1.立体几何中的组合体问题
- 格式:doc
- 大小:368.00 KB
- 文档页数:4
关于球与多面体的组合体解题方法探讨球与多面体的组合体是三维几何中的一个重要概念,解题方法也有多种。
在此简要探讨一下关于球与多面体组合体的解题方法。
首先,对于球与多面体的组合体,我们可以将问题进行分解,分开考虑球和多面体的特性和性质,然后再综合起来考虑问题。
下面我们结合具体例题进行探讨。
例题1:一个正方体的棱长为2,一个半径为1的球被正方体完全包围住,且完全在正方体内,求球与正方体相交的面积。
解题思路:首先我们可以知道正方体的一个面上的对角线等于正方体的棱长,所以正方体的对角线长度为2√2由题目可知,球在正方体内,球的半径为1,则球心到正方体一些顶点的距离不会超过1,所以球心到正方体一些面的距离也不会超过1我们可以考虑球心到正方体各个面的距离,不难发现,球心到一个面的距离不超过1,球心到相对的面的距离不超过√2,球心到相对的对角面的距离不超过2综上所述,可以得到以下结论:1)若球心在正方体内部,则球与每一面都有交点;2)若球心在正方体边界上,即球心到一面的距离为1,则球与其对边的面无交点;3)若球心在正方体的角点上,即球心到对角面的距离为2,则球与对角面无交点。
在本题中,球心到正方体各个面的距离都不会超过1,所以球与每一面都有交点。
球与正方体的每一面的交线是一个圆,球与三个相邻的面的交线上的圆心在正方体的三个对角线的交点上,球与相对的两个面的交线上的圆心在每个对角面的对角线的交点上。
由于正方体是对称的,所以球与三个相邻的面的交线上的圆互相等价,同理,球与相对的两个面的交线上的圆互相等价。
因此,求球与正方体相交的面积,只需计算球与一个面的交线上的一个圆的面积即可。
球与面的交线上的圆的半径可以通过勾股定理得到,即球心到正方体其中一个面的距离。
在本题中,球心到正方体的一个面的距离为1,所以球与该面的交线上的圆的半径为1-1=0。
因此,球与该面的交线上的圆的面积为0。
综上所述,球与正方体相交的面积为0。
通过以上分析我们可以看出,在解这类球与多面体的组合体题目时,关键是找到球与多面体各个面的交线的性质和关系来进行求解。
高考复习28 :组合体的“切”“接”综合问题知识储备汇总1.知识储备汇总: 1.1球的性质球被平面截得的图形是圆,球心与截面圆圆心的连线与截面圆垂直,球的半径R ,截面圆的半径r ,球心到截面圆的距离为d ,则222d r R +=.1.2长方体性质:长方体的一条对角线的平方等于一个顶点上三条棱长的平方和. 1.3几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则23R a =; ②正方体的内切球,则2R a =; ③球与正方体的各棱相切,则22R a =.(2)长方体的同一顶点的三条棱长分别为,,a b c ,外接球的半径为R ,则2222R a b c =++. (3)正四面体的外接球与内切球的半径之比为3∶1.1.4与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图. 1.5.解决与球有关的切、接问题的方法:(1)一般要过球心及多面体中的特殊点或过线作截面将空间问题转化为平面问题,从而寻找几何体各素之间的关系.(2)若球面上四点,,,P A B C 中,,PA PB PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.1.6.求解球与多面体的组合问题时,其关键是确定球心的位置,可以根据空间几何体的对称性判断球心的位置,然后通过作出辅助线或辅助平面确定球的半径和多面体中各个几何元素的关系,达到求解解题需要的几何量的目的.题型与相关高考题解读1.棱柱的外接球问题 1.1考题展示与解读例1 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 ________.【命题意图探究】本题主要考查长方体的对角线性质、球的表面积公式,是容易题.【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】对球内接直棱柱问题,利用球心到棱柱底面所在的截面圆的距离就是棱柱高的一半,棱柱底面所在的截面圆的半径利用正弦定理计算,再利用球的截面性质即可求出球的半径,再利用球的表面积或体积公式计算球的表面积或体积.1.2【典型考题变式】【变式1:改编条件】若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A. 163πB.193πC.1912πD.43π【变式2:改编结论】底面边长为1,侧棱长为263的正三棱柱的各顶点均在同一个球面上,则该球的体积为()A. 32π3B. 4πC. 2πD.4π3【变式3:改编问法】已知某几何体的外接球的半径为,其三视图如图所示,图中均为正方形,则该几何体的体积为()A. 16B.C.D. 82.球与圆柱或圆锥的切接问题2.1考题展示与解读例2已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.A.πB.3π4C.π2D.π4【命题意图探究】本题主要考查球内接圆柱的体积问题,是基础题.【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】对球内接圆柱问题,利用球的截面性质沟通球的半径与圆柱底面半径高之间的关系.2.2【典型考题变式】【变式1:改编条件】已知圆柱的高为2,它的两个底面的圆周在直径为4的同一个球的球面上,则该圆柱的体积是( )A. πB. 34πC.2πD. 6π【变式2:改编结论】已知圆锥的底面半径为4,高为8,则该圆锥的外接球的表面积为()A. 10πB. 64πC. 100πD. 500 3π【变式3:改编问法】某几何体的三视图如图所示,其正视图和侧视图都是边长为23的正三角形,该几何体的外接球的表面积为()A. 9πB. 16πC. 24πD. 36π3.棱锥的外接球问题3.1考题展示与解读例3已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.【命题意图探究】本题主要考查球内接棱柱问题及球的表面积,是中档题.【解题能力要求】空间想象能力、逻辑推理能力、运算求解能力【方法技巧归纳】球内接棱锥问题,若有同一顶点上三条垂直的棱,可将三棱锥补成球内接长方体,利用长方体的对角线的平方等于同于同一顶点三棱长的平方和、长方体的对角线等于球的直径沟通球与棱锥量之间的关系.3.2【典型考题变式】【变式1:改编条件】某多面体的三视图如图所示,每一小格单位长度为l,则该多面体的外接球的表面积是A. 27πB.π C. 9π D.π 【变式2:改编结论】在正三棱锥中,,,则该三棱锥外接球的直径为( )A. 7B. 8C. 9D. 10【变式3:改编问法】已知四棱锥E-ABCD 的都在球心为,半径为的球面上,四边形ABC D 为矩形,,且,则四棱锥E-ABCD 的体积的最大值为( )A.324B. 372,C. 38D. 348 4.多面体内切球问题 4.1考题展示与解读例4在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【命题意图探究】本题主要考查直棱柱内的球的最大体积问题,是中档题. 【解题能力要求】空间想象能力、运算求解能力【方法技巧归纳】立体几何最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解. 4.2【典型考题变式】【变式1:改编条件】在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为_______.【变式2:改编结论】在正方体1111ABCD A B C D -中,若1D AC ∆内切圆的半径为263,则该正方体内切球的表面积为 ( )A. 2πB. 8πC. 12πD. 16π【变式3:改编问法】已知一个直三棱柱,其底面是正三角形,一个体积为43π的球体与棱柱的所有面均相切,那么这个三棱柱的表面积是A. 243B. 183C. 123D. 3典例高考试题演练1.若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,设正四棱锥P ABCD -的高为1,则球O的体积为( ) A.43π B. 23π C. 4π D. 22π 2.如图为某几何体的三视图,则该几何体的外接球的表面积为( )A .B .27πC .27πD .3.网络用语“车珠子”,通常是指将一块原料木头通过加工打磨,变成球状珠子的过程,某同学有一圆锥状的木块,想把它“车成珠子”,经测量,该圆锥状木块的底面直径为12cm ,体积为96πcm 3,假设条件理想,他能成功,则该珠子的体积最大值是( ) A .36πcm 3 B .12πcm 3C .9πcm 3D .72πcm 34.半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是( ) A .16()B .16() C .8(2)D .8(2)5.已知一个四棱锥三视图如图所示,若此四棱锥的五个顶点在某个球面上,则该球的表面积为( )A. 48πB. 52πC.1723π D. 1963π6.将半径为4的半圆围成一个圆锥,则该圆锥的内切球的表面积为( ) A.83π B. 163π C. 43π D. 43 7.若一个正四面体的表面积为1S ,其内切球的表面积为2S ,则12S S =( )A.6π B. 2π C. 16πD. 63π8.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A.823π B. 833π C. 863π D. 1623π 9.某三棱锥的三视图如图所示,其中俯视图是一个等腰直角三角形,则该三棱锥的外接球的表面积为( )A.B.C.D.556π10.已知三棱锥的四个顶点都在同一个球面上,底面满足,若该三棱锥体积最大值为3,则其外接球的表面积为( ) A.B.C.D .11.三棱锥A BCD -的一条长为a ,其余棱长均为1,当三棱锥A BCD -的体积最大时,它的外接球的表面积为( ) A.53π B. 54π C. 56π D. 58π 12.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则的值是13.已知三棱锥的三条棱所在的直线两两垂直且长度分别为3,2,1,顶点都在球的表面上,则球的表面积为__________.14.已知四棱锥 P ﹣ABCD 的底面ABCD 是正方形,侧棱PA 与底面垂直,且PA=AB ,若该四棱锥的侧面积为16 __.15.已知正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为2,当球的体积最小时,正六棱柱底面边长为_________.。
一、选择题1.在下列四个正方体中,能得出直线AB 与CD 所成角为90︒的是( )A .B .C .D .2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .17]B .[2,3]C .6,22]D .[17,5] 4.如图,在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面AEF ,则线段1A P 长度的取值范围是( )A .[2,3]B .5,22⎡⎤⎢⎥⎣⎦C .325,42⎡⎤⎢⎥⎣⎦D .51,2⎡⎤⎢⎥⎣⎦ 5.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 6.如图,在长方体1111ABCD A B C D -中,若,,,E F G H 分别是棱111111,,,A B BB CC C D 的中点,则必有( )A .1//BD GHB .//BD EFC .平面//EFGH 平面ABCDD .平面//EFGH 平面11A BCD7.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π8.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 9.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .3B .2C .3D .310.在长方体1111ABCD A B C D -中,23AB AD ==12CC =1C BD C --的大小是( )A .30ºB .45ºC .60ºD .90º 11.αβ、是两个不同的平面,m n 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个12.已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为32 )A .75518πB .62516πC .36πD .34π13.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4 B 51C .451D .4或514.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .异面D .A 、B 、C 均有可能二、解答题15.如图,在三棱锥V-ABC 中,VC ⊥底面ABC ,AC BC ⊥,D 是棱AB 的中点,且AC BC VC ==.(1)证明:平面VAB ⊥平面VCD ;(2)若22AC =,且棱AB 上有一点E ,使得线VD 与平面VCE 所成角的正弦值为1515,试确定点E 的位置,并求三棱锥C-VDE 的体积. 16.如图所示,在四棱锥P ABCD -中,90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,PA ⊥平面ABCD ,E 为PD 中点,2AC =.(1)求证://AE 平面PBC .(2)若四面体PABC 的体积为33,求PCD 的面积. 17.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2ABCB ==,求三棱柱111ABC A B C -的体积S .18.如图甲,平面四边形ABCD 中,已知45A ︒∠=,90︒∠=C ,105ADC ︒∠=,2AB BD ==,现将四边形ABCD 沿BD 折起,使得平面ABD ⊥平面BDC (如图乙),设点E ,F 分别是棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求三棱锥A BEF -的体积.19.如图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的体积及表面积.20.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.21.如图,在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面是正三角形)中,16AC CC ==,M 是棱1CC 的中点.(1)求证:平面1AB M ⊥平面11ABB A ;(2)求1A M 与平面1AB M 所成角的正弦值.22.如图,在直三棱柱111ABC A B C -中,1AC CC =,AC BC ⊥,D 为1BC 中点,1AC 与1A C 交于点O .(1)求证://OD 平面111A B C ;(2)求证:平面1AC B ⊥平面1A BC .23.如图,AB 是圆O 的直径,CA 垂直圆O 所在的平面,D 是圆周上一点.(1)求证:平面ADC ⊥平面CDB ;(2)若1AC =,12AD =,BD AD =,求二面角A BC D --的余弦值. 24.如图,四面体ABCD 中,点E ,F 分别为线段AC ,AD 的中点,平面EFNM ⋂平面BCD MN =,90CDA CDB ∠=∠=︒,DH AB ⊥,垂足为H .(1)求证://EF MN ;(2)求证:平面CDH ⊥平面ABC .25.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =,6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 26.如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,过E 点作EF PB ⊥交PB 于点F .求证:(1)//PA 平面EDB ;(2)PB ⊥平面EFD .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据线面垂直的性质以及判定定理判断A ,平移直线结合异面直线的定义,判断BCD.【详解】对于A ,如下图所示,连接,AE GB由于,CD BE CD BG ⊥⊥,根据线面垂直判定定理得CD ⊥平面AEBG ,再由线面垂直的性质得出AB CD ⊥,则A 正确;对于B ,如下图所示,连接,BF AF因为ABF 为正三角形,//CD AF ,所以直线AB 与CD 所成角为60︒,则B 错误; 对于C ,如图所示,连接HD因为在CDH △中,45HDC ∠=︒,//AB HD ,所以直线AB 与CD 所成角为45︒,则C 错误;对于D ,如下图所示,连接GB因为//AG CD ,所以直线AB 与CD 所成角为90GAB ∠≠︒,则D 错误;故选:A【点睛】本题主要考查了求异面直线的夹角,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.C解析:C【分析】分别取111,BB B C 的中点,N M ,可得平面1//A MN 平面AEF ,从而点P 的轨迹为线段MN ,然后计算出线段1A P 的范围.【详解】分别取111,BB B C 的中点,N M ,则1//A M AE ,1A M ⊄平面AEF ,AE ⊂平面AEF ,则1//A M 平面AEF . //EF NM ,MN ⊄平面AEF ,EF ⊂平面AEF ,则//MN 平面AEF又1MN A M M ⋂=,所以平面1//A MN 平面AEF又平面1A MN ⋂面11BCC B MN =所以点P 的轨迹为线段MN当P 为线段MN 的端点M (或N )时,1A P 最长,此时1122111522P M A B A BB A ⎛⎫==+= ⎪⎝⎭当P 为线段MN 的中点时,1A P 最短,此时22111322P A N MN A ⎛⎫=-= ⎪⎝⎭所以325,42AP ⎡⎤∈⎢⎥⎣⎦, 故选:C .【点睛】本题考查利用向量法解决线面平面的探索问题,本题也可以构造面面平面得出动点的轨迹,从而求解,属于中档题.5.D解析:D【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI , 得到1//B F 面1A BE ,则F 落在线段HI 上,求出1122HI CD ==【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 6.D解析:D【分析】根据“过直线外一点有且只有一条直线与已知直线平行”来判断AB 选项的正确性,根据平行直线的性质判断C 选项的正确性,根据面面平行的判定定理判断D 选项的正确性.【详解】选项A:由中位线定理可知:1//GH D C ,因为过直线外一点有且只有一条直线与已知直线平行,所以1,BD GH 不可能互相平行,故A 选项是错误的;选项B: 由中位线定理可知:1//EF A B ,因为过直线外一点有且只有一条直线与已知直线平行,所以,BD EF 不可能互相平行,故B 选项是错误的;选项C: 由中位线定理可知:1//EF A B ,而直线1A B 与平面ABCD 相交,故直线EF 与平面ABCD 也相交,故平面EFGH 与平面ABCD 相交,故C 选项是错误的;选项D:由三角形中位线定理可知:111//,//EF A B EH A D ,EF ⊄平面11A BCD ,1A B ⊂平面11A BCD ,EH ⊄平面11A BCD ,11A D ⊂平面11A BCD ,所以有//EF 平面11A BCD ,//EH 平面11A BCD ,而EF EH E =,因此平面//EFGH 平面11A BCD .所以D 选项正确.故本选:D【点睛】本小题主要考查面面平行的判定定理,考查线线平行的性质,属于中档题.7.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.8.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.9.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 10.A解析:A【分析】取BD 中点为O ,1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,易知CO BD ⊥,再利用线面垂直证明1BD C O ⊥,得到1COC ∠即二面角1C BD C --,再计算二面角大小即可.【详解】由题意,作出长方体1111ABCD A B C D -的图象,取BD 中点为O ,连接CE 、1C E ,因为1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,又BD ⊂平面ABCD ,所以1CC BD ⊥, 因为23AB AD ==ABCD 是正方形,O 为BD 中点,所以CO BD ⊥,又1CO CC C =,所以BD ⊥平面1COC ,又1C O ⊂平面1COC ,所以1BD C O ⊥,1COC ∠即二面角1C BD C --, 又12CC =()()2223236CO +==所以123tan 36COC ∠==,130COC ∠=.故选:A【点睛】本题主要考查二面角的求法和线面垂直的判定定理和性质,考查学生空间想象能力,属于中档题.11.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.12.B解析:B【分析】如图所示,设四棱锥P ABCD -中,球的半径为R ,底面中心为O '且球心为O ,可得OP ⊥底面ABCD .3AO '=,4PO '=,在Rt AOO ∆'中,利用勾股定理解得R ,即可得出球的表面积.【详解】如图所示,设球的半径为R ,底面中心为O '且球心为O .∵四棱锥P ABCD -中,32AB =, ∴3AO '=.∵4PO '=,∴Rt AOO ∆'中,|4|OO R '=-,222AO AO OO ''=+,∴2223(4)R R =+-,解得258R =, ∴该球的表面积为222562544816R πππ⎛⎫=⨯= ⎪⎝⎭.故选:B .【点睛】本题考查几何体的外接球问题,此类问题常常构造直角三角形利用勾股定理进行求解,属于中等题.13.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得222539392393x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:222539392393x x x =++-⨯+,∴1x =6,∴2AB =,22BC =,球O 的直径为4484++=;或26AB =,3BC =,球O 的直径为2424351++=.故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题. 14.D解析:D【分析】结合公理及正方体模型可以判断:A ,B ,C 均有可能,可以利用反证法证明结论,也可以从具体的实物模型中去寻找反例证明.【详解】解:如图,在正方体1AC 中,1A A ⊥平面ABCD ,1A AAD ,1A A BC ⊥, 又//AD BC ,∴选项A 有可能; 1A A ⊥平面ABCD ,1A A AD ,1A A AB ⊥,又AD AB A =,∴选项B 有可能;1A A ⊥平面ABCD ,1A A ⊥平面1111D C B A ,AC ⊂平面ABCD ,11A D ⊂平面1111D C B A ,1A A AC ∴⊥,111A A A D ⊥,又AC 与11A D 不在同一平面内,∴选项C 有可能.故选:D .【点睛】本题主要考查了空间中直线与直线之间的位置关系,考查空间想象能力和思维能力,属于中档题.二、解答题15.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 22. 【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由15sin DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB 平面ABC ,所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,1515DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =.故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDE S VC ⋅⋅=⨯⨯⨯⨯=. 【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.16.(1)证明见解析;(2)7【分析】(1)取CD 中点F ,连接EF ,AF ,利用面面平行的判定定理证明平面//AEF 平面PBC ,再用面面平行的性质可得//AE 平面PBC ;(2)根据体积求出PA ,过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,求出PQ 和CD 后,根据三角形面积公式可求得结果.【详解】(1)取CD 中点F ,连接EF ,AF ,则//EF PC ,又120BCD AFD ∠=∠=︒,∴//BC AF ,∴平面//AEF 平面PBC ,∴//AE 平面PBC .(2)因为90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,2AC =, 所以1,3BC AB == 由已知得:113323P ABC V AB BC PA -=⋅⋅⋅=,即11331323PA ⨯⨯⨯⨯=, 可得2PA =.过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,∵PA ⊥平面ABCD ,∴PA AQ ⊥,PA CD ⊥,∴CD PQ ⊥,ACD △中,2AC =,90CAD ∠=,30ADC ∠=,∴4CD =,23AD =22334AC AD AQ CD ⋅⨯===, 222237PQ PA AQ =+=+=,∴11742722PCD S PQ CD =⋅=⨯⨯=△. 【点睛】 关键点点睛:掌握面面平行的判定定理和面面平行的性质是解题关键.17.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA 1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,3CE ∴=1123322S AB CE ⨯⨯⨯=底面积==1CEA 中,3CE =13EA =16AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,13h A E ∴==3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.18.(1)证明见解析;(2. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ;(2)利用等体积法进行转化计算即可.【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=, ()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥, 图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥,又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=,又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ;(2)因为点E ,F 分别是棱AC ,AD 的中点,所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=, 90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.19.体积V ;表面积(21π+.【分析】由已知计算出圆柱的底面半径,代入圆柱表面积和体积公式,即可得到答案.【详解】解:设圆柱的底面半径为r ,高为'h ,圆锥的高h ='3h =,1'2h h ∴=,则122r =,1r ∴=. ∴圆柱的体积2V r h π'==;表面积(22221S r rh πππ=+='. 【点睛】本题考查的知识点求圆柱的表面积和体积,其中根据已知条件,求出圆柱的底面半径,是解答本题的关键.20.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos AQ PAQ AP ∠==AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =, 由余弦定理得AE ===又2DE ===,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤PQ =,QE x =,12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 2PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题. 21.(1)证明见解析;(210 【分析】(1)连接1A B 交1AB 于O ,连接MO ,证明1MO AB ⊥,1MO A B ⊥,然后得到MO ⊥平面11ABB A 即可;(2)首先证明1A O ⊥平面1AB M ,然后可得1A MO ∠即为1A M 与平面1AB M 所成的角,然后利用111sin A O MO MA A ∠=算出答案即可. 【详解】(1)证明:连接1A B 交1AB 于O ,连接MO ,易得O 为1A B ,1AB 的中点∵1CC ⊥平面ABC ,AC ⊂平面ABC∴1CC AC ⊥又M 为1CC 中点,16AC CC == ∴223635AM =+=同理可得135B M =∴1MO AB ⊥连接MB ,同理可得135A M BM ==1MO A B ∴⊥又11AB A B O ⋂=,1AB ,1A B ⊂平面11ABB A∴MO ⊥平面11ABB A又MO ⊂平面1AB M∴平面1AB M ⊥平面11ABB A(2)解:易得11A O AB ⊥又由(1)平面1AB M ⊥平面1ABB A平面1AB M 平面111ABB A AB =,1AO ⊂平面11ABB A ∴1A O ⊥平面1AB M∴1A MO ∠即为1A M 与平面1AB M 所成的角在11Rt AA B △中,22111663222AB AO ==+=在1Rt AOM 中,1113210sin 35AO MO A A M ∠=== 故1A M 与平面1AB M 10【点睛】方法点睛:几何法求线面角的步骤:(1)作:作出辅助线,构成三角形;(2)证:利用线面角的定义证明作出的角即为所求角;(3)求:在直角三角形中求解即可. 22.(1)证明见解析;(2)证明见解析.(1)连接1B C ,可知点D 为1B C 的中点,利用中位线的性质可得出11//OD A B ,利用线面平行的判定定理可证得结论成立;(2)证明出四边形11AAC C 为菱形,可得出11AC AC ⊥,证明出BC ⊥平面11AAC C ,可得出1AC BC ⊥,利用线面垂直和面面垂直的判定定理可证得结论成立.【详解】(1)如下图所示,连接1B C ,在三棱柱111ABC A B C -中,11//BB CC 且11BB CC =,则四边形11BB C C 为平行四边形, D 为1BC 的中点,则D 为1B C 的中点,同理可知,点O 为1A C 的中点,11//OD A B ∴, OD ⊄平面111A B C ,11A B ⊂平面111A B C ,因此,//OD 平面111A B C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面ABC ,11//AA CC 且11AA CC =, 所以四边形11AAC C 为平行四边形,1AC CC =,所以,平行四边形11AAC C 为菱形,则11AC AC ⊥,1CC ⊥平面ABC ,BC ⊂平面ABC ,1BC CC ∴⊥,BC AC ⊥,1AC CC C =,BC ∴⊥平面11AAC C ,1AC ⊂平面11AAC C ,1AC BC ∴⊥,1AC BC C =,1AC ∴⊥平面1A BC ,1AC ⊂平面1AC B ,因此,平面1AC B ⊥平面1A BC .【点睛】方法点睛:证明面面垂直的常用方法:(1)面面垂直的定义;(2)面面垂直的判定定理.在证明面面垂直时,可假设两个平面垂直成立,利用面面垂直的性质定理转化为线面垂直,即可找到所要证的线面垂直,然后组织论据证明即可.23.(1)证明见解析;(2)105.(1)证明,BD AC BD AD ⊥⊥后得BD ⊥平面ADC ,然后可得面面垂直;(2)连结OD ,作OE BC ⊥于E ,连结DE ,证得OED ∠为二面角A BC D --的平面角,在三角形中可得其余弦值.【详解】证明:(1)∵CA ⊥平面ADB ,BD ⊂平面ADB ,∴CA BD ⊥,.又D 是圆周上一点,AB 是圆O 的直径,DA DB ⊥,又CA ⊂平面CAD ,DA ⊂平面CAD ,ADCA A =,∴BD ⊥平面CAD ,而BD ⊂平面ACD ,∴平面ADC ⊥平面CDB ;(2)连结OD ,作OE BC ⊥于E ,连结DE ,∵CA ⊥平面ADB ,CA ⊂平面ABC ,∵平面ABC ⊥平面ADB ,∵BD AD =,∴⊥OD AB ,又∵OD ⊂平面ADB ,∵平面ABC平面ADB AB =, ∴OD ⊥平面ABC ,∵BC ⊂面ABC ,∴BC OD ⊥.又∵BC OE ⊥,OE DE E =,∴BC ⊥平面ODE ,∴BC DE ⊥,∴OED ∠为二面角A BC D --的平面角.又1AC =,12AD =,BD AD =, ∴2OD =,3OE =,30DE =,所以cos OE OED DE ∠==10所以二面角A BC D --的余弦值为105. 【点睛】方法点睛:本题考查证明面面垂直,求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角(并证明)然后在相应三角形中求角.(2)向量法:建立空间直角坐标系,用二面角的两个面的法向量的夹角与二面角相等或互补计算.24.(1)证明见解析;(2)证明见解析.【分析】本题考查线面平行与线面垂直的判定,难度不大.(1)利用线面平行的判定定理证得//EF 平面BCD ,进而利用线面平行的性质定理证得; (2)利用线面垂直的判定定理证得CD ⊥平面ADB ,进而证得AB ⊥平面CDH ,然后由面面垂直判定定理证得结论.【详解】证明:(1)因为点E 、F 分别为线段AC 、AD 的中点,EF ∴为ACD △的中位线,则//EF CD ,CD ⊂平面BCD ,EF ⊄平面BCD ,//EF ∴平面BCD ,又EF ⊂平面EFNM ,平面EFNM ⋂平面BCD MN =,//EF MN ∴;(2)90CDA CDB ∠=∠=︒,CD DA ∴⊥,CD DB ⊥,DA DB D ⋂=,DA ⊂平面ADB ,DB ⊂平面ADB , CD 平面ADB ,CD AB ∴⊥又DH AB ⊥,DH CD D ⋂=,DC ⊂平面DCH ,DH ⊂平面DCH ,AB ∴⊥平面CDH ,AB ⊂平面ABC ,∴平面CDH ⊥平面ABC.【点睛】要证线线平行,常常先证线面平行,综合利用线面平行的判定与性质进行证明;要证面面垂直,常常先证线面垂直,而要证线面垂直,又常常先证另一个线面垂直.25.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD 的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又3tan ,tan 33AD BC ABD BAC AB AB ∠==∠==, ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y 轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()()23,0,0,23,6,0,0,2,0,0,0,B C D P t ,则()23,2,0BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =,则00n BD n DP ⎧⋅=⎨⋅=⎩,即232020x y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为231,3,n t ⎛⎫= ⎪ ⎪⎝⎭, 所以22226333cos ,1214448451PC nPC n PC n t t t t ⋅===++++, 因为22221441445151275t t t t +++=≥,当且仅当23t =时等号成立, 所以5c 33353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题26.(1)证明见解析;(2)证明见解析.【分析】(1)连结AC 、BD ,交于点O ,连结OE ,通过//OE PA 即可证明;(2)通过PD BC ⊥, CD BC ⊥可证BC ⊥平面PDC ,即得DE BC ⊥,进而通过DE ⊥平面PBC 得DE PB ⊥,结合EF PB ⊥即证.【详解】证明:(1)连结AC 、BD ,交于点O ,连结OE ,底面ABCD 是正方形,∴O 是AC 中点,点E 是PC 的中点,//OE PA ∴.OE ⊂平面EDB , PA ⊄平面EDB ,∴//PA 平面EDB .(2)PD DC =,点E 是PC 的中点,DE PC ∴⊥.底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,∴PD BC ⊥, CD BC ⊥,且 PD DC D ⋂=,∴BC ⊥平面PDC ,∴DE BC ⊥,又PC BC C ⋂=,∴DE ⊥平面PBC ,∴DE PB ⊥,EF PB ⊥,EF DE E ⋂=,PB ∴⊥平面EFD .【点睛】本题考查线面平行和线面垂直的证明,属于基础题.。
个性化辅导授课教案学员姓名 : 辅导类型(1对1、小班): 年 级: 辅 导 科 目 : 学 科 教 师 : 课 题课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段年 月 日 时间段教 学 内 容 多面体与球组合问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2aOJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【牛刀小试】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2πB .4πC .8πD .16π【答案】B【解析】体积最大的球是其内切球,即球半径为1,所以表面积为ππ4142=⋅=S .1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.10π3B.4πC.8π3D.7π3【牛刀小试】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为 .1.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23hR a =+.例3 正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 .【牛刀小试】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为( )A .4πB .8πC .16πD .24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1 球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,33SE a CE a ==则有2222233a R r a R r CE +=-=,=,解得:66,.412R a r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2.2 球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111A AB D -的外接球的球心和正方体1111ABCD A B C D -的外接球的球心重合.设1AA a =,则32R a =.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心.2222244a b c l R ++==(l 为长方体的体对角线长). CB ADSOE 图4例5 在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是 .【牛刀小试】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .43πC .3πD .123π2.3 球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.例6 在三棱锥P -ABC 中,PA =PB=PC=3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π【牛刀小试】已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.2.4 球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.如图8,三棱锥S ABC -,满足,,SA ABC AB BC ⊥⊥面取SC 的中点为O ,由直角三角形的性质可得:,OA OS OB OC ===所以O 点为三棱锥S ABC -的外接球的球心,则2SCR =. 例7 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是( )A.π12125 B.π9125 C.π6125 D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=. 五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还CBASO原几何体,根据几何体的特征选择以上介绍的方法进行求解.例9 【河北省唐山市2014-2015学年度高三年级摸底考试】某几何体的三视图如图所示,则该几何体的外 接球的球面面积为( ) A .5πB .12πC .20πD .8π【牛刀小试】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A.163 πB.193 πC.1912 πD.43π综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.问题二:立体几何中的折叠问题立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开。
立体几何中的组合体问题专题(有答案)例1.正方体与球问题:正方体的棱长为1.求球的半径:⑴若正方体的八个顶点都在球面上,⑵若球内切于正方体;⑶12条棱组成一个正方体,一充气球在正方体内,求球的最大半径.例2.正四面体与球问题:正四面体的棱长为1.求球的半径:⑴若正四面体的四个顶点都在球面上,⑵若球内切于正四面体;⑶6条棱组成一个正四面体,一充气球在正四面体内,求球的最大半径.例3.四球问题:四个球的半径都为1.⑴桌面放两两相切的3个球,这3个球上面放一个球,求这个球的最高点离桌面的距离;⑵求与上述4个球都相切的小球的半径.例4.圆锥、圆柱与球⑴底面半径为1cm高为10cm的圆柱内,可以放几个半径为0.5cm的小球?⑵圆锥底面半径为3,高为4,一个球内切于圆锥,求球的半径;⑶圆锥底面半径为3,高为4,两个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑷圆锥底面半径为3,高为4,三个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑸圆锥底面半径为3,内接于一个半径为4的球,求圆锥的高.例5.圆锥与正四棱柱⑴圆锥底面半径为3,高为4,正四棱柱的高为3,且内接于圆锥,求正四棱柱的底面边长;⑵圆锥底面半径为3,高为4,正四棱柱的高为x,且内接于圆锥,求正四棱柱的体积.练习一、补(补成长方体或正方体)1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为A 、3πB 、4πC 、33πD 、6π2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12 B .π32 C .π36 D .π483. 点P 在直径为6的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是 A .6B .435C .2215D .210554. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )A .8πB .6πC .4πD .π 5. 设正方体的棱长为233,则它的外接球的表面积为( )A .π38B .2πC .4πD .π346. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为 A .3 B .6 C .36 D .97. 已知长方体1111ABCD A B C D -的外接球的表面积为16,则该长方体的表面积的最大值为A .32B .36C .48D .648. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中1::2:1:3AB AD AA =,则四棱锥O ABCD -的体积为A .263 B . 63C .23D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱锥P ABCD 的三视图如右图所示,四棱锥P ABCD 的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为A .12B .24C .36D .4810. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,AB =AD =6,AC =4,CD =213,AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为A . π36B . π88C . π92D . π12811. 正方体1111ABCD A B C D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半径是____________.12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别为,222,则三棱锥A -BCD 的外接球的体积为. ______13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面体的四个顶点同在一个球面上,则这个球的表面积为 。
圆柱、圆锥、圆台、球的结构特征与简单组合体的结构特征【知识梳理】1.旋转体由简单几何体组合而成的几何体叫做简单组合体.3.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.【常考题型】题型一、旋转体的结构特征【例1】给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径,其中正确说法的序号是________.[解析](1)不正确,因为当直角三角形绕斜边所在直线旋转得到的旋转体就不是圆锥,而是两个同底圆锥的组合体;(2)正确,以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)正确,如图所示,经过圆锥任意两条母线的截面是等腰三角形;(4)正确,如图所示,圆锥侧面的母线长有可能大于圆锥底面圆半径的2倍(即直径).[答案](2)(3)(4)【类题通法】1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.【对点训练】1.给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.解析:(1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.答案:(1)(2)题型二、简单组合体【例2】观察下列几何体的结构特点,完成以下问题:(1)图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①;(2)图②所示几何体结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②;(3)图③所示几何体是由哪些简单几何体构成的?并说明该几何体的面数、棱数、顶点数.[解析](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.【类题通法】1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.【对点训练】2.下列组合体是由哪些几何体组成的?解:(1)由两个几何体组合而成,分别为球、圆柱.(2)由三个几何体组合而成,分别为圆柱、圆台、圆柱.(3)由三个几何体组合而成,分别为圆锥、圆柱、圆台.【练习反馈】1.圆锥的母线有()A.1条B.2条C.3条D.无数条答案:D2.右图是由哪个平面图形旋转得到的()解析:选A图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.3.等腰三角形绕底边上的高所在直线旋转180°,所得几何体是________.答案:圆锥4.如图所示的组合体的结构特征为________.解析:该组合体上面是一个四棱锥,下面是一个四棱柱,因此该组合体的结构特征是四棱锥和四棱柱的一个组合体.答案:一个四棱锥和一个四棱柱的组合体5.如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.。
第四讲-立体几何题型归类总结高中数学-立体几何第四讲立体几何题型归类总结一、考点分析基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
斜棱柱底面是正多边形的棱柱正棱柱直棱柱其他棱柱2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的垂线上,这样的棱锥叫做正棱锥。
3.球球的性质:球心与截面圆心的连线垂直于截面;r=R2-d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体、长方体、正方体等的内接与外切。
注:球的有关问题转化为圆的问题解决。
球面积、体积公式:S球=4πR,V球=4/3πR³(其中R为球的半径)二、平行垂直基础知识网络平行与垂直关系可互相转化平行关系a⊥α,b⊥α⇒a//ba⊥α,a//b⇒b⊥αa⊥α,a⊥β⇒α//βα//β,a⊥α⇒a⊥βα//β,γ⊥α⇒γ⊥β垂直关系线线平行判定线线垂直性质判定性质判定面面垂直定义面面垂直线面平行面面平行线面垂直异面直线所成的角,线面角,二面角的求法1.求异面直线所成的角θ∈(0°,90°):解题步骤:找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行;计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角度$\theta\in[0^\circ,90^\circ]$:关键在于找到“两足”:垂足和斜足。
解题步骤:1.找到斜线与其在平面内的射影的夹角(注意三垂线定理的应用);2.证明所找到的角度就是直线与平面所成的角度(或其补角)(常常需要证明线面垂直);3.通过解直角三角形,计算线面角度。
1.立体几何中的组合体问题
一、补(补成长方体或正方体)
1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为
A 、3π
B 、4π
C 、33π
D 、6π
2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱
32=SA ,则正三棱锥ABC S -外接球的表面积是( )
A .π12
B .π32
C .π36
D .π48
3. 点P
的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线
段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是
A .6
B
C D
4. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )
A .8π
B .6π
C .4π
D .π
5. 设正方体的棱长为233,则它的外接球的表面积为( )
A .π38
B .2π
C .4π
D .π3
4 6. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为
A .3
B .6
C .36
D .9
7. 已知长方体1111ABCD A BC D -的外接球的表面积为16,则该长方体的表面积的最大值为
A .32
B .36
C .48
D .64
8. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中
1::AB AD AA =O ABCD -的体积为
A . 3
B . 3
C .
D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱
锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶
点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF
被球面所截得的线段长为
A .12p
B .24p
C .36p
D .48p
10. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,
AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为
A . π36
B . π88
C . π92
D . π128
11. 正方体1111ABCD A BC D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半
径是____________.
12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别
为2,则三棱锥A -BCD 的外接球的体积为. ______ 13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面
体的四个顶点同在一个球面上,则这个球的表面积为 。
14. 正三角形ABC 的边长为2,将它沿高AD 翻折成直二面角B AD C --,则三棱锥
B AD
C -的外接球的表面积为 。
15. 已知正三棱锥P -ABC ,点P ,A ,B ,C P A ,PB ,PC
两两互相垂直,则球心到截面ABC 的距离为________。
16.【山东省烟台市莱州一中20l 3届高三第二次质量检测 (文)】在正三棱锥S-ABC 中,
侧面SAB 、侧面SAC 、侧面SBC 两两垂直,且侧棱SA =S ABC -外接球的表面积为____________.
答案:1-9 ACDCC AAAAB 11. 12.
, 13. 16π; 14. 5π; 15. 16. 36π
二、利用球的定义确定球心的位置
1. 从P 点出发三条射线P A ,PB ,PC 两两成60°,且分别与球O 相切于A ,B ,C 三点,
若球的体积为4π3,则OP 的距离为( )
A . 2
B . 3
C .32
D .2
2. 一个正方体的四个顶点在半球的底面上,另四个顶点在该半球面上,则这个半球体积与正方体的体积之比为 ( )
A .5π∶6
B .6π∶2
C .π∶2
D .5π∶12
3. 2,则此四面体的外接球半径为
A B . C D 4. 若棱长均为2的正三棱柱内接于一个球,则该球的半径为
A .
33 B .332 C .321 D .7
5. (天津市新华中学2013届高三第三次月考理科数学)已知三棱锥S ABC -的所有顶
点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,
则此棱锥的体积为( )
A .6
B .6
C .3
D .2
6. 已知球的直径SC =4,A ,B 是该球球面上的两点,AB ASC =∠BSC =300,则棱锥S —ABC 的体积为
A .
B .
C .
D . 1
7. 已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =则球O 的表面积等于
A . 4π
B . 3π
C . 2π
D . π
8 .已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为
A . 51
B . 351
C . 251
D . 516
9. 已知矩形ABCD 的面积为8,当矩形周长最小时,沿对角线AC 把△ACD 折起,则三棱锥D —ABC 的外接球的表面积等于( )
A .4π
B .8π
C .16π
D .24π
10.(2013年高考辽宁数学(理)试题)已知三棱柱111ABC A B C -的6个顶点都在球O 的
球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )
A B . C .132 D .
11.【云南省玉溪一中2013届高三第四次月考文】四面体BCD A -中,
,5,4======BD AD AC BC CD AB 则四面体外接球的表面积为( )
A . π33
B . π43
C . π36
D . π18
12. 【2014高考大纲卷文第10题】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( )
A .
814
π B . 16π C . 9π D . 274π 13. (河南省郑州外国语学校2014届高三11月月考)平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( ) A . π23 B . π3 C . π3
2 D . π2 14. (河南省六市2013年高中毕业班第一次联考文)球O 的球面上有四点S 、A 、B 、C ,
其中O 、A 、B 、C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S -ABC 的体积的最大值为
A .1
B .13
C
D .3
15. (东北育才双语学校2013届高三第五次模拟理)若三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,AB =2,SA =SB =SC =2,则该三棱锥的外接球的表面积为( )
A . 83π
B .3
C . 43π
D . 163π 16.(湖北省武汉市2013届高三5月模拟考试数学(理)试题)已知球O 是棱长为1的
正方体1111ABCD A B C D -的内切球,则以1B 为顶点,以平面1ACD 被截得的圆为底面的
圆锥的全面积为_____________________.
17. 在三棱柱ABC —A ′B ′C ′中,已知AA′⊥平面ABC ,AA′=2,BC =BAC =2
π,且此三棱柱的各个顶点都在一个球面上,则球的体积为 。
18. 已知三棱锥A BCD -中,2,AB AD ==3CD BC =,90BAD ∠= ,则此三棱锥的外接球的表面积为 .
答案:1-15 BBCCA CAACC AAADD 16. 23π ; 17. 323π ; 18. 14π 三、割(利用体积相等)
1. 正三棱锥P —ABC 的三条侧棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为
A .1:3
B .)33(:1+
C .3:)13(+
D .3:)13(-
2. 已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC =,若四面体P ABC -的体积为32
,则该球的体积为( )
A B .2π C . D .
3. (湖北省天门市2013届高三模拟测试(一)数学理试题 )点P 是底边长为高
为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM PN ⋅ 取值范围是
A .[0,2]
B .[0,3]
C .[0,4]
D .[—2,2]
4. 一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是
π332,那么这个三棱柱的体积是 .
5. 三棱锥A -BCD 的两条棱AB =CD =6 ,其余各棱长均为5.则三棱锥的内切球的半径为 .
答案:1-3 DDC 4. 5. 8。