高压变频器旁路柜设计原理
- 格式:doc
- 大小:20.50 KB
- 文档页数:1
高压变频器主电路原理简介一、高压变频器装置的构成高压变频调速成套系统整体结构上由旁路柜、移相变压器柜、功率单元柜及控制柜组成,见图1所示。
图1、高压变频器装置构成二、功率单元原理功率单元柜为成套装置的核心部分,也是电机定子大功率变频电源的产生模块。
功率单元柜主要由功率单元箱(图1中A1~An,B1~Bn,C1~Cn)并辅以控制构成。
每个功率单元的电气原理见图2所示,每个功率单元由外部输入三相电源A/B/C供电,经内部整流滤波后逆变成单相电压U/V输出。
整流由三相不控整流完成。
逆变部分采用IGBT功率器件,控制方法采用SPWM逆变控制技术。
图2、功率单元电气原理图三、功率单元柜高压形成为了形成高压3kV、6kV或10kV电源,采用了将多个功率单元的输出电压串联叠加直接形成高压输出(如图3所示),此方法类似于干电池叠加,通过若干个功率单元的叠加可产生所需要的相电压数值。
图2、功率单元相串原理功率单元中电压、功率换算关系:1、相电压=线电压/√32、功率单元电压=相电压/功率单元串联数3、功率单元功率=变频器总功率/功率单元串联数/3例如:6 kVAC的高压变频器,功率为1.5 MW,每相由6个功率单元串联叠加而成,3相共18个功率单元,那么:相电压=6000/√3 = 3464.2 VAC功率单元电压=3464.2/6 = 577.4 VAC 功率单元功率=1500/6/3 = 83.3 kW对于3kV高压变频器,每相一般由3~4个功率单元串联叠加而成;对于6kV高压变频器,每相一般由5~7个功率单元串联叠加而成;对于10kV高压变频器,每相一般由8~10个功率单元串联叠加而成;四、EACO电容在高压变频器中的应用在高压变频器的DC-LINK这个应用场合,EACO薄膜电容以其优越的电性能得以广泛应用,EACO薄膜电容与电解电容相比较具有高纹波电流承受能力、耐高压、低ESR和ESL、长寿命、干式防爆、无极性和高频特性好等优越的电气性能,在高压变频器中DC-LINK应用薄膜电容替代电解电容是一种趋势。
变频器旁通柜操作说明一、安全信息,请先阅读1.1系统投入运行后,旁通柜内有6kV高压,请注意危险,禁止违规操作。
1.2旁通柜隔离开关操作前,请先给控制柜上电;1.3旁通柜隔离开关操作前,必须保证变频器的6kV电源高压开关断开,即柜内无6kV高压;1.4禁止带负荷拉、合隔离开关;1.5每次操作完成后,请您打开旁通柜后照明灯,通过旁通柜柜前操作窗,认真检查各隔离开关是否准确就位,否则请您重新操作。
二、变频器旁通柜一次回路原理图旁路柜高压电源母注意:1、变频运行时,QS2、QS3合上,QS1断开。
2、工频运行时,QS2、QS3断开,QS1合上。
三、变频器旁路柜操作说明3.1变频器旁通柜隔离开关指示手柄拨向“检修”位置时,柜门才能打开;拨向“操作”位置时,合闸或分闸操作才能进行;旁通柜正常工作后,应将指示手柄拨向“工作”位置。
3.2凝升泵工频旁路运行时,隔离开关的操作步骤:步骤1、将指示手柄拨动到“操作”位置;步骤2、解开两个隔离开关操作盘的电磁锁;步骤3、若QS3、QS2未断开,先断开QS3,再断开QS2(从左到右为QS1、 QS2、QS3);步骤4、将隔离开关QS1合上;步骤5、打开旁路柜后照明灯,通过旁通柜柜前操作窗,认真检查隔离开关是否正确就位;步骤6、然后将指示手柄拨动到“工作”位置,恢复两个隔离开关的电子锁。
3.3凝升泵变频运行时,隔离开关的操作步骤:步骤1、将指示手柄拨动到“操作”位置;步骤2、解开两个隔离开关操作盘的电磁锁;步骤3、若QS1未断开,先断开QS1;步骤4、先将隔离开关QS2合上,再将隔离开关QS3合上;步骤5、打开旁路柜后照明灯,通过旁通柜柜前操作窗,认真检查各隔离开关是否正确就位;步骤6、然后将指示手柄拨动到“工作”位置,恢复两个隔离开关的电子锁。
变频器的两种旁路类型介绍变频器旁路类型介绍及手动旁路与自动旁路对比。
根据切换开关的不同,变频器的旁路方案分为手动旁路方式与自动旁路方式。
变频器两种旁路方式的介绍一、一拖一手动旁路方式1、基本原理一拖一手动旁路方式是由3 个高压隔离开关qs1 、qs2 和qs3 组成,如图1 所示。
要求qs2 和qs3 不能同时闭合,在机械上实现互锁。
变频运行时,qs1 和qs2 闭合,qs3 断开;工频运行时,qs3 闭合,qs1 和qs2 断开。
2、详细介绍(1)隔离开关分别选用gn19 系列单投和双投户内高压隔离开关,相间距为210mm ;单投隔离开关的进线端的三个绝缘端子为高压带电显示装置的三个传感器;(2)照明灯为柜门式照明灯;(3)避雷器采用三相组合式;(4)外加输入、输出端子;工频、变频指示。
(5)标准柜体尺寸(长x宽x高:1200mn K 1200mn X 2320mm3、优缺点(1)优点在检修变频器时,有明显断电时间,能够保证人身安全,同时也可手动使负载投入工频电网运行;手动旁路可人为判断故障后再切换,比较安全;造价低等。
(2)缺点负载在倒入工频运行时必须人工干预,这不符合有些现场工况不能停机的要求。
二、一拖一自动旁路方式1、基本原理一拖一自动旁路方式是由3 个高压真空开关(电流小于300a 时选用真空接触器,电流大于300a 时选用真空断路器)km1、km2和km3组成,如图2所示。
要求km1、km2 不能和km3 同时闭合,在电气上实现互锁。
变频运行时,km1 和km2 闭合,km3 断开;工频运行时,km3 闭合,km1 和km2 断开。
2、优缺点(1)优点在变频器出现严重故障时,系统能够自动转入工频电网中,断开变频调速系统时,而负载不需要停机,满足现场不能停机的要求。
(2)缺点价格比较高,使用复杂。
电机由变频运行时向工频运行转换,自动旁路开关一般也不会有问题。
但有一点例外,即如果是由于电机及其负载的故障引起变频器停机,再次旁路,有可能使故障扩大化。
高压变频器旁路一次系统设计方案高压变频器旁路一次系统设计方案在现代工业中,高压变频器逐渐成为很多机械系统中的重要组成部分。
它可以对电机的电压和电流进行精确的控制,实现电机的启停、转速调节和转向等功能。
由于高压变频器具有应用范围广、性能优异、节能减排等优点,因此被广泛应用于冶金、化工、电力、矿山等行业。
但是,高压变频器在正常工作时可能会发生故障,这将会给生产带来不良的影响。
为此,设计一套高效可靠的旁路一次系统,对于确保设备的正常运行和减少生产事故具有重要意义。
1. 旁路一次系统的原理旁路一次系统是指在高压变频器出现故障时,自动将变频器旁路,并使其绕过电机供电。
由于旁路一次系统采用的是电机正常启动电源,所以它可以保证电机继续运行,从而避免生产事故的发生。
在变频器恢复正常运行后,系统会自动将电机重新连接到高压变频器上,从而保持系统的连续性。
2. 旁路一次系统的设计旁路一次系统的设计应该满足以下几个基本要求:(1)可靠性高。
旁路一次系统需要具备很高的可靠性,以保证在变频器故障时能够及时而准确地进行旁路操作,而不会造成电机的损坏。
(2)操作简便。
操作人员可以通过简单的按键或开关将旁路一次系统启动或关闭。
同时,要求系统设计要充分考虑人机工程学,使操作人员可以方便且准确地进行操作。
(3)安全性高。
旁路一次系统的设计需要考虑到设备的安全性,确保操作过程中不会对设备和人员造成伤害。
根据上述要求,旁路一次系统的设计应该包含以下几个方面:(1)电源供应。
由于系统需要对电机进行供电,因此需要为旁路一次系统提供独立的电源控制。
(2)信号采集。
旁路一次系统需要接收变频器中的故障信号,并通过相应的处理,发送旁路信号发出旁路命令。
(3)旁路控制。
当接收到故障信号后,旁路一次系统需要启动旁路控制程序,并向电机提供正常电源供应,完成旁路操作。
(4)旁路恢复。
当变频器恢复正常运行时,旁路一次系统需要自动向电机提供变频器的供电,并恢复工作状态。
技术部分、GVF10kV 高压变频器1.1系统组成GVF 10kV变频调速系统由旁路柜(可选)、移相变压器柜(必选)、逆变器柜(必选)、控制柜(必选)组成。
GVF变频器为高—高电压源,交—直—交, SPW型变频器。
全套系统见图1-1。
图1-1 GVF 10kV高压变频器组成旁路柜:旁路柜采用手动一拖一方案(根据用户需要可定做自动旁路方案)。
手动旁路柜主要功能是当变频器需要检修维护时,通过倒闸操作,使得变频器退出运行,实现电机的工频启动运行。
旁路方案如图1-2,旁路柜主要由三个刀闸组成,包括输入刀闸QS1、输出刀闸QS2、旁路刀闸QS3。
QS1、QS2、QS3三个刀闸换成真空接触,可以实现自动转换。
当系统工频运行时,QS3闭合,QS1和QS2打开。
当系统变频运行时,QS1 和QS2闭合,QS3打开。
QS1与QS3有机械互锁。
各隔离开关都预留辅助接点。
旁路柜内置防浪涌吸收装置,对系统进行浪涌保护。
图1-2手动旁路柜方案移相变压器柜:由输入变压器、温控仪和风冷系统组成。
输入变压器为54脉冲移相干式变压器(以下简称移相变压器),由其为逆变器的各个功率单元提供整流用电源。
逆变器柜:内置27个结构相同的单相逆变功率单元(以下简称功率单元),这些功率单元按每相9个的结构放置在柜体内,由高压电缆和高压铜排连接。
逆变器柜内布置有风冷系统。
控制柜:内置有主控板、人机界面、UPS、低压电器等控制及操作器件。
1.2系统技术方案变频器工作原理如图1-3,采用多个低压的功率单元串联实现高压输出,输出侧采用多电平移相正弦PWMI制,输入降压变压器采用移相方式,可有效消除装置对电网的谐波污染。
串联型多电平高压变频器采用多个独立的低压串联实现高压输出,包含移相变压器和功率单元两大部分。
图1-3变频器工作原理图移相变压器采用多重化设计,将网侧的高压变换成二次侧的多组低电压(本工程为27组),二次侧绕组在绕制时采用延边三角形接法,相互之间形成固定相位差,产生多脉冲整流方式,使得变压器二次侧各绕组(功率单元的输入)的谐波电流相互抵消,不反映到高压侧,从而有效改善电网的电流波形,基本上消除了变频器对电网的谐波污染。
高压变频器的原理及应用前言高压变频器是一种电器设备,用于将电源的交流电转换成可调节频率和电压的交流电。
它在工业领域有着广泛的应用,可以用于驱动各种高压电机,实现节能和精确控制。
本文将介绍高压变频器的原理和应用。
高压变频器的原理高压变频器的原理主要包括三个方面:整流、逆变和PWM调制。
1.整流:高压变频器首先对输入的交流电进行整流,将交流电转换为直流电。
这一步通常使用整流桥电路完成,包括多个可控整流器。
整流过程中,可以通过控制整流器的导通和关断时机,实现对输出直流电电压的控制。
2.逆变:经过整流后得到的直流电,需要进一步经过逆变处理,将其转换为可调频率和电压的交流电。
逆变主要通过逆变器完成,逆变器是由多个功率开关器件组成的,如晶闸管、IGBT等。
逆变器将直流电转换为高频交流电,在输出电压上通过调节逆变器的开关器件通断时机来实现。
3.PWM调制:高压变频器通过PWM(脉宽调制)技术对逆变器的开关器件进行控制,从而实现对输出电流、电压的精确控制。
PWM调制会根据输入的控制信号生成一系列脉冲宽度可调的波形,用于控制逆变器开关器件的导通和关断。
通过调节这些脉冲的脉宽和频率,可以控制输出电压和频率的大小。
常用的PWM调制方式有SVM(空间矢量调制)和SPWM(正弦波脉宽调制)。
高压变频器的应用高压变频器在工业领域的应用十分广泛,主要用于电机的调速控制和节能改造。
以下是一些典型的应用场景:1.水泵控制:高压变频器可以用于水泵的调速控制,根据需要调整输出频率和电压,以实现对水泵的精确控制。
例如,在供水系统中,可以根据不同的需求调整水泵的工作频率和电压,节约能源和延长设备寿命。
2.风机控制:高压变频器广泛应用于工业风机的调速控制。
通过调整输出频率和电压,可以灵活地控制风机的转速和风量。
这对于一些需要根据工艺需求随时调整风机转速的场合非常有用,比如空调系统、通风系统等。
3.压缩机控制:高压变频器也常用于压缩机的调速控制。
高压变频器旁路柜设计原理
高压开关是指用于电力系统发电、输电、配电、电能转换和消耗中起通断、控制或保护等作用,电压等级在3.6kV~550kV的电器产品,主要包括高压断路器、高压隔离开关与接地开关、高压负荷开关、高压自动重合与分段器,高压操作机构、高压防爆配电装置和高压开关柜等几大类。
高压开关制造业是输变电设备制造业的重要组成部分,在整个电力工业中占有非常重要的地位。
高压变频器旁路柜使电动机起动的全过程可预测、可调整、可控制。
起动电流小而平滑、无冲击,显著降低电网压降,保证电网的可靠运行,有效的保护了电动机及被其起动的传动机械。
具备完善的报警提示功能和电动机保护功能,采用PLC控制,可靠性高。
在标准型的基础上,增加电流闭环自动控制功能。
即在电动机起动过程中自动检测电动机电流,同时根据电流大小自动调节控制装置,使电动机起动达到最佳化。
设计特性:
变频控制柜是由内装的高性能通用或专用系列变频器加外围的开关控制,数据采集,继电保护,人机对话等电气元件和柜体组成的,是对三相交流电动机(包括风机,泵)进行变频调速控制的交流拖动装置和节能装置。
变频控制柜采用封闭柜式结构,防护等级一般为IP20,IP21,IP30等,采用型材骨架,表面涂敷喷塑,且容易并柜安装,上端可配置母线,变频器面板外引至柜体外表可直接操作,根据需要可设置就地和远程控制或工控机、PLC、DCS、可编程操作终端人机界面通讯控制,具有很直观的各种显示功能
变频器是变频柜的专用配套产品,其变频调速功能及主要技术参数取决于内设变频器的规格型号和外围的配置状况。
变频器柜根据用途的不同和功能的各异其差别也很大,一般根据工矿要求定制.。