利用spss17.0的专家建模器实现arima模型及时间序列分析课件
- 格式:ppt
- 大小:1.50 MB
- 文档页数:18
Arima模型在SPSS中的操作ARIMA是自动回归积分滑动平均模型,它主要使用与有长期趋势与季节性波动的时间序列的分析预测中。
ARIMA有6个参数,ARIMA (p,d,q)(sp,sd,sq),后三个是主要用来描述季节性的变化,前三个针对去除了季节性变化后序列。
为了避免过度训练拟合,这些参数的取值都很小。
p与sp的含义是一个数与前面几个数线性相关,这两参数大多数情况下都取0, 取1的情况很少,大于1的就几乎绝种了。
d与sd是差分,difference,d是描述长期趋势,sd是季节性变化,这两个参数的取值几乎也都是0,1,2,要做几次差分就取几作值。
q与sq是平滑计算次数,如果序列变化特别剧烈,就要进行平滑计算,计算几次就取几做值,这两个值大多数情况下总有一个为0,也很少超过2的。
ARIMA的思路很简单,首先用差分去掉季节性波动,然后去掉长期趋势,然后平滑序列,然后用一个线性函数+白噪声的形式来拟合序列,就是不断的用前p个值来计算下一个值。
用SPSS来做ARIMA大概有这些步骤:1定义日期,确定季节性的周期,菜单为Data-Define dates 2画序列图来观察数值变化,菜单为Graph-sequence /Time Series - autoregressive3若存在季节性波动,则做季节性差分,Graph- Time Series - autoregressive,先做一次,返回2观察,如果数列还存在季节性波动,就再做一次,需要做几次,sd就取几4若观察到差分后的数列中有某些值远远大于平均值,则需要做平滑,做几次sq就取几5然后看是否需要做去除长期趋势的差分,确定p与sp6然后在ARIMA模型中测试是否存在其他属性影响预测属性,如果Approx sig接近0,则说明该属性可以加入模型,作为独立变量,值得注意的是,如果存在突变,可以根据情况自定义变量,这个在判断突变的原因比重时特别有用。
以数学建模竞赛为例基于SPSS建立ARIMA模型ARIMA模型是一种时间序列的分析方法,可以用来对未来一段时间内的序列数据进行预测和分析,常常被应用于经济、金融、气象、流行病等领域。
在数学建模竞赛中,ARIMA模型也是常见的分析方法之一。
本文将以数学建模竞赛为例,介绍如何基于SPSS软件建立ARIMA模型。
一、数据收集与概览在建立ARIMA模型之前,需要先收集数据,并对数据进行概览。
假设我们研究的是某电商平台的销售数据,数据的格式为时间序列。
下面是部分数据:|日期 |销售额 ||--------|--------||2019-01-01|1000 ||2019-01-02|1200 ||2019-01-03|1300 ||2019-01-04|1150 ||2019-01-05|1400 ||2019-01-06|1250 ||2019-01-07|1350 ||2019-01-08|1500 ||2019-01-09|1650 ||2019-01-10|1800 ||2019-01-11|2000 ||2019-01-12|2200 ||2019-01-13|2300 ||2019-01-14|2400 ||2019-01-15|2500 |通过对数据的概览,我们可以看到销售额有逐渐增加的趋势,并且在一周内出现周期性的波动。
二、建立ARIMA模型1. 模型选择在建立ARIMA模型之前,需要先选择合适的模型。
ARIMA模型的选择最好基于时间序列的图形表示,以及ACF和PACF的分析。
可以通过以下步骤进行模型选择:① 绘制时序图,观察数据的整体趋势、周期变化和异常点等信息。
在SPSS中绘制时序图的方法是:点击菜单Data→Time Series→Line Chart,然后在弹出的对话框中选择“Month-Year”并勾选数据和选项,即可绘制出时序图。
② 绘制ACF和PACF的图形,观察自相关性和偏自相关性。
Arima模型在SPSS中的操作ARIMA是自动回归积分滑动平均模型,它主要使用与有长期趋势与季节性波动的时间序列的分析预测中。
ARIMA有6个参数,ARIMA (p,d,q)(sp,sd,sq),后三个是主要用来描述季节性的变化,前三个针对去除了季节性变化后序列。
为了避免过度训练拟合,这些参数的取值都很小。
p与sp的含义是一个数与前面几个数线性相关,这两参数大多数情况下都取0, 取1的情况很少,大于1的就几乎绝种了。
d与sd是差分,difference,d是描述长期趋势,sd是季节性变化,这两个参数的取值几乎也都是0,1,2,要做几次差分就取几作值。
q与sq是平滑计算次数,如果序列变化特别剧烈,就要进行平滑计算,计算几次就取几做值,这两个值大多数情况下总有一个为0,也很少超过2的。
ARIMA的思路很简单,首先用差分去掉季节性波动,然后去掉长期趋势,然后平滑序列,然后用一个线性函数+白噪声的形式来拟合序列,就是不断的用前p个值来计算下一个值。
用SPSS来做ARIMA大概有这些步骤:1定义日期,确定季节性的周期,菜单为Data-Define dates 2画序列图来观察数值变化,菜单为Graph-sequence /Time Series - autoregressive3若存在季节性波动,则做季节性差分,Graph- Time Series - autoregressive,先做一次,返回2观察,如果数列还存在季节性波动,就再做一次,需要做几次,sd就取几4若观察到差分后的数列中有某些值远远大于平均值,则需要做平滑,做几次sq就取几5然后看是否需要做去除长期趋势的差分,确定p与sp6然后在ARIMA模型中测试是否存在其他属性影响预测属性,如果Approx sig接近0,则说明该属性可以加入模型,作为独立变量,值得注意的是,如果存在突变,可以根据情况自定义变量,这个在判断突变的原因比重时特别有用。
ARIMA模型-[SPSSPython] 简介: ARIMA模型:(英语:Autoregressive Integrated Moving Average model),差分整合移动平均⾃回归模型,⼜称整合移动平均⾃回归模型(移动也可称作滑动),是时间序列预测分析⽅法之⼀。
AR是“⾃回归”,p为⾃回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。
由于毕业论⽂要涉及到时间序列的数据(商品的销量)进⾏建模与分析,主要是对时间序列的数据进⾏预测,在对数据进⾏简单的散点图观察时,发现数据具有季节性,也就是说:数据波动呈现着周期性,并且前⾯的数据会对后⾯的数据产⽣影响,这也符合商品的销量随时间波动的影响。
于是选择了ARIMA模型,那为什么不选择AR模型、MA模型、ARMA模型 于是,通过这篇博客,你将学到: (1)通过SPSS操作ARIMA模型 (2)运⽤python进⾏⽩噪声数据判断 (3)为什么差分,怎么定阶 PS:在博客结尾,会附录上Python进⾏ARIMA模型求解的代码。
为什么会使⽤SPSS? 由于真⾹定理,在SPSS⾥有ARIMA、AR、MA模型的各种操作;还包括异常值处理,差分,⽩噪声数据判断,以及定阶。
⼀种很⽅便⼜不⽤编程还可以避免改代码是不是很爽… ARIMA模型的步骤 好啦,使⽤ARIMA模型的原因: 在过去的数据对今天的数据具有⼀定的影响,如果过去的数据没有对如今的数据有影响时,不适合运⽤ARIMA模型进⾏时间序列的预测。
使⽤ARIMA进⾏建模的步骤: 简单来说,运⽤ARIMA模型进⾏建模时,主要的步骤可以分成以下三步: (1)获取原始数据,进⾏数据预处理。
(缺失值填补、异常值替换) (2)对预处理后的数据进⾏平稳性判断。
如果不是平稳的数据,则要对数据进⾏差分运算。
(3)将平稳的数据进⾏⽩噪声检验;如果不是⽩噪声数据,则说明数据之间仍然有关联,需要进⾏ARIMA(p,d,q)重新定阶:p、q。
§7.利用SPSS和Matlab进行时间序列预测1.移动平均和滑动平均计算例1:表1给出了某地区1990一2004年粮食产量数据。
试分别用Matlab和SPSS软件,对该地区的粮食产量进行移动平均和和滑动平均计算。
表1 某地区1990一2004年粮食产量及其平滑结果年份自然序号粮食产量y/104t移动平均滑动平均三点移动五点移动三点滑动五点滑动1990 1 3 149.441991 2 3 303.66 3 154.471992 3 3 010.30 3 010.30 3 141.19 3 242.44 1993 4 3 109.61 3 154.47 3 253.04 3 263.32 1994 5 3 639.21 3 141.19 3 334.21 3 295.88 1995 6 3 253.80 3 253.04 3 242.44 3 453.17 3 461.80 1996 7 3 466.50 3 334.21 3 263.32 3 520.07 3 618.81 1997 8 3 839.90 3 453.17 3 295.88 3 733.69 3 692.89 1998 9 3 894.66 3 520.07 3 461.80 3 914.72 3 892.78 1999 10 4 009.61 3 733.69 3 618.81 4 052.51 4 019.78 2000 11 4 253.25 3 914.72 3 692.89 4 121.45 4 075.78 2001 12 4 101.50 4 052.51 3 892.78 4 158.21 4 148.58 2002 13 4 119.88 4 121.45 4 019.78 4 160.01 4 227.01 2003 14 4 258.65 4 158.21 4 075.78 4 260.112004 15 4 401.79 4 160.01 4 148.58利用SPSS进行移动平均计算主要有以下步骤:(1)在菜单中依次选择Transform->Create time series…,在弹出的对话框中的单击Function下面的下拉条,选择Prior moving average方法,span框中输入数值为3(表示进行三点滑动平均)。
以数学建模竞赛为例基于SPSS建立ARIMA模型【摘要】本文主要介绍了以数学建模竞赛为例,利用SPSS建立ARIMA模型的方法。
在背景介绍中,讨论了数学建模竞赛的重要性和研究意义。
在首先概述了数学建模竞赛的基本特点,然后介绍了SPSS软件的基本功能,接着详细解释了ARIMA模型的原理。
在基于SPSS建立ARIMA 模型的步骤中,说明了具体的操作流程,并通过实例分析展示了其应用效果。
在讨论了ARIMA模型在数学建模竞赛中的应用前景,并对全文进行了总结。
本文通过理论和实践相结合的方法,为使用ARIMA模型进行数学建模竞赛提供了一定的参考和指导。
【关键词】数学建模竞赛、SPSS、ARIMA模型、建立模型、实例分析、应用前景、总结1. 引言1.1 背景介绍在接下来的内容中,我们将详细介绍数学建模竞赛的概述、SPSS软件的介绍、ARIMA模型的原理、基于SPSS建立ARIMA模型的步骤以及实例分析,来探讨ARIMA模型在数学建模竞赛中的应用前景。
1.2 研究意义数目要求、格式要求等。
以下是关于的内容:基于SPSS建立ARIMA模型在数学建模竞赛中的应用具有重要的意义。
ARIMA模型是一种能够使用时间序列数据对未来进行预测的方法,能够更准确地预测未来的走势和变化趋势。
将ARIMA模型与SPSS软件相结合,可以更高效地进行数据分析和建模,为数学建模竞赛提供更加可靠和有效的解决方案。
研究如何基于SPSS建立ARIMA 模型在数学建模竞赛中的应用具有重要的意义和价值,对于提高数学建模竞赛的参赛水平和竞争力具有积极的推动作用。
2. 正文2.1 数学建模竞赛概述数学建模竞赛是一种培养学生科学建模能力的竞赛形式,旨在通过给定的问题和数据,参赛者利用数学方法进行建模和求解。
数学建模竞赛的题目通常来源于实际问题,涉及到各个领域,如经济、环境、医学等。
参赛者需要深入理解问题背景,提出合理的假设,采集、处理和分析数据,最终给出可行的解决方案。
Arima模型在SPSS中的操作ARIMA是自动回归积分滑动平均模型,它主要使用与有长期趋势与季节性波动的时间序列的分析预测中。
ARIMA有6个参数,ARIMA (p,d,q)(sp,sd,sq),后三个是主要用来描述季节性的变化,前三个针对去除了季节性变化后序列。
为了避免过度训练拟合,这些参数的取值都很小。
p与sp的含义是一个数与前面几个数线性相关,这两参数大多数情况下都取0, 取1的情况很少,大于1的就几乎绝种了。
d与sd是差分,difference,d是描述长期趋势,sd是季节性变化,这两个参数的取值几乎也都是0,1,2,要做几次差分就取几作值。
q与sq是平滑计算次数,如果序列变化特别剧烈,就要进行平滑计算,计算几次就取几做值,这两个值大多数情况下总有一个为0,也很少超过2的。
ARIMA的思路很简单,首先用差分去掉季节性波动,然后去掉长期趋势,然后平滑序列,然后用一个线性函数+白噪声的形式来拟合序列,就是不断的用前p个值来计算下一个值。
用SPSS来做ARIMA大概有这些步骤:1定义日期,确定季节性的周期,菜单为Data-Define dates 2画序列图来观察数值变化,菜单为Graph-sequence /Time Series - autoregressive3若存在季节性波动,则做季节性差分,Graph- Time Series - autoregressive,先做一次,返回2观察,如果数列还存在季节性波动,就再做一次,需要做几次,sd就取几4若观察到差分后的数列中有某些值远远大于平均值,则需要做平滑,做几次sq就取几5然后看是否需要做去除长期趋势的差分,确定p与sp6然后在ARIMA模型中测试是否存在其他属性影响预测属性,如果Approx sig接近0,则说明该属性可以加入模型,作为独立变量,值得注意的是,如果存在突变,可以根据情况自定义变量,这个在判断突变的原因比重时特别有用。