测量常用的五种坐标系
- 格式:docx
- 大小:11.10 KB
- 文档页数:1
测量中的常用坐标系及坐标转换概述在测量领域中,常用的坐标系包括直角坐标系、极坐标系和球坐标系。
不同的坐标系适用于不同的测量任务和数据处理需求,而坐标转换则是将不同坐标系下的测量数据相互转换的方法。
本文将对常用坐标系及坐标转换进行概述。
1.直角坐标系直角坐标系是最常见的坐标系之一,通常用于描述二维或三维空间中的点的位置。
在二维直角坐标系中,一个点的位置可以由两个坐标值(x,y)表示。
而在三维直角坐标系中,一个点的位置可以由三个坐标值(x,y,z)表示。
直角坐标系中的坐标轴是相互垂直的,可以方便地描述点的位置和进行测量。
2.极坐标系极坐标系是另一种常用的坐标系,通常用于描述平面上的点的位置。
极坐标系由一个极径和一个极角组成。
极径表示点到原点的距离,极角表示点与正x轴的夹角。
在极坐标系中,一个点的位置可以由(r,θ)表示。
极坐标系在一些特定情况下对测量任务更加方便,例如描述圆形或对称物体的位置。
3.球坐标系球坐标系用于描述三维空间中的点的位置。
球坐标系由一个极径、一个极角和一个方位角组成。
极径表示点到原点的距离,极角表示点与正z轴的夹角,方位角表示点在xy平面上的投影与正x轴的夹角。
在球坐标系中,一个点的位置可以由(r, θ, φ)表示。
球坐标系在描述球体或对称物体的位置时非常有用。
在测量中,常常需要在不同的坐标系之间进行转换以满足不同的需求。
以下是常见的坐标转换方法:1.直角坐标系到极坐标系的转换从直角坐标系到极坐标系的转换可以通过以下公式实现:极径 r = sqrt(x^2 + y^2)极角θ = atan2(y, x)其中,sqrt表示平方根,atan2表示求反正切值。
2.极坐标系到直角坐标系的转换从极坐标系到直角坐标系的转换可以通过以下公式实现:x = r * cos(θ)y = r * sin(θ)3.直角坐标系到球坐标系的转换从直角坐标系到球坐标系的转换可以通过以下公式实现:极径 r = sqrt(x^2 + y^2 + z^2)极角θ = acos(z / r)方位角φ = atan2(y, x)4.球坐标系到直角坐标系的转换从球坐标系到直角坐标系的转换可以通过以下公式实现:x = r * sin(θ) * cos(φ)y = r * sin(θ) * sin(φ)z = r * cos(θ)需要注意的是,在进行坐标转换时,要确保所使用的公式和单位系统是一致的,否则会导致转换结果错误。
测量坐标系有哪几种在实际生活和工程领域中,我们经常需要使用坐标系进行测量和定位。
坐标系是一个数学概念,用于描述和确定一个点在空间中的位置。
在测量领域,有几种常用的坐标系形式,包括笛卡尔坐标系、极坐标系、球坐标系和柱坐标系。
1. 笛卡尔坐标系笛卡尔坐标系是最为常见和广泛使用的坐标系之一。
它由三个互相垂直的坐标轴组成,分别为X轴、Y轴和Z轴。
这三个轴可以形成一个立体直角坐标系,用来描述和定位三维空间中的点。
其中,X轴水平朝右,Y轴垂直向上,Z轴垂直向外。
在笛卡尔坐标系中,每个点都可以用其在X、Y和Z轴上的坐标值来表示,常用的表示形式为(x, y, z)。
通过测量和记录一个点在三个坐标轴上的坐标值,我们可以准确地确定这个点在三维空间中的位置。
2. 极坐标系极坐标系采用极径和极角来表示一个点的位置。
它由一个极点(原点)和一个固定方向(通常为X轴正方向)构成。
极径表示从极点到点的距离,而极角表示从固定方向到从极点连线的方向所需旋转的角度。
在极坐标系中,一个点的位置可以用(r, θ)表示,其中r为极径,θ为极角。
极径可以是正数也可以是零,而极角通常取自[-π,π]或[0,2π]的范围内。
极坐标系对于描述天文学、雷达测量和极地导航等领域非常有用。
需要注意的是,极坐标系和笛卡尔坐标系之间可以进行相互转换,通过对应关系可以在两个坐标系之间进行转换和计算。
3. 球坐标系球坐标系是一种用球面半径、极角和方位角来表示点位置的坐标系。
球坐标系由一个固定点(通常为原点)、一个球面和两个角度构成。
固定点表示球心,球面表示距离球心固定距离的点的集合。
在球坐标系中,一个点的位置可以用(r, θ, φ)表示,其中r为球面半径,即球心到点的距离;θ为极角,表示从正Z轴到点的方向与正Z轴之间的夹角;φ为方位角,表示从正X轴到点的投影与正X轴之间的夹角。
球坐标系在天文学、物理学、机器人学等领域得到了广泛应用。
类似于极坐标系,球坐标系也可以与笛卡尔坐标系相互转换。
测量坐标系分为哪几种测量坐标系是用来描述和定位物体在空间中位置和方向的一种方法。
根据不同的测量需求和应用领域,测量坐标系可以分为以下几种类型:1. 直角坐标系直角坐标系又称笛卡尔坐标系,是最常见和最基础的坐标系之一。
它由三个互相垂直的轴线组成,分别是X轴、Y轴和Z轴。
X轴和Y轴平行于平面,而Z轴垂直于平面,形成一个三维坐标系。
直角坐标系常用于工程测量、地理测量和物理测量等领域中。
在直角坐标系中,物体的位置可以通过给定的三个坐标值来表示,分别表示X 轴、Y轴和Z轴上的位置。
例如,(2, 3, 4)表示物体在X轴上的位置为2,Y轴上的位置为3,Z轴上的位置为4。
2. 极坐标系极坐标系是用来描述和定位平面上的点或物体位置的一种偏离直角坐标系的方式。
它主要使用两个值来表示位置,一个是极径(r),表示点到原点的距离;另一个是极角(θ),表示点到X轴的极角。
极坐标系通常在需要更直观描述旋转和对称性的问题中使用较多。
例如,在天文学中,使用极坐标系可以更方便地描述星体的位置和运动。
3. 二维车体坐标系二维车体坐标系是一种相对于汽车或机器人搭载设备的坐标系。
它将搭载设备的位置作为原点,并且定义了与搭载设备相关的前后方向和左右方向。
二维车体坐标系通常用于导航、自动驾驶和机器人控制等领域。
在二维车体坐标系中,位置可以通过两个值来表示,分别是纵向位移(X)和横向位移(Y)。
正的X值代表向前方移动,正的Y值代表向车辆的右侧移动。
4. 枞阳坐标系枞阳坐标系是一种地方坐标系,主要应用于中国安徽省枞阳县的地理测量工作。
它利用枞阳县城为原点,并以该点为中心建立了特定的坐标系。
枞阳坐标系中的X轴与东线平行,Y轴与北线平行。
通过输入不同的X和Y值,可以准确地确定枞阳县境内的地理位置。
5. 水平仪坐标系水平仪坐标系是一种测量地面的水平度和垂直度的坐标系。
它通常使用气泡水平仪作为测量工具。
水平仪通过一个液体气泡在两个刻度线之间的位置来显示地面的水平度或垂直度。
GPS测量坐标系有哪些1. 地球坐标系(WGS84)地球坐标系(World Geodetic System 1984,简称WGS84)是一种全球通用的地球坐标系统。
它是由美国国防部制定的,用于GPS(全球定位系统)和其他导航系统。
WGS84使用经纬度(latitude 和 longitude)来表示地球上任意一个点的位置。
2. 大地坐标系(NAD83)大地坐标系(North American Datum 1983,简称NAD83)是在北美地区广泛使用的坐标系统。
它在WGS84基础上进行了一些微小的调整,以更精确地反映北美地区的地球形状和位置。
3. 区域坐标系(UTM)区域坐标系(Universal Transverse Mercator,简称UTM)是一种广泛使用的地理坐标系统,特别适用于大范围地图的制作和测量。
UTM以地球为基准,将地球划分成若干个地带,每个地带使用不同的投影方式来表示地理坐标。
这种系统使得测量和导航更加简单和方便。
4. 相对坐标系相对坐标系是相对于已知点或基准点的坐标系统。
在GPS测量中,常用的相对坐标系有局部坐标系和工程坐标系。
4.1 局部坐标系局部坐标系是以某个已知点为基准点建立的坐标系统。
在局部坐标系中,通常以基准点为原点,对其他点进行偏移和描述。
这种坐标系在地理勘测、土地测量和工程测量中经常使用。
4.2 工程坐标系工程坐标系是一种与工程建设相关的坐标系统,常用于工程测绘和定位。
工程坐标系可以相对于某个基准点或基准线进行描述,可以更好地满足特定工程测量的需求。
5. 其他坐标系除了上述提到的坐标系,还存在一些特定的坐标系,如:•地心坐标系(Geocentric Coordinate System):在地球内部使用的三维坐标系,常用于地震学和地球物理学研究。
•极坐标系(Polar Coordinate System):使用极角和极径来表示点的位置,适用于某些特定的测量场景。
一、常用坐标系1、北京坐标系北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。
2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。
大地测量学常用的坐标系引言大地测量学是研究地球形状、大小、重力场及其变化的科学,广泛应用于工程测量、地图制图、导航定位等领域。
在进行测量和定位时,需要采用合适的坐标系来描述地球表面的点和其相对位置关系。
本文将介绍大地测量学中常用的坐标系。
地心坐标系(Geocentric Coordinate System)地心坐标系是以地球质心为原点建立的坐标系,常用来描述地球内部重力场的分布以及地球形状的变化。
地心坐标系的三个坐标轴分别指向地球的北极、本初子午线和赤道平面,称为北极轴、子午轴和赤道轴。
地心坐标系的优点是在研究全球性的问题时非常有用,可以精确描述地球形状和大小的变化。
大地坐标系(Geodetic Coordinate System)大地坐标系是基于地球表面形状和地球椭球体模型建立的坐标系。
在大地坐标系中,使用经度(longitude)和纬度(latitude)来确定地球表面上点的位置。
经度是指从本初子午线开始,沿赤道向东或向西测量的角度,纬度是指从赤道开始,沿黄道向北或向南测量的角度。
大地坐标系常用于地图制图和导航定位等应用中。
投影坐标系(Projected Coordinate System)投影坐标系是为了适应地球表面的非平面特性而引入的。
在投影坐标系中,地球表面上的经纬度坐标被投影到一个平面上,从而实现对地图的制作和使用。
不同的投影方式会导致不同的形变问题,如面积变形、角度变形和长度变形等。
常见的投影坐标系有墨卡托投影、麦卡托投影、兰伯特投影等。
本地坐标系(Local Coordinate System)本地坐标系是根据地球表面的局部特征建立的坐标系,主要用于工程测量和定位。
在本地坐标系中,原点和坐标轴的选择由具体的测量任务和地理特征决定。
本地坐标系可以使用笛卡尔坐标系或极坐标系来表示。
与其他坐标系相比,本地坐标系的优势在于简化了测量计算和数据处理的过程。
结论在大地测量学中,常用的坐标系包括地心坐标系、大地坐标系、投影坐标系和本地坐标系。
中国使用的测量坐标系
我国使用的测量坐标系有以下四种:
1、北京54坐标系
2、西安80坐标系:该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里。
3、2000国家大地坐标系:简称为CGCS2000,英文全称为China Geodetic Coordinate System 2000。
Z轴指向BIH1984.0定义的协议极地方向(BIH国际时间局),X轴指向BIH1984.0定义的零子午面与协议赤道的交点,Y轴按右手坐标系确定。
该坐标系的大地坐标和美国WGS84坐标系的大地坐标基本一致,可直接采用,只是平面坐标需要用系数调整。
4、1985国家高程标准:我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫"1956年黄海高程系统",为中国第一个国家高程系统。
黄海高程是1956年9月4日,国务院批准试行《中华人民共和国大地测量法式(草案)》,首次建立国家高程基准,称“1956年黄海高程系”,简称“黄海基面”。
系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。
原点设在青岛市观象山。
该原点以“1956年黄海高程系”计算的高程为72.289米。
后经复查,发现该高程系验潮资料过短,准确性较差,改用青岛验潮站1950-1979年的观测资料重新推算,并命名为“1985国家高程基准”。
国家水准点设于青岛市观象山,其高程为72.260米,作为我国高程测量的依据。
它的高程是以“1985国家高程基准”所定的平均海水面为零点测算而得,“1956年黄海高程系”已废止。
测量坐标系的种类1.直角坐标系(笛卡尔坐标系):直角坐标系是最常见的坐标系类型之一、它使用三个垂直的坐标轴,通常表示为X、Y和Z轴。
这种坐标系适用于描述三维空间中的绝对位置,例如地理位置、建筑物坐标等。
2.极坐标系:极坐标系以一个定点作为原点,以连续的旋转轴表示距离(r)和角度(θ)。
这种坐标系适用于圆、柱体或球形物体的测量,它们用极径和角度来描述位置,例如天文学中的天体测量。
3.球坐标系:球坐标系也是一种用于描述三维空间中物体位置的坐标系。
它使用一个原点作为中心以及距离(r)、极角(θ)和方位角(φ)来定义位置。
这种坐标系常用于天体测量、机器人定位等领域。
4.地理坐标系:地理坐标系使用经度和纬度来确定位置,适用于地理学、地理信息系统(GIS)、全球定位系统(GPS)等应用。
经度表示东西方向,纬度表示南北方向,因此地理坐标系可用于描述任意地球表面上的位置。
5.本地坐标系:本地坐标系是相对于一些基准点或者参考物体而言的坐标系,适用于工程测量、建筑设计等领域。
它可以是平面坐标系或立体坐标系,常用于描述建筑物、工业设施的位置和方向。
6.构造坐标系:构造坐标系同样是相对于参考物体的坐标系。
它使用东、北、高(E、N、U)作为坐标轴,适用于地质测量、土木工程等领域。
构造坐标系能够描述相对位移和形变等变量。
7.图像坐标系:图像坐标系用于计算机视觉和图像处理领域,用于描述图像中像素的位置。
它通常以图像的左上角作为原点,使用水平和垂直坐标轴来表示像素位置。
除了上述常见的坐标系,还有一些特殊的坐标系形式,如椭球坐标系、柱坐标系、二维坐标系等,它们在特定领域具有特定的应用。
总结起来,测量坐标系的种类很多,每种坐标系都适用于特定的应用领域。
正确选择合适的坐标系对于进行准确的测量和定位是至关重要的。
科学家、测量工程师和研究人员需要根据实际需求选择合适的坐标系,并进行相应的计算和转换,以确保测量结果的精度和可靠性。
测量中常用的坐标系一、坐标系类型1、大地坐标系定义:大地测量中以参考椭球面(不准确)为基准面建立起来的坐标系。
一定的参考椭球和一定的大地原点上的大地起算数据,确定了一定的坐标系。
通常用参考椭球参数和大地原点上的起算数据作为一个参心大地坐标系建成的标志。
大地坐标(地理坐标):将某点投影到椭球面上的位置用大地经度L和大地纬度B表示,( B , L)统称为大地坐标。
大地高H:某点沿投影方向到基准面(参考椭球面)的距离。
在大地坐标系中,某点的位置用(B , L,H)来表示。
2、空间直角坐标系定义:以椭球体中心为原点,起始子午面与赤道面交线为X 轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴。
在空间直角坐标系中,某点的位置用(X,Y,Z)来表示。
3、平面直角坐标系在小区域进行测量工作若采用大地坐标来表示地面点位置是不方便的,通常采用平面直角坐标系。
测量工作以x轴为纵轴,以y轴为横轴投影坐标:为了建立各种比例尺地形图的控制及工程测量控制,一般应将椭球面上各点的大地坐标按照一定的规律投影到平面上,并以相应的平面直角坐标表示。
4、地方独立坐标系基于限制变形、方便、实用和科学的目的,在许多城市和工程测量中,常常会建立适合本地区的地方独立坐标系,建立地方独立坐标系,实际上就是通过一些参数来确定地方参考椭球与投影面。
二、国家大地坐标系1.1954年北京坐标系(BJ54旧)坐标原点:前苏联的普尔科沃。
参考椭球:克拉索夫斯基椭球。
平差方法:分区分期局部平差。
存在问题:(1)椭球参数有较大误差。
(2)参考椭球面与我国大地水准面存在着自西向东明显的系统性倾斜。
(3)几何大地测量和物理大地测量应用的参考面不统一。
(4)定向不明确。
2.1980年国家大地坐标系(GDZ80)坐标原点:陕西省泾阳县永乐镇。
参考椭球:1975年国际椭球。
平差方法:天文大地网整体平差。
特点:(1)采用1975年国际椭球。
(2)参心大地坐标系是在1954年北京坐标系基础上建立起来的。
测量常用的五种坐标系
1)像平面坐标系以像主点O为原点建立起来的右手直角坐标
系O-XY
2)像空间坐标系:以摄影中心S为坐标原点,平面坐标坐标
X,Y与像平面坐标系中X,Y轴平行,Z轴与摄影光束轴重合,建立的
空间右手直角坐标系S-xyz
3)像空间辅助坐标系:由于每张像片的像空间坐标系都不同,
所以需要建立一个统一的坐标系,用S-XYZ表示,坐标原点仍然取
摄影中心S,有下列三种情况:(1)取X,Y,Z平行于地面摄影测量坐标
系D-XYZ,这样同一像点a在像空间坐标系中坐标是X,Y,Z=-f,在
像空间辅助坐标系中坐标是X,Y,Z(2)以每条航带的第一张像片的像
空间坐标系作为像空间辅助坐标系(3)是以每个像片对的左像片摄影中心为坐标原点,摄影基线为X轴,以X轴和摄影光束形成的XZ平面,过原点作垂直于XZ平面(左核面)的Y轴构成右手直角坐标系.
4)地面测量坐标系:指高斯克吕6和3带投影下的平面直角坐标系和定义在某一高程基准面的高程,形成的空间左手直角坐标系
T-X t Y T Z T。
5)地面摄影测量坐标系:坐标原点在测区的某一地面点上,X
轴大致与航向一致的水平方向,Y轴垂直于X轴,Z轴沿铅垂方向,构成右手直角坐标系D-XYZ。