风力发电机变桨系统的故障分析与处理
- 格式:docx
- 大小:28.12 KB
- 文档页数:4
风电场风机变桨系统故障分析与措施摘要:随着我国社会经济的发展,风力发电作为新能源利用的典范,近年来得到了迅速的发展,但是由于风电场设备相对复杂,因此风电场各项设备抗损坏能力较差,特别是风电场风机变桨系统的故障就是一个表现突出的问题。
本文对风力发电电动变桨和液压变桨常见故障进行了分析,并给出了解决问题的意见和建议。
关键词:风电场风机;系统故障;分析与措施引言我国社会经济的快速发展对于电力的生产提出了较高的要求,在传统能源相对不足的背景下,风电场的电力的生产可以满足社会对电力资源的需求,这也给风机变桨系统的安全正常运行带来了较大的压力。
1.风电场风机电动变桨系统常见的故障分析与处理(一)故障分析1.变桨电滑环故障分析在风力发电中,无论是风速过大还是过小,都会对供电机的工作产生不利的影响,但是我们使用变桨滑环之后,就能够通过信号指令让桨叶自动调整,使得桨叶不稳定的问题得到了很好的解决。
但实际具体操作中,风机变桨是在轮毂不间断旋转的情况下实行的,系统在离心力和交变负载的影响下,各个部件都承受了较大的脉动负荷,这就大大提高了故障的发生概率,常见的故障诸如接线不牢固和接触不良等问题。
2.后备电源故障分析后备电源在具体的运用中,也会出现一些不容忽视的问题,从而导致在风机控制系统紧急情况下不能正常的工作。
风机控制系统后备电源主要有铅酸蓄电池和超级电容两种形式,因为风电系统工作在恶劣的环境中,温度和湿度变化较大,外界的这些因素会对电池寿命和性能产生较大的影响,严重的还会造成蓄电池释放能效降低,这样一旦系统出现故障,后备电源的作用也无法发挥出来,从而造成整个设备陷入瘫痪。
3.变桨电气回路故障分析变频装置控制器是桨叶驱动程序运行的基础,如果变频装置损坏、电机运行功率不达标和接线不牢固,变桨电气回路就会发生故障,控制器出现故障时,主要表现为内部电气元件损坏失失效,关触点接触不良、控制器的输出信号不正常,当整个系统出现故障时,就会造成桨叶停止运行。
1.5MW风机变桨系统故障分析及具体措施摘要风力发电作为现阶段电力能源供应系统的重要的构成部分,发电机组通常需要在高温、沙尘等恶劣环境下运行,风向、风速、风力与温度环境等特别容易受外力因素影响,所以其设计具有随机性、多变性与间歇性等方面的优点,风机系统在交变负载的影响下,容易出现故障问题。
变桨系统是风力发电的重要技术,分为液压变桨与电动变桨等形式,液压变桨系统的常见问题包括超限故障、不同步故障等;电动变桨运行系统主要的故障问题为电气回路、变桨电滑环以及后备电源等出现损坏,检修与管理人员应结合具体故障原因,采取针对性的处理方式。
1.变桨系统日常的巡检与维护1.1变桨轴承的基础保养(1)检查变桨轴承表面清洁度。
(2)检查变桨轴承表面防腐涂层。
(3)检查变桨轴承齿面情况。
(4)按运行规定定期润滑变桨轴承。
(5)定期紧固变桨轴承螺栓。
1.2变桨驱动电机的基础保养(1)定期检查变桨驱动器装置表面清洁度。
(2)定期检查变桨驱动器装置防腐涂层。
(3)定期检查变桨电机是否存在过热、有异常噪音等情况。
(4)定期更换变桨减速器齿轮箱油。
(5)定期紧固变桨驱动器螺栓。
(6)检查变桨电机接线是否存在老化1.3变桨限位开关的基础保养(1)定期检查限位开关灵敏性,是否存在松动现象。
(2)定期检查限位开关接线是否良好,并对其进行触发测试(3)定期紧固限位开关螺栓。
1.4变桨主控柜和超级电容柜的基础保养(1)定期检查变桨主控柜与轮毂之间的缓冲器是否存在磨损现象。
(2)定期检查变桨主控柜与动力电缆接头是否牢固、磨,电缆桥架是否变形、断裂。
(3)定期紧固控制柜与支架的螺栓。
(4)定期检测超级电容电压是否正常。
(5)定期检查变桨控制柜风扇是否正常运行,滤网有无堵塞。
(6)定期检查防雷模块接线有无松动,是否存在放电灼伤痕迹。
(7)定期检查控制柜门锁是否完好。
2.变桨类故障分析及处理方法2.1变桨角度不等同:由于B编码器是机械凸轮结构,与叶片的变桨齿轮啮合,精度不高且会不断磨损,在有大晃动时有可能产生较大偏差,因此先复位,排除故障的偶然因素;如果反复报这个故障,进轮毂检查A、B编码器,检查的步骤是先看编码器接线与插头,若插头松动,拧紧后可以手动变桨观察编码器数值的变化是否一致,若有数值不变或无规律变化,检查线是否有断线的情况。
技术直流变桨电机常见故障分析及主动维护技术方案直流变桨电机常见故障分析及主动维护技术方案北京合信锐风新能源有限公司文:李金龙(技术部部长)在大型风力发电机组中,直流变桨系统在系统出现故障时,可以利用直流备电进行紧急顺桨,提供高可靠性紧急停机保护,得到了不少变桨系统厂家的青睐。
在早期的1.5MW风力机组中,LUST变桨(MOOG)、SSB变桨、能建变桨均采用直流变桨电机。
随着运行年限的增加,诸多风电场直流变桨系统出现故障频发问题,给运行维护带来很多不便,增加了运维成本。
下面结合我公司变桨系统主动维护案例经验,介绍直流变桨电机维护注意事项:1、直流变桨系统原理介绍直流电机的结构应由定子和转子两大部分组成。
直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。
运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。
图1-1:直流电机结构图直流电动机的工作原理就是靠换向器配合电刷的换向作用,使之从电刷端引入的直流电动势,在电枢线圈产生交变电动势,从而产生旋转电磁转矩。
2、直流电机常见技术问题(1)换向器打火正常情况下电刷与换向器之间为“滑触”结构,在换相时会产生轻微电火花,不会对设备产生危害。
如果换向器表面严重磨损,电刷磨损形成严重积碳,刷握压力异常,电刷位置不在物理中行线上等异常状态时,将引起严重电火花,造成换向器进一步损坏,严重情况下引起换向器绝缘击穿损坏,造成整个电机损坏。
图2-1 换向器放电示意图(2)电枢绕组击穿电枢绕组、励磁绕发生绕组短路击穿,绕组烧毁故障。
通过对电机拆机发现,这种绕组烧毁情况,一般由于电机长期过载高温,引起绕组绝缘层损坏。
电机过载原因包括电磁刹车不能正常打开,变桨系统机械卡死等故障。
图2-2 励磁绕组绝缘击穿图(3)其他故障在变桨系统中报出速度比较、速度超限故障,一般为测速电机或测速编码器损坏,测速电机与测速编码器器都是高精度电子器件,运行中需要注意对harting插头,以及编码器密封圈进行紧固与检查,保证接触可靠。
变桨系统故障分析首先,机械故障是变桨系统故障的主要原因之一、由于变桨机构是一个复杂的机械系统,其运行过程中受到很大的应力和振动,如果组装不当或者部件磨损,就会导致故障。
例如,螺旋桨的轴承可能会因为长时间运行而磨损,从而导致桨叶无法正常旋转;桨叶的连接部分也可能会因为螺丝松动或者断裂而导致故障。
其次,电气故障也是变桨系统故障的常见原因。
电气故障可以包括电缆损坏、插头松动、电机过热等问题。
这些故障可以导致电能无法正常传输或者电动机无法启动,从而影响桨叶的运行。
此外,由于变桨系统中涉及到的电气设备众多,电缆连接错误或者接触不良也可能导致故障。
最后,控制系统故障也是变桨系统故障的一个重要原因。
现代风能发电系统中都配备了先进的控制系统,这些控制系统能够调整桨叶的角度以适应不同的风速和方向。
然而,如果控制系统出现故障,就会导致桨叶无法及时调整角度。
例如,控制系统中的传感器可能出现故障,导致无法准确感知风速和方向,从而不能正确地控制桨叶的运动。
针对变桨系统故障,我们可以采取以下措施来进行分析和解决:首先,可以通过检查和维护机械部件来排除机械故障的可能性。
例如,定期检查轴承的磨损情况,更换磨损部件,确保变桨机构的正常运转。
其次,对电气部件进行定期检查和维护,防止电气故障发生。
例如,检查和清洁电缆,确保连接牢固;定期检查电机的温度,防止过热等问题。
最后,对控制系统进行检查和维护,确保其正常工作。
例如,定期检查传感器的准确性,确保其能够准确感知风速和方向;检查控制系统的软件程序,确保其无错误。
总之,变桨系统故障是风能发电系统中常见的问题,其原因可能是机械故障、电气故障和控制系统故障等。
通过定期检查和维护机械、电气和控制系统,我们可以及时发现故障并采取相应的措施进行修复,以确保风能发电系统的正常运行。
风电场风机变桨系统故障分析及具体措施摘要:风力发电作为现阶段电力能源供应系统的重要构成,发电机组通常需要在复杂的环境下运行,风向、风速、风力与温度环境等容易受不确定因素影响,具有随机性、多变性与间歇性等方面的特点,风机系统在交变负载的影响下,容易出现故障问题。
变桨系统是风力发电的重要技术,分为液压变桨与电动变桨等形式,液压变桨系统的常见问题包括超限故障、不同步故障等;电动变桨运行系统主要的故障问题为电气回路、变桨电滑环以及后备电源等出现损坏,技术与管理人员应结合具体故障原因,采取针对性的处理手段。
关键词:超限故障;运行不同步;电气回路现阶段,我国能源消耗量逐步提高,风电场的电力生产与供应需求不断提升,风机系统的运行压力大幅度增加,为保证电力运行系统的安全、稳定运行,风电场应在加强变桨系统状态监测的基础上,做好故障排查与处理工作。
由于变桨系统处于封闭的环境中,因此在运行监测时,故障表现不明显,需要通过总控制系统对系统运行异常数据进行报错,检测与维修技术难度相对较大。
基于此,本文从现阶段液压与电动变桨系统的常见故障表现与原因方面出发,对不同故障问题处理对策进行系统分析。
一、液压电机变桨系统中的主要故障及处理对策1、变桨系统超限故障情况的分析与处理液压变桨在运行过程中容易出现超限故障,最常见故障点为桨叶位置传感器损坏,造成测量电压超出允许值范围,从而造成叶片位置检测错误。
一旦桨叶位置的传感器出现损坏情况,传感器会发出超过正常标准的电压信号,信号传输到伺服系统中,反馈到主控制平台,平台根据故障信息报出超限情况。
桨叶的位置传感装置是控制变桨系统的重要装置,如果装置出现故障,不仅会增加实际变桨角度与理论角度的误差值,还会在一定程度上降低风机运行质效,降低系统发电的稳定性。
在进行故障检测与处理的过程中,应先利用程序控制功能对位置传感器进行状态检测,将桨叶的角度数据转换为可测量的电压信号。
若不在正常范围内,通过桨叶位置传感器配套调整工具,将桨叶角度正负极限值调至规定电压范围。
风电场风机变桨系统故障分析与措施摘要:虽然市场经济的蓬勃发展给国家提供了很多的机会,但是同时也造成了部分现象,特别是空气污染和能源浪费现象比较严重,同时由于国家能源资源一直存在着相对匮乏的问题,因此国家有关单位也开始加大了对于洁净能源的研究发展,而利用风能发电就是其中一个重点工作,不过因为风电场的装置一般都比较复杂,而且技术难度比较大,也就增加了风电场内各种装置的破损情况,特别是在风电场风机变桨系统中发生故障的情况也比较多,文章将对风电场风机变桨系统的常见故障进行剖析,并给出了具体的改善方案。
关键词:风电场风机;变桨系统故障;措施引言:近几年风力发电系统得到了快速的发展,为缓解我国资源短缺问题提供了大力支持,而风电场也逐渐在全国各地得到了大力推广及建设,为缓解我国的电力资源紧缺问题作出了突出贡献。
但由于工程技术人员的水平问题,以及政府对国家部门的支持力度不足,便会导致了风电场在建设过程中存在着一定的安全隐患,这也就加大了风电场各项设备在运行过程中出现故障的可能性,尤其是风机以及变桨系统出现问题的几率。
一、风电场风机变桨系统简述风电变桨装置主要指利用驾驭设备和驱动装置来调节风机轮叶桨距角尺寸、叶片气动特性等进行调节的装置[1]。
此外,组成变桨装置的小单元还很多,例如,变桨马达、变桨小齿轮、变桨滚动轴承等所构成。
当风机启动工作后,就会对整个变桨系统进行调节工作,同时变桨角也将从顺桨的90°转变到了15°,同时也随着整个变桨设备的运行速度逐步地往减小。
但如果在此过程中,变桨角随着风机频率而进行调节,就必须对整个变桨设备进行同步调节,以适应系统工作的需要。
二、风电场风机及变桨装置的常见故障解析(一)变频器问题电机在风机变桨过程中主要通过控制变桨电机的速度,以便调节其转速达到整个系统工作的需要,使其所产生的能耗减至最低,也能够通过控制电机的转速而达到节能减排的效果,同时还可以进行恒压、恒流的控制。
风电机组电气变桨系统常见故障浅析摘要:变桨系统是风力发电机组中重要的组成部分,它主要根据风速的大小自动进行调整机组叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速,并且同时利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机气动停机。
变桨系统能否正常运行,直接影响到机组的安全稳定,对机组安全运行起到至关重要的作用。
本文主要阐述了目前风力发电机组采用较多的SSB变桨系统结构、常见故障及分析方法,针对由于变桨系统缺陷导致机组超速的防范措施。
关键词:风电机组;变桨系统;故障;浅析1引言随着风电装机容量迅速扩大,特别是电动变桨技术在变桨距风电机组中广泛被采用,为我们对电动变桨系统的结构认识、运行维护以及机组的安全运行积累了实践经验。
但是,随着风电机组运行时间的加长,变桨系统缺陷也日益表现出来。
因此,风电场运维人员全面了解变桨系统的结构特点,掌握变桨系统常见故障及处理方法,制定有效的防范措施,对风电机组安全稳定运行至关重要。
2 SSB变桨系统介绍SSB变桨控制系统由七个柜体组成:三个轴控柜,三个蓄电池柜和一个中控柜,他们不仅实现风机启动和运行时的桨距调节,而且能够在事故情况下担负起安全保护作用,实现叶片顺桨操作,具备变桨系统的故障诊断、状态监测、故障状态下的安全复位功能,同时还完成了变桨系统的雷电保护控制、电池管理等功能,确保了系统的高可靠性。
3 SSB变桨系统功能实现电动变桨系统不仅实现风机启动和运行时的桨距调节,还实现了风力发电机组的气动刹车功能。
在正常停机和快速停机的情况下,变桨系统将叶片回桨到89°位置,使叶轮转速逐渐下降到停转。
在三级故障或安全链断开的情况下,在变桨系统紧急停机,每一个叶片分别由各自的蓄电池控制完成顺桨操作,即使叶片碰到91°限位开关,利用叶片的气动刹车,起到安全保护作用。
4 SSB变桨系统故障分析及处理4.1变桨角度有差异原因分析:叶片角度不符合要求,变桨电机上的旋转编码器(A编码器)得到的叶片角度将与叶片角度计数器(B编码器)得到的叶片角度作对比,两者如果相差太大,超过系统设定值,将报错。
风力发电机变桨系统的故障分析与处理
摘要:随着我国科学技术的不断发展,对能源的需求越来越高,风力发电作为新能源之一,具有发电量大的环境污染小等特点被广泛使用,但是风力发电机组变桨系统故障一直是风力发电的难点之一,本文通过研究风力发电机组变桨系统故障分析,希望能推动我国新能源不断发展。
关键词:风力发电机;变桨系统;故障分析与处理
引言
风力发电机变桨系统是风力发电机组控制系统的重要组成部分之一,风力发动机变桨系统对风力发电站整体安全稳定的运营有着非常重要的作用,当外部环境发生变化时,风力发电机变桨系统可以通过传感器给出的数据改变桨叶位、电源等控制系统,保证风力发电机,每一片叶片都能达到最佳的一个状态,使其最大化地利用风力,保证风力发电机组输出的发电功率十分稳定。
一、风电机组变桨系统的作用
风电机组变桨系统在整个风电机组当中负责实时调整叶片转动的角度,确保风电机组的主轴转速稳定。
风电机组变桨系统能够非常精确地将风电机的转速在不同的风速下稳定为一个稳定的转速,确保供电的稳定。
当风电机组变桨系统发生故障的时候,会有整机采集各个系统的故障信息及结合机组的实际情况,判断风电机组变桨系统故障的等级,根据之前确定好的预案,选择最优的办法处置故障。
如果故障较严重,就需要执行安全链断开保护。
此时,风电机组将会利用后备电源,为风电机变桨系统供电,快速地将桨叶转到最安全的位置,保证风电机组不会受到严重的损害。
如果风电机组变桨系统遇到主电网瞬间失压或者给风电机组供电的电压跌落到一定范围内,风电机组变桨系统将会通过快速运转最大程
度上,减少由于风转交互作用引起风电机组整机的振动,将由于电压对整体风电机组的影响减少到最小程度。
二、风力发电机变桨系统常见的故障分析与处理
1.变桨角度的差异
在风电机组运行的过程中,如果三个叶片的变桨角度有差异,就容易对风电机组的稳定运行产生巨大影响。
风力发电机变桨系统会根据两个叶片角度之间的传感器得到的叶片角度作为参考,如果两者的数据相差太大,就会上报变桨角度错误。
由于检测变桨角度的编码器是机械涡轮结构,这种结构的导致检测的精度不高,并且会随着风电机组的运行不断的磨损,在长时间运行之后,这种机械凸轮结构在风速较大的情况下,会产生较大误差。
如果风机变桨,系统报错变桨角度时,应当首先排除偶然故障的情况,再运行一段时间后,如果风力发电机变桨系统依然报故障,应当停机检查,首先应当检查检测器的插头与接线。
如果供电系统或传输系统出现问题,那么只要检查线路是否有断线情况即可[1]。
2.叶片没有到达限位开关动作设定值
大部分的叶片设定在91度的时候,触发限位开关,如果风电机组在运行的过程中没有触发,就意味着是叶片没有达到91度角度或者存在误差,此时风力发电机变桨系统中就会报此故障。
如果在风电机系统中报此故障时,应当派遣工作人员立即检查叶片的位置,采用专业的工具测量叶片的角度,如果是限位开关长时间运行之后出现检测部件松动的情况下,就需要有一名工作人员进入叶片调试。
3.变桨电机温度过高
如果风力发电机变桨系统报故障为变桨电机温度过高,最常见的原因就是变桨电机温度高或是变桨电机电流超过最大值,这种情况主要是由于变桨电机温度
过高或者是变桨电机的线圈发热造成的。
这时候就要格外注意电机的内部是否出现短路现象或者外载负荷是否过大,或是通过专业设备检查过流是否异常。
在变桨电机温度过高时,应当首先检查是否是变桨电机的外部原因,例如变桨齿轮箱卡死、有异物等情况,如果变桨电机外部一切正常,就需要检查是否是因为变桨电机的电气回路出现故障导致温度高。
最常见的电气故障是电气刹车没有被打开。
电气刹车没有被打开的原因是由于电气刹车的回路断线或者是接触器出现卡涩等情况。
若是变桨电机的电气电路也正常,就需要检查电机内部是否出现绝缘老化,或者电机内部被破坏等原因[2]。
4.变桨控制通讯出现故障
变桨控制通讯出现故障的主要原因是轮毂控制器和主控器之间的通讯出现中断。
若是轮毂没有发生故障,就需要仔细检查信号线是否出现故障。
大多数的信号线故障都是由于信号线从主机到滑轮,从滑轮进入轮毂这一路线中,出现了干扰断线、插头损坏等情况。
若是出现滑轮接触不良、通讯模板损坏等问题也会造成信号线故障。
当变桨控制通讯出现故障时,可以用万能表测量中控器的电压,若是中控器进线端电压为230v左右,而出线端的电压是24v左右,那么就说明中控器没有出现故障。
工作人员需要继续检查通讯线路是否出现回路故障。
可以使用万能表一点一点的确定故障位置。
如果出现断路情况,就要立即启用备用线,此时就可以解决故障。
若是故障依然无法排除,就需要继续检查滑环,大部分滑环出现故障,都是由于齿轮箱漏油,造成滑环内进油。
如果滑环和插针之间形成了油膜,就会在一定程度上导致变桨通讯信号时有时无。
此时,将滑轮清洗过后故障即可消除[3]。
5 .变桨失效
变桨失效的原因是由于机箱控制柜的控制器无法根据规定转速调整桨叶的位置。
由于桨叶位置不能被及时调整,风轮无法按照规定值转动。
非常容易造成超速误报,继而发生停机,造成重大经济损失。
机箱柜控制器的信号,如果不能及时传达给变桨控制器,主要是由于信号故障造成的。
主要检查信号线、滑轮信号、端子线路是否发生故障,用万能表等专业设备检查电压。
如果这些地方有电压,那么继续检查下一段线路,通过分段的检查,可以逐步逐层的排除故障。
三、结束语
风机变桨控制系统是风力发电机组的重要组成部分,能够在最大程度上确保风力发电机组稳定的输出电力,本文通过研究风力发电机组变桨系统容易出现的故障,探讨这些故障常用的解决办法,希望能够推进我国新能源的发展。
参考文献
[1] 陈茜, 李录平, 刘瑞,等. 大功率风电机组变桨系统故障诊断方法与技术研究进展[J]. 电站系统工程, 2020, v.36;No.193(01):5-11.
[2] 高峰, 邓星星, 刘强,等. 大型风电机组电动变桨系统变桨角度故障诊断[J]. 太阳能学报, 2020, v.41(05):104-112.
[3] 许炳华. 关于风力发电机变桨系统轮毂漏油技改的研究[J]. 能源与环境, 2019, 000(003):90-91.。