《建立二元一次方程组》教案
- 格式:doc
- 大小:54.50 KB
- 文档页数:2
2024年七年级下册《二元一次方程组》教案2024年七年级下册《二元一次方程组》教案1(约913字)教学目标1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
教学重点把方程组变形后用加减法消元。
教学难点根据方程组特点对方程组变形。
教学过程一、复习引入用加减消元法解方程组。
二、新课。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。
或互为相反数?能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?三、练习。
1.P40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
四、小结。
解二元一次方程组的加减法,代入法有何异同?五、作业。
P33.习题2.2A组第2题(3)~(6)。
B组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:2.3二元一次方程组的应用(1)2024年七年级下册《二元一次方程组》教案2(约900字)教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
七年级二元一次方程组教案(必备6篇)七年级二元一次方程组教案第1篇【教学目标】知识目标:①使学生初步理解二元一次方程与一次函数的关系。
②能根据一次函数的图象求二元一次方程组的近似解。
能力目标:通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。
情感目标:通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。
重点要求:1、二元一次方程和一次函数的关系。
2、根据一次函数的图象求二元一次方程组的近似解。
难点突破:经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。
【教学过程】一、学前先思师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?生:代入消元法、加减消元法。
师:请你猜测还有其他的解法吗?生:(小声议论,有人提出图象解法)师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?生:二元一次方程组怎么会有图象?它的图象应该怎样画?生:二元一次方程组的图象解法怎么做?师:同学们都问得很好!那你有喜欢的二元一次方程组吗?生:(比较害羞)师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。
让我们带着同学们提出的问题从二元一次方程开始今天的学习。
二、探究导学题目:判断上面几组解中哪些是二元一次方程的解?生:和不是,其余各组均是方程的解。
师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
《二元一次方程组》教学设计一.课标要求与分析能根据具体问题中的数量关系列出方程,体会方程式刻画现实世界数量关系的有效模型;能根据具体问题的实际意义,检验方程的解是否合理。
第一条是过程性目标,行为动词:体会;第二条是结果性目标。
二.教材分析本节教材是初中数学的重要内容之一。
学生已学过一元一次方程,在此基础上,从解决多个未知量的实际问题出发,建立二元一次方程组,是方程有关方面的继续和深化,也为以后学习多元方程做铺垫,起着承上启下的作用。
三.学情分析优势:学生在七年级上学期,系统地学习一元一次方程的相关概念及一元一次方程的解法,对于实际问题中出现的未知量及数量关系有了较深的认识。
对于建立二元一次方程及方程组的模型描述实际问题有着很大的兴趣,较强的愿望。
劣势:学生缺乏生活实际,分析能力有相对薄弱。
四.教学重、难点重点:二元一次方程、二元一次方程组及其解的含义。
难点:弄懂二元一次方程组解的含义。
五.教学目标1.通过自主学习、自学检测,学生理解二元一次方程,二元一次方程组的概念;2.通过展示反馈、小组探究,学生理解二元一次方程(组)的解,并会检验一对数是不是某个二元一次方程组的解。
3.学生学会用类比的方法迁移知识,并体验二元一次方程组在处理问题中的优越性。
通过对二元一次方程(组)的概念学习,感受数学与生活的联系,感受数学乐趣。
六.教学流程(一)创景(复习)引入(3分钟)学生欣赏三张校内篮球比赛的照片,教师引出问题,请学生利用已学知识解决。
问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?(只列方程不计算)预设:学生用两分钟时间列出方程,并作答。
解:设这个队胜x场,则负(10-x)场. 根据题意知2x+(10-x)=16.追问1:这是我们学过的哪一类方程?追问2:什么是一元一次方程?(符合三点)师:在利用一元一次方程解决此题时,需要用含未知数的式子表示另一个量,那么能不能直接设两个未知数,更容易的列出方程?(引出课题)要求:学生出示学习目标了解本节课学习内容,师板书课题。
《二元一次方程组》教案教学目标知识与技能1.了解二元一次方程、二元一次方程组和它们的解.2.会判断一组未知数的值是杏为二元一次方程组的解.过程与方法通过实例,认识二元一次方程和二元一次方程组都是反映数量关系的重要数学模型.情感、态度与价值观培养学生乐于探究、勇于实践的精神.重点难点重点理解二元一次方程、二元一次方程组的定义及它们解的含义难点二元一次方程的解与二元一次方程组的解的区别与联系.教学设计—、课前准备1.什么是一元一次方程?什么是一元一次方程的解?2.怎样解一元一次方程?学生解答教材第2页的“观察与思考".可用一元一次方程得到答案二、类比探究师:在上述问题中,其实有两个未知数,它们是什么?生:回答(1个大桶盛酒多少升,1个小桶盛酒多少升).师:在本题中,存在几个等量关系?分别是什么?生:两个,它们分别是:①5个大桶的升数+1个小桶的升数 =28升,②1个大桶的升数+5个小桶的升数=20升。
师:如果设两个未知数,1个大桶盛酒x升,1个小桶盛酒数为:y升,你能列出两个关于x,y的方程吗?生(板演)5x+y=28,x+5y=20.师:这两个方程与我们以前所学的一元一次方程相同吗?有何特征?生:畅所欲言,互相交流、总结.师生共同得出:知识点1:二元一次方程:含两个未知数,并且含有未知数的项的次数都为1的方程,叫二元一次方程.对这个定义理解,教师应用以下两点:(1)含两个未知数;(2)所含未知数项的次数都是1,如2xy=3因含未知数项2xy,次数为2,就不是二元一次方程.师:什么叫一元一次方程的解,一个一元一次方程的解通常有几个?生:一个.师:对于二元一次方程5x+y=28,你能探索它的解吗?能有几组?生:探究分析.(师可适当点拨)师生共同总结:知识点2:二次方程的一个解:能使二元一次方程两边相等的两个未知数的值,叫这个二元一次方程的一组解.师强调:一个二元一次方程通常有无数组解.师:在方程5x+y=28和x+5y=20中,两个x,y含义分别相同,为了说明x,y必须同时满足这两个方程,我们必须将方程合在—起,写成﹛528520 x yx y+=+=知识点3:二元一次方程组:像这样的含有两个未知数,并且含有未知数的项的次数都是1的方程组,叫二元一次方程组.师:我们已经知识1个大桶盛酒5升,1个小桶盛酒3升,即﹛53xy==,,这一组值能满足上述方程组吗?生:代入后验证.师总结:知识点4:二元一次方程组的解:满足方程组中每个方程的公共解三、学以致用1.出示教材第3页“一起探究学生可独立完成,并指定一生板演,若有困难,学生可互相交流,教师作必要的引导.2.练习:教材第4页练习1、2、3.四、课堂小结本节课你学会了什么?你对本节所学知识有何疑惑?五、作业布置教材第4页习题A组1、2、3.。
七年级数学二元一次方程组教案七年级数学二元一次方程组教案范文一:应用二元一次方程组教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。
重点:经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:确立等量关系,列出正确的二元一次方程组。
教学流程:课前回顾复习:列一元一次方程解应用题的一般步骤情境引入探究1:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?(1)画图法用表示头,先画35个头将所有头都看作鸡的,用表示腿,画出了70只腿还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿四条腿的是兔子(12只),两条腿的是鸡(23只)(2)一元一次方程法:鸡头+兔头=35鸡脚+兔脚=94设鸡有x只,则兔有(35-x)只,据题意得:2x+4(35-x)=94比算术法容易理解想一想:那我们能不能用更简单的方法来解决这些问题呢?回顾上节课学习过的二元一次方程,能不能解决这一问题?(3)二元一次方程法今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?(1)上有三十五头的意思是鸡、兔共有头35个,下有九十四足的意思是鸡、兔共有脚94只.(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;鸡足有2x只;兔足有4y只.解:设笼中有鸡x只,有兔y只,由题意可得:鸡兔合计头xy35足2x4y94解此方程组得:练习1:1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=152.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.三、合作探究探究2:以绳测井。
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
2.2二元一次方程组参考教案一、背景介绍及教学资料本节课是在学生学习了二元一次方程的基础上,通过用天平直观形象的展示抽象出二元一次方程组的概念,体会方程组的模型思想,进一步让学生经历体会从实际问题中抽象出数学问题,培养学生良好的数学应用意识.为进一步学习二元一次方程组的解法奠定基础.二、教学设计【教学内容分析】本节课提出二元一次方程组和二元一次方程组解的概念,并利用列表尝试的方法求简单二元一次方程组的解.为接下去学习二元一次方程组的解法作准备.【教学目标】1、了解二元一次方程组的概念和二元一次方程组解的含义.2、会检验一对数是不是二元一次方程组的解,会利用列表尝试的方法求简单二元一次方程组的解.3、通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,同时培养学生观察、归纳、概括能力.【教学重点、难点】重点是二元一次方程组的意义和二元一次方程组解的概念.难点是利用列表尝试的方法求简单二元一次方程组的解.【教学准备】多媒体、实物投影仪.【教学过程】教学环节教师活动学生活动设计意图创设情境提出图中画的是什么?问题展示:学生欣赏被称为被称为“现代绘画之父”的法国保罗·塞尚的作品引发学生兴趣.问题一个苹果和一个梨的质量合计200g 这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,问苹果和梨的质量各为多少g?这个问题中,如果设苹果和梨的质量分别为x g和y g,你能列出几条方程?请把它们列出来.交流讨论得出:方程200x y+=和10y x=+经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想”尝试探索引出新知做一做1、(1)已知方程200x y+=,填写下表:x ...85 90 95 100 105...y ......提问:你能从中确定苹果和梨子的质量吗?(2)已知方程10y x=+,填写下表:x ..85 90 95 100 105 .y ...问题:现在你能找出苹果和梨的质量分别为多少g吗?为什么?指出:两个方程中x,y的值必须同时满足上述两个方程,因此可以把两个方程合起来,写成:20010x yy x+=⎧⎨=+⎩自主探索,口答就方程200x y+=而言有无数组解,也就是说苹果和梨子的质量不能唯一的确定.自主探索,口答合作思考、讨论、探索解决问题得出,因为方程200x y+=和方程10y x=+中,x,y都表示同一个未知通过自主探索体会从实际问题中抽象出二元一次方程组及二元一次方程解的不确定性,与二元一次方程组的解的唯一性的辩证关系.95105xy=⎧⎨=⎩12x y =⎧⎨=⎩3328y xx y =-⎧⎨+=⎩ 32x y =⎧⎨=-⎩ 23y xx y =⎧⎨+=⎩ 21x y =⎧⎨=⎩1325y x x y =-⎧⎨+=⎩例 题 讲 解PPT 演示讲解课本例题.总结列表尝试法一般步骤:1.尝试在一定范围内先确定满足其中一个方程的一些解; 2.再代入检验解是否满足另一个方程; 3.同时满足这两个方程的解就是方程组的解.应用 探究 发展能力 巩固练习小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:A 型每卷36张底片,B 型每卷12张底片,小聪一共买了4卷胶卷,刚好有120张底片.如果设两种胶卷分别买了x 卷和y 卷,请根据问题中的条件列出关于x ,y 的方程组,并用列表尝试的方法求两种胶卷的数量.(结合本例让学生自主解决课本中的例题)指出: 因为x ,y 必须取正整数(为什么?)x 的最小可能性是多少?分组讨论,交流解:根据条件可列出关于x ,y 的方程组43612120x y x y +=⎧⎨+=⎩ 因为胶卷是整卷卖的,所以x 的最小取值是1.综合运用知识养学生探究、创新的精神和合作交流的意识.所以可以列表尝试如下:x1 2 3y36x+12 y 显然,只有x=3,y=1符合这个方程组,所以方程组的解是答:小聪买了A型胶卷3卷,B型胶卷1卷.x1 2 3y336x+12y反馈练习及时调控1,已知两个自然数的和是67,差是3.设这两个自然数分别是x,y,请列出关于x,y的方程组,并用列表尝试的方法求出这两个自然数.2、探究活动把一根长为1.2m的铁丝折成一个长方形,长方形的长和宽有多少种不同的取法?要使取法只有一种,你准备增加什么条件?设折成的长方形的长与宽分别为x,y,根据题设和你所增加的条件列出方程组.自主练习分组合作,交流探讨,尝试让学生自编习题,1、针对难点设计练习题以随时反馈教学效果.2、尝试让学生自编习题,提高学生探索问题分析问题能力.回顾小节通过这节课的学习,你有什么收获?讨论、整理、口答相互补充.引导学生思考、交流、梳理所学知识.31xy=⎧⎨=⎩教后总结:本节课通过被称为被称为“现代绘画之父”的法国保罗·塞尚的作品引发学生兴趣,导入课题.用天平直观形象的展示抽象出二元一次方程组的过程,体会方程组的模型思想,进一步让学生经历体会从实际问题中抽象出数学问题,发展学生灵活运用有关知识解决实际问题的能力,培养学生良好的数学应用意识.同时综合运用探索、启发等几种方法.体会从实际问题中抽象出二元一次方程组及二元一次方程解的不确定性,与二元一次方程组的解的唯一性的辩证关系.并结合多媒体、实物投影仪等现代教学手段实施教学,体现直观性.使学生进一步体会方程组是刻画现实世界的有效数学模型.通过合作探索:“把一根长为1.2m的铁丝折成一个长方形,长方形的长和宽有多少种不同的取法?要使取法只有一种,你准备增加什么条件?” 尝试让学生自编习题,提高学生探索问题分析问题能力.从而较好地完成二元一次方程组和二元一次方程组的解的概念的建构,达到教学目标.。
《建立二元一次方程组》教案
教学目标
了解二元一次方程,二元一次方程组和它的一个解含义.会检验一对对数是不是某个二元一次方程组的解.
教学重点
设两个未知数列方程.检验一对数是不是某个二元一次方程组的解.
教学难点
方程组的一个解的含义
教学过程
一、创设问题情境.
问题:小亮家今年1月份的水费和天然气费共60元,其中天然气费比水费多20元,你知道天然气费和水费各是多少吗?
二、建立模型.
1. 填空:
若设小亮家1月份总水费为x 元,则天然气费为_____元.可列一元一次方程为__________做好后交流,并说出是怎样想的?
2.想一想,是否有其它方法?(引导学生设两个未知数).
设小亮家1月份的水费为y 元,天然气为x 元.
列出满足题意的方程,⎩
⎨⎧=-=+2060x y y x 并说明理由.还有没有其他方法? 3 .本题中,设一个未知数列方程和设两个未知数列方程哪能个更简单?
一、 解释.
1.察此列方程.60=+y x 20=-x y ()6.51213,4.461213=-=+y x y x 说一说它们有什么特点?讲二元一次方程概念
2.二元一次方程组的概念.
把两个含有相同未知数的二元一次方程联立起来,组成的方程组叫做二元一次方程组.
3.检查 ⎩⎨⎧==5030y x ⎩⎨⎧==600y x ⎩⎨⎧==4020y x ⎩
⎨⎧==2040y x 是否满足方程4.46=+y x .简要说明二元一次方程的解.
在一个二元一次方程组中,使每一个方程组的左右两边都相等的一组未知数的值,叫做这个方程组的一个解.
我们把⎩⎨⎧==2040y x 叫做⎩
⎨⎧=-=+2060x y y x 的一个解. 4.分别检查⎩⎨⎧==600y x ⎩⎨⎧==4020y x 是否适合方程组⎩
⎨⎧=-=+2060x y y x 中的每一个方程? 讲方程组的一个解的概念.强调方程组的解是相关的一组未知数的值.这些值是相互联系的.而且要满足方程组中的每一个方程,写的时候也要象写方程组一样用“{”括起来.
5.解方程组的概念.
例题:小玲在文具店买了3本练习本,2支圆珠笔,共花去了8元,其中购买的练习本比圆珠笔多花去了4元.
(1)求练习本、圆珠笔的单价各是多少元?
(2)⎩
⎨⎧==,12y x 是列出的二元一次方程组的解吗? 解:(1)设练习本的单价是x 元,圆珠笔单价是y 元.
⎩
⎨⎧=-=+。
y x y x 423,823 (2)把⎩⎨⎧==,12y x 分别代入方程①,②,左边=右边.所以⎩⎨⎧==,
12y x 是方程组 ⎩
⎨⎧=-=+423,823y x y x 的解. 二、练习.
P5习题1.1.。