),则圆心(0,6)到点Q的距离d=错误!=错误!=错误!≤5错误!,P,Q两点间的最大距离d′=dmax+错误!=6错误!.解法二:易知圆心坐标为M(0,6),|PQ|的最大值为|MQ|max+错误!,设Q(错误!cosθ,sinθ),则|MQ|=错误!=错误!当sinθ=—错误!时,|MQ|max=5错误!,所以|PQ|max=5错误!+错误!=6错误!.故选D.2.如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为________.答案4解析设P点坐标为(x0,y0).由题意知a=2,因为e=错误!=错误!,所以c=1,所以b2=a2—c2=3.所以椭圆方程为错误!+错误!=1.所以—2≤x0≤2,—错误!≤y0≤错误!.因为F(—1,0),A(2,0),错误!=(—1—x0,—y0),错误!=(2—x0,—y0),所以错误!·错误!=x错误!—x0—2+y错误!=错误!x错误!—x0+1=错误!(x0—2)2.即当x0=—2时,错误!·错误!取得最大值4.。