多级放大电路
- 格式:ppt
- 大小:2.97 MB
- 文档页数:66
什么是多级放大电路如何设计一个多级放大器多级放大电路是指由多个放大器级联组成的电路,用于提高输入信号的幅度,并有较大增益的电子设备。
在设计一个多级放大器之前,我们需要了解多级放大器的基本原理以及设计要点。
一、多级放大器的原理多级放大器是通过将多个放大器级联连接起来,以便连续放大信号的电压或功率。
它由输入级、中级和输出级组成。
1. 输入级:输入级负责接收输入信号并将其转化为电压或电流信号。
它通常包含一个低噪声放大器,其作用是增加输入信号的幅度,并将它传递给中级放大器。
2. 中级:中级放大器是多级放大器的核心部分,它的作用是增加电压或功率的增益。
中级通常包含多个级别的放大器,其中每个级别都提供一定的增益。
3. 输出级:输出级负责将信号放大到所需的幅度,并驱动负载电阻或其他负载。
输出级通常包含高功率放大器,以确保输出信号具有足够的驱动能力。
二、多级放大器的设计要点在设计一个多级放大器时,需要考虑以下几个要点:1. 增益和带宽:多级放大器的设计目标之一是在实现所需增益的同时保持足够的带宽。
增益与带宽的折衷是设计的关键考虑因素之一。
2. 输入和输出阻抗匹配:为了最大限度地传递信号并减少反射,需要确保输入和输出阻抗与信号源和负载的阻抗相匹配。
3. 稳定性:多级放大器必须具有良好的稳定性,以确保不会出现自激振荡或非线性失真。
这可以通过使用稳定的放大器设计和适当的负反馈技术来实现。
4. 噪声:多级放大器的设计应尽可能减少噪声的引入,并提供清晰的信号放大。
5. 功率供应:多级放大器需要合适的功率供应以保证其正常工作。
供应电压和电流必须满足放大器的工作要求,并且应提供稳定和纹波较小的电源。
三、一个多级放大器的示例设计以下是一个四级放大器的示例设计,以演示多级放大器的设计过程:1. 输入级:- 使用低噪声MOSFET放大器作为输入级,以提供高增益和低噪声。
- 输入级的增益设置为10倍,输入阻抗为50欧姆。
2. 中级:- 选择两个通用增益放大器级别级联,每个级别的增益为5倍。
放大电路多级设计I. 引言放大电路是电子设备中常见的一种电路结构,用于将信号放大以增强其幅度或功率。
在某些应用中,单级放大电路可能无法满足要求,因此需要通过多级放大电路进行设计。
本文将探讨放大电路多级设计的原理和方法,以及其在实际应用中的一些考虑因素。
II. 基本放大电路在开始讨论多级设计之前,我们先回顾一下基本的放大电路。
放大电路通常由放大器、输入电路和输出电路组成。
其中放大器负责将输入信号放大,输入电路负责对输入信号进行预处理,输出电路负责将放大后的信号传递给外部载荷。
III. 多级放大电路设计原理多级放大电路通过将多个放大器级联来实现更高的增益。
每个放大器级别都增加了总体放大电路的增益,并且可以实现更高的带宽。
多级放大电路的设计要考虑以下几个因素:1. 总增益要求:根据具体应用的需求,确定所需的总增益。
随着级数的增加,总增益也会相应增加。
2. 频率响应:多级放大电路的频率响应应该与应用场景的要求相匹配。
因此,在设计过程中要考虑各级放大器的带宽以及相位延迟等参数。
3. 稳定性:在级联放大器时,必须考虑反馈和补偿电路的设计,以确保整个放大电路的稳定性。
IV. 多级放大电路设计方法多级放大电路的设计可以通过以下步骤进行:1. 确定总增益要求:根据应用需求确定所需的总增益。
2. 选择放大器类型:选择适合应用需求的放大器类型,如共射放大器、共基放大器或共集放大器等。
3. 确定各级增益:根据总增益要求和放大器性能参数,计算每个级别的增益。
4. 考虑稳定性:设计反馈和补偿电路以确保整个放大电路的稳定性。
5. 考虑频率响应:根据应用的频率要求,选择适当的带宽和延迟参数。
V. 实际应用考虑因素在实际应用中,多级放大电路的设计还需要考虑以下几个因素:1. 电源供电:选择合适的电源供电电压和容量,以确保放大电路的正常工作。
2. 噪声:多级放大电路的设计要考虑电路内部和外部噪声的影响,并采取相应的措施进行抑制。
3. 温度稳定性:温度对电子元件性能有较大的影响,因此设计中需要考虑温度对放大电路的稳定性的影响,并采取相应的温度补偿措施。
四.多级放大电路在多数情况下,电子设备处理的交流信中与是很微弱的,由于单级放大电路放大能力有限,往往不能将微弱信号放大到要求的幅度,所以电子设备中常常将多个放大电路连接起来组成多级放大电路。
根据各个放大电路和之间的耦合方式(连接和传递信号方式)不同,多级放大电路可分为直接耦合放大电路、阻容耦合放大电路和变压器耦合放大电路。
1.阻容耦合放大电路:阻容耦合放大电路是指各放大电路之间用电容连接起来的多级放大电路。
阻容耦合放大电路如图A所示,交流信号经耦合电容C1送到第一级放大电路的三极管VT1基极,放大后从集电极输出,再经耦合电容C2送到第二级放大电路的VT2基极,放大后从集电极输出通过耦合电容C3送往后级电路。
阻容耦合的特点是:①由于耦合电容的隔直作用,各放大电路的直流工作点互不影响,所以设计各放大电路直流工作点比较容易;②因为各电路和独立,采用元器件数量比较多;③由于电容对交流信号有一定的阻碍,交流信号会在耦合电容上有一定的损耗,频率越低,这种损耗越大,不过这种损耗可以通过采有大容量的耦合电容来减小。
2.直接耦合放大电路:直接耦合放大电路是指各放大电路之间直接用导线连接起来的多级放大电路。
直接耦合放大电路如图所示,交流信号送到第一级放大电路的三极管VT1基极,放大后从集电极输出,直接送到第二级放大电路的VT2基极,放大后从集电极输出去后级电路。
直接耦合的特点是:①这种电路采用元件较少;②因为电路之间直接连接,所以各放大电路直流工作点会互相影响,设计这种电路要考虑到前级电路对后级电路的影响,有一定的难度;③由于各电路之间是直接连接,对交流信号没有损耗;这种耦合电路还可以放大直流信号,故又称为直流放大器。
3.变压器耦合放大电路:变压器耦合放大电路是指各放大电路之间用变压器连接起来的多级放大电路。
变压器耦合放大电路如图C所示,交流信号送到第一级放大电路的三极管VT1基极,放大后从集电极输出送到变压器T1的初级线圈,再感应到次级线圈,然后送到第二级放大电路VT2的基极,放大后从集电极输出通过变压器T2送往后级电路。
§2、5 多级放大电路
单级放大电路的放大倍数有时不能满足我们的需要,为此我们需要把若干个基本的放大电路连接起来,组成多级放大电路。
多级放大电路之间的连接称为耦合,它的方式由多种。
一:多级放大电路的耦合方式
实际中我们常用的耦合方式有三种,即阻容耦合、直接耦合和变压器耦合。
1.阻容耦合
它的连接方法是:通过电容和电阻把前级输出接至下一级输入。
它的特点是:各级静态工作点相对独立,便于调整.
它的缺点是:不能放大变化缓慢(直流)的信号;不便于集成。
如图(1)所示为阻容耦合接法。
2.直接耦合
为了避免电容对缓慢变化信号的影
响,我们直接把两级放大电路接在
一起,这就是直接耦合法。
它的特点是:即能放大交流信号,
也能放大直流信号,便于集成,存
在零漂现象。
(关于它的问题我们将在以后的章
节中讨论)
3.变压器耦合
变压器耦合主要用于功率放大电路,它的优点是可变化电压和实现阻抗变换,工作点相对独立。
缺点是体积大,不能实现集成化,频率特性差。
二:多级放大电路的指标计算
1.电压放大倍数 Au
多级放大电路的倍数等于各级放大电路倍数的乘积.即:
Au=A u1.A u2.A u3
.......A un 2.输入电阻和输出电阻
对于多级放大电路来说:输入级的输入电阻就是输入电阻;输出级的输出电阻就是输出电阻。
我们在设计放大电路的输入级和输出级时主要是考虑输入电阻和输出电阻的要求。
什么是多级放大电路一般情况下,单个三极管构成的放大电路的放大倍数是有限的,只有几十倍,这就很难满足我们的实际需要,在实际的应用中,一般是使用多级放大电路。
多级放大电路,其实也是由多个单个三极管构成的,把单个三极管放大电路进行级联,就能组成多级放大电路。
那么问题来了,这些放大电路每级之间怎么进行连接?这里就涉及到一个叫“耦合方式”的专业术语了,耦合方式是指多级放大电路各级之间的连接方式。
多级放大电路常用的耦合方式主要有三种:阻容耦合、变压器耦合、直接耦合。
1、阻容耦合放大电路下图所示电路就是一个阻容耦合方式连接成的一个多级放大电路,电路的第一级和第二级之间通过电容相连接。
阻容耦合方式的主要优点是,由于前后级放大电路是通过电容相连接,所以各级之间的直流通路是相互断开的,各级的静态工作点之间互不影响。
如果电容容量足够大,那么在一定频率范围内,输入信号是可以几乎无衰减的传送到后一级电路的。
但是,阻容耦合方式的缺点也很显著,因为电容有“隔直”的作用,所以直流成分不能通过电容器,其次,电容器对变化缓慢的信号也会有比较大的阻碍作用,所以当变化缓慢的信号通过电容时会造成比较大的衰减。
更重要的是,大容量的电容器很难集成到集成电路中,所以,阻容耦合电路不适合运用在集成的放大电路中。
2、变压器耦合放大电路变压器能够将信号转换成磁能的形式进行传送,所以所以变压器也能作为多级放大电路的耦合元件来使用。
如下图所示就是一个变压器耦合放大电路,变压器T1将第一级的输出信号传送给第二级,变压器T2将第二级的输出信号传送给负载。
变压器耦合放大电路的重要优点是具有阻抗变换作用,因而可以应用在分立元件功率放大电路中;另外,电路前后级是通过磁能来实现耦合,所以各级之间的静态工作点相对独立,互不影响。
阻抗变换:当负载阻抗和传输线特性阻抗不等,或两段特性阻抗不同的传输线相连接时均会产生反射,会使损耗增加、功率容量减小、效率降低;只要在两段所需要匹配的传输线之间,插入一段或多段传输线段,就能完成不同阻抗之间的变换,以获得良好匹配。