最新版初中数学教案《绝对值》精品教案(2022年创作)
- 格式:doc
- 大小:44.00 KB
- 文档页数:7
七年级数学《绝对值》教案优秀3篇作为一名人民教师,时常需要用到教案,教案有利于教学水平的提高,有助于教研活动的开展。
那么教案应该怎么写才合适呢?的精心为您带来了3篇《七年级数学《绝对值》教案》,可以帮助到您,就是最大的乐趣哦。
数学《绝对值》教案篇一一、教学目标1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法目标:(1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;(3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。
通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:1、教师检查组长学案学习情况,组长检查组员学案学习情况。
(约5分钟)2.在组长的组织下进行讨论、交流。
(约5分钟)3、小组分任务展示。
(约25分钟)4、达标检测。
(约5分钟)5、总结(约5分钟)四、小组对学案进行分任务展示(一)、温故知新:前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?(二)小组合作交流,探究新知1、观察下图,回答问题: (五组完成)大象距原点多远?两只小狗分别距原点多远?归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。
一、课题 §2.3绝对值〔1〕 二、教学目标1、使学生掌握有理数的绝对值概念及表示方法;2、使学生熟练掌握有理数绝对值的求法和有关的简单计算;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力三、教学重点和难点正确理解绝对值的概念四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程〔一〕、从学生原有的认知结构提出问题 1、以下各数中: +7,-2,31,-83,0,+001,-52,121,哪些是正数?哪些是负数?哪些是非负数?2、什么叫做数轴?画一条数轴,并在数轴上标出以下各数: -3,4,0,3,-15,-4,23,23、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?4、怎样表示一个数的相反数? 〔二〕、师生共同研究形成绝对值概念例1 两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米这样,利用有理数就可以明确表示每辆汽车在公路上的位置了我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的绝对值,4叫做-4的绝对值例2 两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是101米,乙侧得的结果是098米甲测量的差额即多出的数记作+001米,乙测量的差额即减少的数记作-002米如果不计测量结果是多出或减少,只考虑测量误差,那么他们测量的误差分别是001和002这里所说的测量误差也就是测量结果所多出来或减少了的数+001和-002和7-002的绝对值如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0),自然这个差额0的绝以值是0现在我们撇开例题的实际意义来研究有理数的绝对值,那么,有+5的绝对值是5,在数轴上表示+5的点到原点的距离是5; -4的绝对值是4,在数轴上表示-4的点到原点的距离是4; +001的绝对值是001,在数轴上表示+001的点到原点的距离是001; -002的绝对值是002,在数轴上表示-002的点它到原点的距离是002;0的绝对值是0,说明它到原点的距离是0一般地,一个数a 的绝对值就是数轴上表示a 的点到原点的距离 为了方便,我们用一种符号来表示一个数的绝对值约定在一个数的两旁各画一条竖线来表示这个数的绝对值如+5的绝对值记作+5,显然有+5=5;-002的绝对值记作-002,显然有-002=002;0的绝对值记作0,也就是0=0a 的绝对值记作a ,(提醒学生a 可以是正数,也可以是负数或0)例3 利用数轴求5,32,7,-2,-71,-05的绝对值由例3学生自己归纳出: 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0这也是绝对值的代数定义把绝对值的代数定义用数学符号语言如何表达?把文字表达语言变换成数学符号语言,这是一个比拟困难的问题,教师应帮助学生完成这一步1、用a 表示一个数,如何表示a 是正数,a 是负数,a 是0? 由有理数大小比拟可以知道:a 是正数:a >0;a 是负数:a <0;a 是0:a=0 2、怎样表示a 的本身,a 的相反数? a 的本身是自然数还是a.a 的相反数为-a. 现在可以把绝对值的代数定义表示成 如果a >0,那么a =a ;如果a <0,那么a =-a ;如果a=0,那么a =0由绝对值的代数定义,我们可以很方便地求数的绝对值了例4 求8,-8,41,-41,0,6,-π,π-5的绝对值〔三〕、课堂练习 1、以下哪些数是正数? -2,31+,3-,0,-2+,-〔-2〕,-2-2、在括号里填写适当的数:5.3-=( ); 21+=( ); -5-=( ); -3+=( ); ()=1,()=0;-()=-23、计算以下各题:|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|-21|×|-31|;|-21|÷|-2|;21÷|-21|。
3绝对值【知识与技能】1.借助数轴,初步理解相反数,绝对值的概念,能求一个数的相反数和绝对值.2.会利用绝对值比较两个负数的大小.【过程与方法】借助数轴,认识相反数和绝对值,通过应用相反数和绝对值解决实际问题,体会相反数、绝对值的意义和作用,培养学生的数感和符号感.【情感态度】结合本课教学特点,向学生进行热爱生活教育和美育渗透,激发学生观察、探究、发现数学问题的兴趣.【教学重点】会求一个数的相反数和绝对值,会利用绝对值比较两个负数的大小.【教学难点】会利用绝对值比较两个负数(尤其是两个负分数)的大小.一、情境导入,初步认识“南辕北辙”这个成语讲的是古代某人要去南方,却向北走了起来,有人预言他无法到达目的地,他却说“我的马很快,车的质量也很好”,请问他能到达目的地吗?1.“马很快,车质量好”会出现什么结果?2.同学们能用数轴来描述这个成语吗?【教学说明】从学生非常熟悉的“南辕北辙”这个成语引入,再让学生用数轴来描述这个成语,有利于学生从直观形象上认识相反数.二、思考探究,获取新知问题1 3与-3有什么相同点?32与-32,5与-5呢?你还能列举两个这样的数吗?你发现了什么?由此你能得到什么结论?【教学说明】由学生观察、思考,再与同伴进行交流,得出相反数的概念,教师加以规范.【归纳结论】如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数(代数意义).注意:0的相反数是0.问题2将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?【教学说明】学生动手操作、观察、分析,再与同伴进行交流,得出结论.【归纳结论】在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.(几何意义)在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如,+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.问:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值有什么关系?【教学说明】使学生能准确地理解绝对值的意义和求法.问题3 求下列各数的绝对值:-21,49,0,-7.8,-21.【教学说明】学生独立完成,再与同伴进行交流,进一步掌握绝对值的求法.问:一个数的绝对值与这个数有什么关系?通过这个问题我们能得到绝对值的性质.【归纳结论】正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.用字母表示为:a (a>0)|a|0 (a=0)-a (a<0)问题4(1)在数轴上表示下列各数,并比较它们的大小:-1.5,-3,-1,-5.(2)求出(1)中各数的绝对值,并比较它们的大小;(3)你发现了什么?【教学说明】先回顾前面学习的利用数轴比较有理数的大小,再利用绝对值比较它们的大小,有利于学生掌握不同的方法.【归纳结论】两个负数比较大小,绝对值大的反而小.问题5比较下列每组数的大小:(1)-1和-5;(2)-56和-2.7.【教学说明】学生独立完成,有利于学生掌握所学新知. 三、运用新知,深化理解,绝对值是.个,分别是.3.用>、<、=号填空.-(-5)0,-(+3)0,|+8||-8|,-(-5)-(-8).4.在数轴上距离原点2个单位长度的点表示什么数?5.在数轴上表示下列各数及其相反数,并求它们的绝对值:-32,6,-3.6.比较下列各组数的大小:(1)-110,-27;(2)-0.5,-|23|;(3)0,| -23|;(4)|-7|,|7|.7.出租车司机小李某天下午营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km):+15,-3,+14,-1,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1L/km,这天下午汽车共耗油多少升?【教学说明】学生自主完成,检测对相反数、绝对值有关知识的掌握情况,加深对新学知识的理解.对学生的疑惑及时指导,并进行强化.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.5 2. 5 ±2 ±1 03.><= <4. ±25.|-32|=32|6|=6 |-3|=36.(1)-110>-27(2)-0.5>-2 3(3)0<|-2 3 |(4)|-7|=|7|7.(1)小李在送最后一名乘客时行车里程最远,是26km;(2)总耗油量为:×(|+15|+|-3|+|+14|+|-1|+|+10|+|+4|+|-26|)=7.3(L).四、师生互动,课堂小结1.师生共同回顾相反数的意义,绝对值的定义和性质等知识点.2.通过这节课的学习,你掌握了哪些新知识?请与同伴交流.【教学说明】教师引导学生回顾知识点进行知识的提炼和归纳.【板书设计】1.布置作业:从教材“”中选取.2.完成练习册中本课时的相应作业.本节课借助数轴来理解相反数、绝对值的概念,通过类比、观察、思考培养学生动手、动脑习惯,加深对所学知识的认识.§2.3 轴对称图形【学习目标】1、能够认识轴对称图形,并能找出对称轴2、知道轴对称与轴对称图形的区别与联系3、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。
七年级数学《绝对值》教案教学内容:P11-12教学重点:绝对值的意义,求一个数的绝对值。
教学难点:绝对值的概念,求一个数的绝对值。
教学目标:1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
一、板书课题,揭示目标1.今天,我们一起来学习1.2.3绝对值。
2.学习目标(1)能借助数轴,初步理解绝对值的概念,能求一个数的绝对值。
(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。
二、学生自学前的指导怎样才能达到这些目标呢?主要靠大家自学。
下面,请同学们按照指导(手指投影屏幕)自学。
自学指导自学P11-P12的内容后,思考并回答:(1)在数轴上描出2与-2,3与-3(2)什么叫做这个数的绝对值?1、(3)求下列各式的绝对值12,-25,0,1/2,-1/3(4)正数的绝对值是;负数的绝对值是它的;0的绝对值是。
三、学生自学,教师巡视学生看书,教师巡视,确保人人紧张看书。
四、检验学生自学情况。
1、一生上黑板画数轴并描点。
2、一个数的绝对值等于数轴上的点与原点的距离。
3、正数的绝对值是他本身;负数的绝对值是它的相反数;0的绝对值是 0 。
五、引导更正,指导运用1.学生训练。
(1)布置任务:看完了的同学,请举手。
(学生举手)好!下面请XX做第12页练习第1题,其余的同学在座位上练习……请XX做第12页练习第2、3题……(2)学生练习,教师巡视,把数学练习中的典型错误写在黑板上(同一题下)。
观察板演,找错误。
请大家看黑板,找错误。
找到的请举手。
2.学生更正。
3.学生讨论,评判。
(1)先看第一位同学做的(再看第二位同学做的……)[若对,则师:认为对的举手,师判“√”][若有错,则引导学生错误的原因及更正的道理][估计出现的错误](2)第1题中,不会表示一个数的绝对值。
引导学生说出错因,并更正。
(3)第2题中,把-|—2010|当成了-2010的相反数。
七年级数学《绝对值》教案精选3篇七年级数学《绝对值》教案篇一一、教学目标:1.知识目标:①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的`绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1.引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。
数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。
(按教材P63的倒数第二段进行讲解。
)强调:表示0的点与原点的距离是0,所以|0|=0。
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
七年级数学《绝对值》教案篇二各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。
首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。
七年级数学《绝对值》教案《绝对值》教案1●教学内容七班级上册课本11----12页1.2.4绝对值●教学目标1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培育学生浓厚的学习爱好,使学生能乐观参加数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
《绝对值》数学教案
标题:《绝对值》数学教案
一、教学目标
1. 知识与技能:理解绝对值的概念,掌握求解绝对值的方法。
2. 过程与方法:通过观察、比较、归纳等数学活动,提高学生的逻辑思维能力。
3. 情感态度价值观:培养学生的探索精神和严谨的学习态度。
二、教学重点与难点
1. 教学重点:绝对值的概念及其运算性质。
2. 教学难点:理解和运用绝对值的运算性质。
三、教学过程
1. 导入新课:利用生活中的实际问题引出绝对值的概念。
2. 新课讲授:
- 绝对值的概念:以数轴为工具,讲解绝对值表示数轴上点到原点的距离。
- 绝对值的性质:通过实例引导学生发现并归纳绝对值的性质。
- 绝对值的计算:结合例题,教授如何计算绝对值。
3. 巩固练习:设计一系列习题,让学生独立完成,教师巡回指导。
4. 小结:回顾本节课的主要内容,强调重点和难点。
四、作业布置
设计一些包含绝对值的题目,让学生在课后继续巩固所学知识。
五、教学反思
对于本次课程的效果进行反思,总结成功之处和需要改进的地方。
2.3 绝对值【教学目标】➢知识目标:(1)理解绝对值的概念及表示法。
(2)理解数的绝对值的几何意义。
➢能力目标:(1)掌握求一个数的绝对值及有关的简单计算,(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。
➢情感目标:让学生经历绝对值的产生过程,体会数形结合思想。
【教学重点、难点】➢重点:绝对值的概念和求一个数的绝对值。
➢难点:绝对值的几何意义。
【教学手段】多媒体(power point)教学与板书相结合。
【教学过程】一、新课引入我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。
乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。
例如有2位同学在书店购置书籍后回家,一位同学乘上甲出租车向东行驶10 Km 到达A 处,另一位同学乘上乙出租车向西行驶10 Km 到达B 处。
二、合作学习把全班同学分4---5组分组讨论完成下面的三个问题1:描述 请大家用数轴来表示这一过程(记向东行驶的里程数为正)2:思考 两位同学付费额度是否一样?为什么?3:结论 付费额度与行驶方向有没有关系?然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价) 这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。
说明在数轴上的A(+10)、B(-10)两点到原点(书店)的距离是一样的,都是10。
同样数轴上+5和-5两点到原点的距离也是一样的。
我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
(注意是离开原点的距离)如数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记作55=- ;+5的绝对值也是5,记作55=+ 。
其实际意义是:数轴上+5这个点到原点的距离为5。
(强调绝对值符号的书写格式)三、课内练习1、求以下各数的绝对值: -1.658 0 -10 +10 同时说出它们的几何意义。
第一章 有理数 1.2 有理数 1.2.4 绝对值 第1课时 绝对值学习目标1.借助数轴,理解绝对值的概念,能求一个有理数的绝对值3.经历将实际问题数学化的过程,感受数学与生活的关系,贯彻数形结合的思想 学习难点绝对值意义的理解 教学过程 【情景创设】小明的家在学校西边3㎞处,小丽的家在学校东边2km 处。
他们上学所花的时间与各家到学校的距离有什么关系?绝对值的表示方法如下:-2的绝对值是2,记作| -2|=2;3的绝对值是3 ,记作|3|=3 口答:如图,你能说出数轴上A 、B 、C 、D 、E 、F 各点所表示的数的绝对值总结:从上面的问题中你能找到求一个数的绝对值的方法吗? 【例题精讲】问题1、求4、-3.5的绝对值。
活动一:以某一小组为数轴,一位同学为原点,规定正方向后,请大家思考数轴上的各位同学所代表的数是多少?这些数到原点的距离是多少?绝对值是几?活动二:请一位同学随便报一个数,然后点名叫另一位同学说出它的绝对值。
思考:正数公司和负数公司招聘职员,要求是经过绝对值符号“︱︱〞这扇大门后,结果为正就是正数公司职员,结果为负就是负数公司职员。
〔1〕负数公司能招到职员吗? 〔2〕0能找到工作吗? 总结:问题2、比拟-3与-6的绝对值的大小练一练:求-3、-0.4、-2的绝对值,并用“〈〞号把这些绝对值连接起来计算:①2132--- ②23144.3-+- ③4143-÷+ ④2352-+-【拓展提高】〔1〕求绝对值不大于2的整数______〔2〕绝对值等于本身的数是___,绝对值大于本身的数是_____. 【知识稳固】 1.判断题(1)任何一个有理数的绝对值都是正数. 〔 〕(2)如果一个数的绝对值是5,那么这个数是5 ( ) (3)绝对值小于3的整数有2,1,0. ( )A EDCB F2.填空题(1) +6的符号是_______,绝对值是_______,65-的符号是_______,绝对值是_______ (2) 在数轴上离原点距离是3的数是________________ (3) 绝对值等于本身的数是___________(4) 绝对值小于2的整数是________________________ (5)用〞>〞、〞<〞、〞=〞连接以下两数:∣117-∣___∣117∣ ∣∣∣0∣____∣∣ ∣∣___∣∣(6) 数轴上与表示1的点的距离是2的点所表示的数有___________________. (7) 计算|4|+|0|-|-3|=______________. 3.选择题(1)以下说法中,错误的选项是( )A +5的绝对值等于5B 绝对值等于5的数是5C -5的绝对值是5D +5、-5的绝对值相等 (2)绝对值最小的有理数是 ( )A.1B.0C.-1D.不存在 (3)绝对值最小的整数是( )A.-1B.1C.0D.不存在 (4)绝对值小于3的负数的个数有( )A.2B.3C.4D.无数 (5)绝对值等于本身的数有〔 〕个个 C. 4个 D.无数个4.解答题. (1)求以下数的绝对值,并用“<〞号把这些绝对值连接起来. (2)计算:作业:习题1.4 第6、7题第1课时 代入法1.会用代入法解二元一次方程组.(重点) 一、情境导入 《一千零一夜》中有这样一段文字:有一群鸽子,其中一局部在树上,另一局部在地上.树上的一只鸽子对地上的鸽子说:“假设从你们中飞上来一只,那么地上的鸽子为整个鸽群的三分之一;假设从树上飞下去一只,那么树上、地上的鸽子一样多.〞你知道树上、地上各有多少只鸽子吗?我们可以设树上有x 只鸽子,地上有y 只鸽子,得到方程组⎩⎪⎨⎪⎧x +y =3〔y -1〕,x -1=y +1.可是这个方程组怎么解呢?有几种解法?二、合作探究探究点:用代入法解二元一次方程组 【类型一】 用代入法解二元一次方程组用代入法解以下方程组:(1)⎩⎪⎨⎪⎧2x +3y =-19,①x +5y =1;② (2)⎩⎪⎨⎪⎧2x -3y =1,①y +14=x +23.②解析:对于方程组(1),比拟两个方程系数的特点可知应将方程②变形为x =1-5y ,然后代入①求解;对于方程组(2),应将方程组变形为⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5,④观察③和④中未知数的系数,绝对值最小的是2,一般应选取方程③变形,得x =3y +12.解:(1)由②,得x =1-5y.③把③代入①,得2(1-5y)+3y =-19, 2-10y +3y =-19,-7y =-21,y =3.把y =3代入③,⎩⎪⎨⎪⎧x =-14,y =3.(2)将原方程组整理,得⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5.④由③,得x =3y +12.⑤把⑤代入④,得2(3y +1)-3y =-5, 3y =-7,y =-73.把y =-73代入⑤,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-73.方法总结:用代入法解二元一次方程组,关键是观察方程组中未知数的系数的特点,尽可能选择变形后比拟简单的或代入后容易消元的方程进行变形.【类型二】 整体代入法解二元一次方程组解方程组:⎩⎪⎨⎪⎧x +13=2y ,①2〔x +1〕-y =11.②解析:把(x +1)看作一个整体代入求解.解:由①,得x +1=6y.把x +1=6y 代入②,得2×6y-y =11.解得y =1.把y =1代入①,得x +13=2×1,x ⎩⎪⎨⎪⎧x =5,y =1.方法总结:当所给的方程组比拟复杂时,应先化简,但假设两方程中含有未知数的局部相等时,可把这一局部看作一个整体求解.【类型三】 方程组的解,用代入法求待定系数的值⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,那么a -b 的值为( ) A .1 B .-1 C .2 D .3解析:把解代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3,.方法总结:解这类题就是根据方程组解的定义求,即将解代入方程组,得到关于字母系数的方程组,解方程组即可.三、板书设计解二元一,次方程组)⎩⎪⎨⎪⎧根本思路是“消元〞代入法解二元一次方程组的一般步骤回忆一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有很好的认知根底,探究显得十分自然流畅.充分表达了转化与化归思想.引导学生充分思考和体验转化与化归思想,增强学生的观察归纳能力,提高学生的学习能力.。
绝对值
第1课时绝对值
一、导学
1.课题导入:
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的方向相同吗?他们行走的路程相同吗?
学生答复后,老师设问:上述这个问题反映了什么数学知识呢?从而导入这节课要学习的课题——绝对值.
2.学习目标:
〔1〕知识与技能
能根据一个数的绝对值表示“距离〞,初步理解绝对值的概念,能求一个数的绝对值.
〔2〕过程与方法
经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
〔3〕情感态度
通过解释绝对值的几何意义,渗透数形结合的思想.
3.学习重、难点:
重点:绝对值的概念;会求一个数的绝对值.
难点:绝对值运算法那么的文字表述和符号表述.
4.自学指导:
〔1〕自学内容:教材第11页“练习〞之前的内容.
(2)自学时间:6分钟.
(3)自学要求:认真看课本,重要的内容做上记号,图文对照来理解
绝对值的几何意义和代数意义.
(4)自学参考提纲:
①绝对值的几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,这里的数a可以是正数、负数、0.
②上图中,小红、小明两人对应的数分别是10和-10,它们和原点的距离都是10个单位,所以10和-10的绝对值都是10,即|10|=10,|-10|=10.
③一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
④绝对值的代数意义用式子表示:
Ⅰ.当a>0时,|a|=a;
Ⅱ.当a<0时,|a|=-a;
Ⅲ.当a=0时,|a|=0.
⑤判断:
Ⅰ.假设a=-a,那么a<0.〔×〕
Ⅱ.绝对值等于它本身的数一定是正数.〔×〕
Ⅲ.绝对值最小的数是1.〔×〕
Ⅳ.任何有理数的绝对值都是正数.〔×〕
二、自学
同学们可结合自学指导进行自学.
三、助学
1.师助生:
〔1〕明了学情:教师深入学习小组之中,了解学生对自学问题的认知和理解情况,掌握自学进度和认识偏差.
〔2〕差异指导:对个别学生在以下方面进行指导.
①几何意义的理解.
②绝对值求法.
③a为有理数,|a|等于什么?
④运用|a|=a与|a|=-a时,“a可为0〞的无视.
2.生助生:同学间相互交流解决自学中存在的疑难问题.
四、强化
1.知识要点:
〔1〕一个正数的绝对值是它本身,即:假设a>0,那么a=a;一个负数的绝对值是它的相反数,即:假设a<0,那么a=-a;0的绝对值是0〔双重性〕.
(2)假设a=a,那么a≥0;假设a=-a,那么a≤0.
(3)a≥0.
2.练习:
(1)写出以下各数的绝对值:
6,-8,-3.9,52,-211,100,0
解:6,8,3.9,52,211,100,0
(2)判断以下等式是否成立:
①5=5(√) ②-|5|=|-5|(×) ③-5=|-5|(×) ④-|-5|=-(-5)( ×)
五、评价
1.学生的自我评价〔围绕三维目标〕:自我总结学习成果,查找学习中的缺乏.
2.教师对学生的评价:
〔1〕表现性评价:对课堂学习中的表现进行点评总结,指出优点与缺乏.
〔2〕纸笔评价:课堂评价检测.
3.教师的自我评价〔教学反思〕:
本课时应从生活中的实际问题出发,引导学生探索绝对值的概念、表示方法,根据绝对值的意义会求一个数的绝对值,通过观察和分析知道一个数的绝对值并会求这个数.教学中,以问题为载体给学生提供探索的空间,强调学生的自主学习和小组交流,在形成一定的认识后,教师出示相应习题,指导学生完成以稳固所学知识.
一、根底稳固〔70分〕
1.(10分)|-2|的值是(A)
B.1
2C.- 1
2
2.(10分)假设|a|=|b|,那么a与b的关系是〔C〕
A.a=-b
B.a=b
C.a=b或a=-b
3.(40分)以下说法中正确的有③④.〔填序号〕
①符号相反的数互为相反数;
②一个数的绝对值越大,表示它的点在数轴上越靠右;
③一个数的绝对值越大,表示它的点在数轴上离原点越远;
④当a≠0时,|a|总是大于0.
4.(10分)写出以下各数的绝对值:-125,+23,-3.5,0,2
3
,
-3
2
,-0.05.上面的数中哪个数的绝对值最大?哪个数的绝对值最小?
解:125,23,3.5,0,2
3,3
2
,0.05.-125的绝对值最大,0的绝
对值最小.
二、综合应用〔20分〕
5.(10分)假设|a|=-a,那么a一定是〔C〕
6.(10分)检测5个排球,其中超过标准的克数记为正数,缺乏的克数记为负数,具体数据如下:+5,-3.5,+0.7,-2.5,-0.6,从轻重
的角度看,哪个球最接近标准?
解:-0.6的球最接近标准.
三、拓展延伸〔10分〕
=1,那么a是正数.
7.(10分)〔1〕假设a>0,那么aa=1,假设||a
a
〔2〕假设|x|=3,那么x=±3;假设|-x|=4,那么x=±4.
第2课时有理数加法的运算律
1.经历探索有理数加法运算律的过程,理解有理数加法运算律.
2.能熟练运用有理数加法运算律简化运算.
一、情境导入
学习了有理数的加法运算法那么后,爱探索的小明发现,(-3)+(-6)与(-6)+(-3)相等,8+(-3)与(-3)+8也相等,于是他想:是不是任意的两个加数,交换它们的位置后,和仍然相等呢?同学们你们认为呢?
二、合作探究
探究点一:运用有理数的加法运算律简化运算
计算:
(1)(-27)+13+(-43)+46;
(2)5.75-(-8)-234-4; (3)338-(-143)-3.125+(-263
); (4)2.63-25+27+1.01+57
+0.36. 解析:(1)将正数和负数分别结合先相加;(2)观察发现,5.75与-234
互为相反数,假设将它们结合在一起,其结果为0;(3)观察第一、三两个加数的分母相同,另外两个加数的分母也相同,故将它们分别结合再相加;(4)发现三个小数结合在一起相加得整数,分母为7的两个分数结合在一起相加得1.
解:(1)原式=[(-27)+(-43)]+13+46=(-70)+59=-11;
(2)原式=(5.75-234
)+8-4=4; (3)原式=338+143-3.125-263=(338-3.125)+(143-263
)=1-4=-3; (4)原式=(2.63+1.01+0.36)+(27+57)-25=4+1-25=235
. 方法总结:进行有理数的加法运算时,要仔细观察各加数的实际特点,灵活选择适宜的运算律使运算简便,同时注意结合时不要漏项.
探究点二:利用加法运算律解决实际问题
某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km)
+18,-9,+7,-14,+13,-6,-8.
(1)B 地在A 地何方,相距多少千米?
(2)假设汽车行驶1km 耗油a L ,求该天耗油多少L?
解析:(1)首先把题目的数据相加,然后根据结果的正负即可确定B 地在A 地何方,相距多少千米;(2)首先把所给的数据的绝对值相加,然后乘以a 即可求解.
解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=(+18)+(+7)+(+13)+(-9)+(-14)+(-6)+(-8)=38+(-37)=1(km).
故B 地在A 地正北方,相距1千米;
(2)该天共耗油:(18+9+7+14+13+6+8)a =75a (L).
答:该天耗油75a L.
方法总结:解题关键是理解“正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.
三、板书设计
有
理
数
的
加
法⎩⎪⎨⎪⎧有理数加法的运算律⎩⎨⎧交换律:a +b =b +a 结合律:〔a +b 〕+c =a +〔b +c 〕有理数加法的简便运算⎩⎪⎨⎪⎧互为相反数的几个数,可先相加
相加得整数的几个数,可先相加同分母的分数,可先相加符号相同的数,可先相加易于通分的数,可先相加 教学过程中,强调学生自主探索和合作交流,通过加强数学练习,归纳、总结、积累等思维过程,体验从特殊到一般的数学思想方法,进一步激发学生的学习兴趣和应用数学的意识.。