高考数学总复习 第二章第5课时 指数函数课时闯关(含解析)
- 格式:doc
- 大小:151.01 KB
- 文档页数:3
第五节指数与指数函数1.根式(1)如果x n =a ,那么01x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)式子na 叫做02根式,其中n 叫做根指数,a 叫做被开方数.(3)(na )n =03a.当n 为奇数时,na n =04a ;当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂正数的正分数指数幂,a mn =na m (a >0,m ,n ∈N *,n >1).正数的负分数指数幂,a-m n =1a m n=1n a m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于050,0的负分数指数幂没有意义.3.指数幂的运算性质a r a s =06a r +s ;(a r )s =07a rs ;(ab )r =08a r b r (a >0,b >0,r ,s ∈R ).4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R ,a 是底数.(2)指数函数的图象与性质a>10<a <1图象定义域R 值域09(0,+∞)性质图象过定点10(0,1),即当x=0时,y =1当x >0时,11y >1;当x <0时,120<y <1当x <0时,13y >1;当x >0时,140<y <1在(-∞,+∞)上是15增函数在(-∞,+∞)上是16减函数(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数.(2)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1)1(3)如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.(4)指数函数y =a x 与y (a >0,且a ≠1)的图象关于y 轴对称.1.概念辨析(正确的打“√”,错误的打“×”)(1)4(-4)4=-4.()(2)2a·2b=2ab.()(3)na n=(na)n=a.()(4)6(-3)2=(-3)13.()(5)函数y=2x-1是指数函数.()答案(1)×(2)×(3)×(4)×(5)×2.小题热身(1)(人教A必修第一册习题4.1T1改编)下列运算中正确的是()A.(2-π)2=2-πB.a-1a=-aC.(m 14n-38)8=m2n3D.(x3-2)3+2=x9答案C解析对于A,因为2-π<0,所以(2-π)2=π-2,故A错误;对于B,因为-1a>0,所以a<0,则a-1a=-(-a)·1-a=--a,故B错误;对于C,因为(m14n-38)8=(m14)8·(n-38)8=m2n3,故C正确;对于D,因为(x3-2)3+2=x9-2=x7,故D错误.(2)已知指数函数y=f(x)的图象经过点(-1,2),那么这个函数也必定经过点()21C.(1,2)答案D(3)函数y=2x+1的图象是()答案A(4)若函数y=a x(a>0,且a≠1)在区间[0,1]上的最大值与最小值之和为3,则a的值为________.答案2考点探究——提素养考点一指数幂的运算例1(1)(2024·湖北宜昌高三模拟)已知x,y>03x-34y12-14x14y-1y__________.答案-10y解析原式=3x -34y12-3 10 x -34y-12=-10y.(2)-0.752+6-2-23=________.答案1解析+136×-23=32-+136×2=32-916+136×94=1.【通性通法】【巩固迁移】-12·(4ab-1)3(0.1)-1·(a3·b-3)12(a>0,b>0)=________.答案85解析原式=2·432a 32b -3210a 32b-32=85.2.若x 12+x -12=3,则x 2+x -2=________.答案47解析由x 12+x -12=3,得x +x -1=7,再平方得x 2+x -2=47.考点二指数函数的图象及其应用例2(1)(2024·安徽合肥八中月考)函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,12中的一个,则a ,b ,c ,d 的值分别是()A.54,3,13,12 B.3,54,13,12C.12,13,3,54 D.13,12,54,3答案C解析由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而3>54>12>13,故选C.(2)(2024·江苏南京金陵高三期末)若直线y =3a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围为________.答案解析当0<a <1时,y =|a x -1|的图象如图1所示,由已知得0<3a <1,∴0<a <13;当a >1时,y =|a x -1|的图象如图2所示,由已知可得0<3a <1,∴0<a <13,结合a >1可得a 无解.综上可知,a【通性通法】(1)根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.【巩固迁移】3.(2024·广东深圳中学高三摸底)函数y =e -|x |(e 是自然对数的底数)的大致图象是()答案C解析y =e -|x |,x ≥0,x <0,易得函数y =e -|x |为偶函数,且图象过(0,1),y =e -|x |>0,函数在(-∞,0)上单调递增,在(0,+∞)上单调递减,故C 符合题意.故选C.4.(多选)若实数x ,y 满足4x +5x =5y +4y ,则下列关系式中可能成立的是()A .1<x <yB .x =yC .0<x <y <1D .y <x <0答案BCD解析设f (x )=4x +5x ,g (x )=5x +4x ,则f (x ),g (x )都是增函数,画出函数f (x ),g (x )的图象,如图所示,根据图象可知,当x =0时,f (0)=g (0)=1;当x =1时,f (1)=g (1)=9,依题意,不妨设f (x )=g (y )=t ,则x ,y 分别是直线y =t 与函数y =f (x ),y =g (x )图象的交点的横坐标.当t >9时,若f (x )=g (y ),则x >y >1,故A 不正确;当t =9或t =1时,若f (x )=g (y ),则x =y =1或x =y =0,故B 正确;当1<t <9时,若f (x )=g (y ),则0<x <y <1,故C 正确;当t <1时,若f (x )=g (y ),则y <x <0,故D 正确.故选BCD.考点三指数函数的性质及其应用(多考向探究)考向1比较指数式的大小例3(2023·天津高考)若a =1.010.5,b =1.010.6,c =0.60.5,则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >b >cD .b >a >c答案D解析解法一:因为函数f (x )=1.01x 是增函数,且0.6>0.5>0,所以1.010.6>1.010.5>1,即b >a >1.因为函数φ(x )=0.6x 是减函数,且0.5>0,所以0.60.5<0.60=1,即c <1.综上,b >a >c .故选D.解法二:因为函数f (x )=1.01x 是增函数,且0.6>0.5,所以1.010.6>1.010.5,即b >a .因为函数h (x )=x 0.5在(0,+∞)上单调递增,且1.01>0.6>0,所以1.010.5>0.60.5,即a >c .综上,b >a >c .故选D.【通性通法】比较两个指数式的大小时,尽量化成同底或同指.(1)当底数相同,指数不同时,构造同一指数函数,然后利用指数函数的性质比较大小.(2)当指数相同,底数不同时,构造两个指数函数,利用图象比较大小;或构造同一幂函数,然后利用幂函数的性质比较大小.(3)当底数不同,指数也不同时,常借助1,0等中间量进行比较.【巩固迁移】5.(2023·福建泉州高三质检)已知a -13,b -23,c ()A .a >b >cB .c >b >aC .c >a >bD .b >a >c答案C解析-13-23,y 在R 上是增函数,-13-23,即c >a >b .考向2解简单的指数方程或不等式例4(1)(多选)若4x -4y <5-x -5-y ,则下列关系式正确的是()A .x <yB .y -3>x -3C.x >y <3-x答案AD解析由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f (x )=4x -5-x ,则f (x )<f (y ).因为g (x )=4x ,h (x )=-5-x 在R 上都是增函数,所以f (x )在R 上是增函数,所以x <y ,故A 正确;因为G (x )=x -3在(0,+∞)和(-∞,0)上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y 在R 上是减函数,且x <y ,,<3-x ,故D 正确.故选AD.(2)已知实数a ≠1,函数f (x )x ,x ≥0,a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.答案12解析当a <1时,41-a =21,解得a =12;当a >1时,2a -(1-a )=4a -1,无解.故a 的值为12.【通性通法】(1)解指数方程的依据:a f (x )=a g (x )(a >0,且a ≠1)⇔f (x )=g (x ).(2)解指数不等式的思路方法:对于形如a x >a b (a >0,且a ≠1)的不等式,需借助函数y =a x 的单调性求解,如果a 的取值不确定,则需分a >1与0<a <1两种情况讨论;而对于形如a x >b 的不等式,需先将b 转化为以a 为底的指数幂的形式,再借助函数y =a x 的单调性求解.【巩固迁移】6.函数y =(0.5x-8)-12的定义域为________.答案(-∞,-3)解析因为y =(0.5x -8)-12=10.5x -8,所以0.5x -8>0,则2-x >23,即-x >3,解得x <-3,故函数y =(0.5x-8)-12的定义域为(-∞,-3).7.当0<x <12时,方程a x =1x (a >0,且a ≠1)有解,则实数a 的取值范围是________.答案(4,+∞)解析依题意,当x ,y =a x 与y =1x 的图象有交点,作出y =1x的部分图象,如图所示,>1,12>2,解得a>4.考向3与指数函数有关的复合函数问题例5(1)函数f(x)=3-x2+1的值域为________.答案(0,3]解析设t=-x2+1,则t≤1,所以0<3t≤3,故函数f(x)的值域为(0,3].(2)函数yx-+17的单调递增区间为________.答案[-2,+∞)解析设t>0,又y=t2-8t+17=(t-4)2+1在(0,4]上单调递减,在(4,+∞)上单调递增.≤4,得x≥-2,>4,得x<-2,而函数t在R上单调递减,所以函数yx-+17的单调递增区间为[-2,+∞).【通性通法】涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.【巩固迁移】8.(多选)已知定义在[-1,1]上的函数f(x)=-2·9x+4·3x,则下列结论中正确的是() A.f(x)的单调递减区间是[0,1]B.f(x)的单调递增区间是[-1,1]C.f(x)的最大值是f(0)=2D.f(x)的最小值是f(1)=-6答案ACD解析设t=3x,x∈[-1,1],则t=3x是增函数,且t∈13,3,又函数y=-2t2+4t=-2(t-1)2+2在13,1上单调递增,在[1,3]上单调递减,因此f(x)在[-1,0]上单调递增,在[0,1]上单调递减,故A正确,B错误;f(x)max=f(0)=2,故C正确;f(-1)=109,f(1)=-6,因此f (x )的最小值是f (1)=-6,故D 正确.故选ACD.9.若函数f (x )2+2x +3,19,则f (x )的单调递增区间是________.答案(-∞,-1]解析∵y 是减函数,且f (x ),19,∴t =ax 2+2x +3有最小值2,则a >0且12a -224a =2,解得a =1,因此t =x 2+2x +3的单调递减区间是(-∞,-1],故f (x )的单调递增区间是(-∞,-1].课时作业一、单项选择题1.(2024·内蒙古阿拉善盟第一中学高三期末)已知集合A ={x |32x -1≥1},B ={x |6x 2-x -2<0},则A ∪B =()A.12,-12,12-12,+∞答案D解析集合A ={x |32x -1≥1}=12,+B ={x |6x 2-x -2<0}={x |(3x -2)(2x +1)<0}=-12,所以A ∪B -12,+故选D.2.(2024·山东枣庄高三模拟)已知指数函数y =a x 的图象如图所示,则y =ax 2+x 的图象顶点横坐标的取值范围是()-12,-12,+∞答案A解析由图可知,a ∈(0,1),而y =ax 2+x =-14a (a ≠0),其顶点横坐标为x =-12a,所以-12a∈∞,故选A.3.已知函数f (x )=11+2x ,则对任意实数x ,有()A .f (-x )+f (x )=0B .f (-x )-f (x )=0C .f (-x )+f (x )=1D .f (-x )-f (x )=13答案C解析f (-x )+f (x )=11+2-x +11+2x =2x 1+2x +11+2x =1,故A 错误,C 正确;f (-x )-f (x )=11+2-x-11+2x =2x 1+2x -11+2x =2x -12x +1=1-22x +1,不是常数,故B ,D 错误.故选C.4.已知a =243,b =425,c =513,则()A .c <b <aB .a <b <cC .b <a <cD .c <a <b答案A 解析因为a =243=423,b =425,所以a =423>425=b ,因为b =425=(46)115=4096115,c =513=(55)115=3125115,所以b >c .综上所述,a >b >c .故选A.5.(2024·江苏连云港海滨中学高三学情检测)若函数f (x )=a x (a >0,且a ≠1)在[-1,2]上的最大值为4,最小值为m ,则实数m 的值为()A.12B.1142C.116D.12或116答案D解析当a >1时,f (x )=a x 在[-1,2]上单调递增,则f (x )max =f (2)=a 2=4,解得a =2,此时f (x )=2x ,m =f (x )min =2-1=12;当0<a <1时,f (x )=a x 在[-1,2]上单调递减,所以f (x )max =f (-1)=a -1=4,解得a =14,此时f (x ),m =f (x )min =f (2)=116.综上所述,实数m 的值为12或116.故选D.6.(2023·新课标Ⅰ卷)设函数f (x )=2x (x -a )在区间(0,1)上单调递减,则a 的取值范围是()A .(-∞,-2]B .[-2,0)C .(0,2]D .[2,+∞)答案D解析函数y =2x 在R 上单调递增,而函数f (x )=2x (x -a )在区间(0,1)上单调递减,则函数y =x (x -a )-a 24在区间(0,1)上单调递减,因此a2≥1,解得a ≥2,所以a 的取值范围是[2,+∞).故选D.7.(2023·辽宁名校联盟联考)已知函数f (x )满足f (x )x -2,x >0,-2-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1)答案B解析当x >0时,-x <0,f (-x )=2-2x =-(2x -2)=-f (x );当x <0时,-x >0,f (-x )=2-x-2=-(2-2-x )=-f (x ),则函数f (x )为奇函数,所以f (a )>f (-a )=-f (a ),即f (a )>0,作出函数f (x )的图象,如图所示,由图象可得,实数a 的取值范围为(-1,0)∪(1,+∞).故选B.8.(2024·福建漳州四校期末)已知正数a ,b ,c 满足2a -1=4,3b -1=6,4c -1=8,则下列判断正确的是()A .a <b <cB .a <c <bC .c <b <aD .c <a <b答案A解析由已知可得a =2,b =2,c =2,则a ,b ,c 可分别看作直线y =2-x 和y ,y ,y 的图象的交点的横坐标,画出直线y =2-x 和y ,y ,y 的大致图象,如图所示,由图象可知a <b <c .故选A.二、多项选择题9.下列各式中成立的是()=n 7m 17(n >0,m >0)B .-1234=3-3C.39=33D .[(a 3)2(b 2)3]-13=a -2b -2(a >0,b >0)答案BCD解析=n 7m7=n 7m -7(n >0,m >0),故A 错误;-1234=-3412=-313=3-3,故B 正确;39=332=332=33,故C 正确;[(a 3)2(b 2)3]-13=(a 6b 6)-13=a -2b -2(a >0,b >0),故D 正确.故选BCD.10.已知函数f (x )=3x -13x +1,下列说法正确的是()A .f (x )的图象关于原点对称B .f (x )的图象关于直线x =1对称C .f (x )的值域为(-1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0答案AC解析由f (-x )=3-x -13-x +1=-3x -13x +1=-f (x ),可得函数f (x )为奇函数,所以A 正确;因为f (0)=0,f (2)=45,f (0)≠f (2),所以B 错误;设y =3x -13x +1,可得3x =1+y 1-y ,所以1+y 1-y >0,即1+y y -1<0,解得-1<y <1,即函数f (x )的值域为(-1,1),所以C 正确;f (x )=3x -13x +1=1-23x +1为增函数,所以D 错误.故选AC.三、填空题11.0.25-12-(-2×160)2×(2-23)3+32×(4-13)-1=________.答案3解析原式=[(0.5)2]-12-(-2×1)2×2-2+213×2231-4×14+2=2-1+2=3.12.不等式10x -6x -3x ≥1的解集为________.答案[1,+∞)解析由10x -6x -3x ≥1,≤1.令f (x ),因为y =,y ,y 均为R 上的减函数,则f (x )在R 上单调递减,且f (1)=1,所以f (x )≤f (1),所以x ≥1,故不等式10x -6x -3x ≥1的解集为[1,+∞).13.若函数f (x )=|2x -a |-1的值域为[-1,+∞),则实数a 的取值范围为________.答案(0,+∞)解析令g (x )=|2x -a |,由题意得g (x )的值域为[0,+∞),又y =2x 的值域为(0,+∞),所以-a <0,解得a >0.14.已知函数f (x )x -a ,x ≤0,x +a ,x >0,关于x 的不等式f (x )≤f (2)的解集为I ,若I(-∞,2],则实数a 的取值范围是________.答案(-∞,-1)解析当a ≥0时,结合图象可得f (x )≤f (2)的解集是(-∞,2],不符合题意.当a <0时,2-a>2a ,由于f (x )在区间(-∞,0]和(0,2]上单调递增,所以要使f (x )≤f (2)的解集I 满足I(-∞,2],则2-a >f (2)=22+a ,解得a <-1.综上,实数a 的取值范围是(-∞,-1).四、解答题15.(2024·辽宁沈阳东北育才学校高三月考)已知函数f (x )是定义在R 上的奇函数,且函数g (x )=f (x )+e x 是定义在R 上的偶函数.(1)求函数f (x )的解析式;(2)求不等式f (x )≥34的解集.解(1)∵g (x )=f (x )+e x 是定义在R 上的偶函数,∴g (-x )=g (x ),即f (-x )+e -x =f (x )+e x ,∵f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴-f (x )+e -x =f (x )+e x ,∴f (x )=e -x -e x2.(2)由(1),知e -x -e x 2≥34,得2e -x -2e x -3≥0,即2(e x )2+3e x -2≤0,令t =e x ,t >0,则2t 2+3t -2≤0,解得0<t ≤12,∴0<e x ≤12,∴x ≤-ln 2,∴不等式f (x )≥34的解集为(-∞,-ln 2].16.(2024·山东菏泽高三期中)已知函数f (x )3+x.(1)解关于x 的不等式f (x 3+ax +1,a ∈R ;(2)若∃x ∈(1,3),∀m ∈(1,2),f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0,求实数n 的取值范围.解(1)3+x3+ax +1,得x 3+x <x 3+ax +1,即(1-a )x <1.当1-a =0,即a =1时,不等式恒成立,则f (x 3+ax +1的解集为R ;当1-a >0,即a <1时,x <11-a,则f (x 3+ax +1|x 当1-a <0,即a >1时,x >11-a,则f (x 3+ax +1|x 综上所述,当a =1时,不等式的解集是R ;当a <1时,|x当a >1时,|x (2)因为y =x 3和y =x 均为增函数,所以y =x 3+x 是增函数,因为y 是减函数,所以f (x )是减函数,则g (x )=f (x )-x 是减函数.由f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0可得,g (2mnx -4)=f (2mnx -4)-(2mnx -4)≤f (x 2+nx )-(x 2+nx )=g (x 2+nx ),所以2mnx -4≥x 2+nx ,所以2mn -n ≥x +4x ,又x +4x≥2x ·4x =4,当且仅当x =4x,即x =2时,不等式取等号,即∀m ∈(1,2),2mn -n ≥4恒成立,由一次函数性质可知n -n ≥4,n -n ≥4,解得n ≥4,所以实数n 的取值范围是[4,+∞).17.(多选)已知函数f (x )=a |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则下列说法正确的是()A .a +b =0B .若f (x )=f (y ),且x ≠y ,则x +y =0C .若x <y <0,则f (x )<f (y )D .f (x )的值域为[0,2)答案ABD解析∵函数f (x )=a |+b 的图象过原点,∴a +b =0,即b =-a ,则f (x )=a |-a ,又f (x )的图象无限接近直线y =2,但又不与该直线相交,∴b =2,a =-2,f (x )=-|+2,故A 正确;由于f (x )为偶函数,且f (x )在[0,+∞)上单调递增,故若f (x )=f (y ),且x ≠y ,则x =-y ,即x +y =0,故B 正确;由于f (x )=2-|在(-∞,0)上单调递减,故若x <y <0,则f (x )>f (y ),故C 错误;|∈(0,1],∴f (x )=-|+2∈[0,2),故D 正确.故选ABD.18.(多选)已知实数a ,b 满足3a =6b ,则下列关系式可能成立的是()A .a =bB .0<b <aC .a <b <0D .1<a <b答案ABC解析由题意,在同一坐标系内分别画出函数y =3x 和y =6x 的图象,如图所示,由图象知,当a =b =0时,3a =6b =1,所以A 可能成立;作出直线y =k ,当k >1时,若3a =6b =k ,则0<b <a ,所以B 可能成立;当0<k <1时,若3a =6b =k ,则a <b <0,所以C 可能成立.故选ABC.19.(2023·广东珠海一中阶段考试)对于函数f (x ),若其定义域内存在实数x 满足f (-x )=-f (x ),则称f (x )为“准奇函数”.若函数f (x )=e x -2e x +1,则f (x )________(是,不是)“准奇函数”;若g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,则实数m 的取值范围为________.答案不是-54,-1解析假设f (x )为“准奇函数”,则存在x 满足f (-x )=-f (x ),∴e -x -2e -x +1=-e x -2e x +1有解,整理得e x =-1,显然无解,∴f (x )不是“准奇函数”.∵g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,∴2-x+m =-2x -m 在[-1,1]上有解,∴2m =-(2x +2-x)在[-1,1]上有解,令2x =t ∈12,2,∴2m t ∈12,2上有解,又函数y =t +1t在12,,在(1,2]上单调递增,且t =12时,y =52,t =2时,y =52,∴y min =1+1=2,y max =52,∴y =t +1t 的值域为2,52,∴2m ∈-52,-2,解得m ∈-54,-1.。
第5讲指数与指数函数[考纲解读]1。
理解有理指数幂的含义,掌握指数幂的运算,并能通过具体实例了解实数指数幂的意义.2。
理解指数函数的概念,理解指数函数的单调性并掌握指数函数的图象及其通过的特殊点.(重点、难点)3。
通过具体实例,了解指数函数模型的实际背景,并体会指数函数是一类重要的函数模型.[考向预测] 从近三年高考情况来看,本讲是高考中的命题热点.预测2020年高考主要与函数的图象、最值、比较大小、指数函数图象过定点为命题方向;也有可能与其他知识相结合进行考查.1.根式2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:a错误!=错误!(a>0,m,n∈N*且n〉1).②正数的负分数指数幂:a-错误!=错误!=错误!(a〉0,m,n∈N*且n〉1).③0的正分数指数幂等于错误!0;0的负分数指数幂错误!没有意义.(2)有理数指数幂的性质①a r a s=错误!a r+s(a>0,r,s∈Q);②(a r)s=错误!a rs(a>0,r,s∈Q);③(ab)r=错误!a r b r(a〉0,b〉0,r∈Q).3.指数函数的图象与性质y=a x(a〉0且a≠1)a>10〈a〈1图象1.概念辨析(1)错误!与(错误!)n都等于a(n∈N*).()(2)[(-2)6] 错误!=(-2)6×错误!=(-2)3=-8.()(3)函数y=3·2x与y=2x+1都不是指数函数.( )(4)若a m〈a n(a〉0,且a≠1),则m〈n.( )答案(1)×(2)×(3)√(4)×2.小题热身(1)函数y=a x-a(a〉0,且a≠1)的图象可能是( )答案C解析函数y=a x-a的图象过点(1,0),排除A,B,D。
(2)化简错误!的结果是________.答案-错误!解析由题意得x〈0,所以错误!=错误!=错误!=错误!=-错误!。
1.(0.027)-13-⎝ ⎛⎭⎪⎫-17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0=( )A .45B .40C .-45D .-40解析:原式=⎝ ⎛⎭⎪⎫271 000-13-72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45.故选C.答案:C2.(2013·揭阳二模)已知全集U =R ,A ={x |y =2x-1},则∁U A =( ) A .[0,+∞) B .(-∞,0) C .(0,+∞) D .(-∞,0]解析:集合A 即函数y =2x -1的定义域,由2x-1≥0,求得x ≥0,即A =[0,+∞),故∁U A =(-∞,0),故选B.答案:B3.(2013·北京东城区模拟)在同一坐标系中,函数y =2x与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称解析:因为y =⎝ ⎛⎭⎪⎫12x =2-x ,所以它与函数y =2x的图象关于y 轴对称.故选A.答案:A4.函数F (x )=⎝ ⎛⎭⎪⎫1+22x -1·f (x )(x ≠0)是偶函数,且f (x )不恒等于零,则 f (x )( ) A .是奇函数B .可能是奇函数,也可能是偶函数C .是偶函数D .不是奇函数,也不是偶函数解析:设g (x )=1+22x -1,则g (x )+g (-x )=1+22x -1+1+22-x -1=2+22x -1+2×2x1-2x =2-x -2x-1=0.∴g (x )是奇函数.又F (x )=g (x )·f (x )(x ≠0)为偶函数,∴f (x )为奇函数.故选A.答案:A5.(2013·广东汕尾二模)已知函数y =2x -a x(a ≠2)是奇函数,则函数y =log a x 是( )A .增函数B .减函数C .常数函数D .增函数或减函数解析:因为函数y =2x -a x (a ≠2)是奇函数,所以必有2x -a x =-(2-x -a -x),化简可得(2x -a x )⎝ ⎛⎭⎪⎫1-12x a x =0,因为a ≠2,所以2x -a x≠0,所以必有1-12x a x =0,解得a =12,故y =log a x =log 12x 是减函数.故选B.答案:B6.设函数f (x )=a -|x |(a >0且a ≠1),f (2)=4,则( ) A .f (-2)>f (-1) B .f (-1)>f (-2) C .f (1)>f (2) D .f (-2)>f (2)解析:因为f (2)=4,即a -2=4,所以a =12,所以f (x )=⎝ ⎛⎭⎪⎫12-|x |=2|x |,所以f (-2)>f (-1),故选A.答案:A7.已知函数f (x )=a x +a -x(a >0且a ≠1),且f (1)=3,则f (0)+f (1)+f (2)的值是________.解析:∵f (1)=a +1a=3,f (0)=2,f (2)=a 2+a -2=(a +a -1)2-2=7, ∴f (1)+f (0)+f (2)=12.答案:128.(2013·北京西城区一模)已知函数f (x )=⎩⎪⎨⎪⎧x 12,0≤x ≤9,x 2+x ,-2≤x <0.则f (x )的零点是________;f (x )的值域是________.解析:当0≤x ≤9时,由x 12=0得,x =0;当-2≤x <0时,由x 2+x =0,得x =-1,所以函数零点为-1和0.当0≤x ≤9时,f (x )=x 12,所以0≤f (x )≤3;当-2≤x <0,f (x )=x 2+x =⎝ ⎛⎭⎪⎫x +122-14,所以此时-14≤f (x )≤2,综上-14≤f (x )≤3,即函数的值域为⎣⎢⎡⎦⎥⎤-14,3. 答案:-1和0 ⎣⎢⎡⎦⎥⎤-14,39.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时,总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②指数函数f (x )=2x(x ∈R )是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数.其中的真命题是____________(写出所有真命题的序号).解析:对于①,若f (x 1)=f (x 2),则x 1=±x 2,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件.答案:②③④10.已知函数f (x )=a x -1a x +1(a >1),(1)判断函数的奇偶性; (2)求该函数的值域;(3)证明:f (x )是R 上的增函数.(1)解析:∵定义域为R ,且f (-x )=a -x -1a -x +1=1-a x1+a x=-f (x ),∴f (x )是奇函数.(2)解析:f (x )=a x +1-2a x +1=1-2a x +1,∵a x+1>1,∴0<2a x +1<2,即f (x )的值域为(-1,1).(3)证明:设x 1,x 2∈R 且x 1<x 2,f (x 1)-f (x 2)=ax 1-1ax 1+1-ax 2-1ax 2+1=2ax 1-2ax 2ax 1+ax 2+<0(∵分母大于零,且ax 1<ax 2), ∴f (x )是R 上的增函数.11.已知函数f (x )=a ·2x +b ·3x,其中常数a ,b 满足ab ≠0. (1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时x 的取值范围.解析:(1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,则 f (x 1)-f (x 2)=a (2x 1-2x 2)+b (3x 1-3x 2). ∵2x 1<2x 2,a >0⇒a (2x 1-2x 2)<0, 3x 1<3x 2,b >0⇒b (3x 1-3x 2)<0,∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 当a <0,b <0时,同理,函数f (x )在R 上是减函数.(2)f (x +1)-f (x )=a ·2x +2b ·3x>0.当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ; 当a >0,b <0时,⎝⎛⎭⎫32x <-a 2b ,则x <log 1.5⎝⎛⎭⎫-a 2b。
2013年高考数学总复习(山东专用)第二章第5课时 指数函数 课时闯关(含解析)一、选择题1.化简416x 8y 4(x <0,y <0)得( ) A .2x 2yB .2xyC .4x 2yD .-2x 2y 解析:选D.416x 8y 4=(16x 8y 4)=[24(-x )8·(-y )4] =24· ·(-x )8· ·(-y )4· =2(-x )2(-y )=-2x 2y .2.(2012·保定质检)已知a =5-12,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的关系为( ) A .m +n <0 B .m +n >0C .m >nD .m <n 解析:选D.∵0<5-12<1,∴f (x )=a x =⎝ ⎛⎭⎪⎫5-12x ,且f (x )在R 上单调递减,又∵f (m )>f (n ),∴m <n ,故选D.3.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于( )A .5B .7C .9D .11解析:选B.由f (a )=3得2a +2-a =3,∴(2a +2-a )2=9,即22a +2-2a +2=9.所以22a +2-2a =7,故f (2a )=22a +2-2a =7.故选B.4.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( ) A .(-∞,2] B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B.由f (1)=19得a 2=19, ∴a =13(a =-13舍去),即f (x )=(13)|2x -4|. 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.故选B.5.定义一种运算:a ⊗b =⎩⎪⎨⎪⎧ a a ≥b b a <b ,已知函数f (x )=2x⊗(3-x ),那么函数y =f (x +1)的大致图象是( )1414141414解析:选B.由题意得函数f (x )=⎩⎪⎨⎪⎧ 2x ,x ≥13-x ,x <1,所以函数f (x )的大致图象如图所示,函数f (x +1)的图象可由函数f (x )的图象向左平移1个单位得到,故选B.二、填空题6.函数y =(14)-|x |的值域为________. 解析:-|x |≤0,∴(14)-|x |≥1,即y ≥1. ∴值域为[1,+∞).答案:[1,+∞) 7.(0.002)- -10(5-2)-1+(2-3)0=________.解析:原式=(1500)- -105-2+1=500 -10(5+2)+1 =105-105-20+1=-19.答案:-198.(2012·洛阳质检)设函数f (x )=⎩⎪⎨⎪⎧ 2x ,x <0g x ,x >0,若f (x )是奇函数,则g (2)的值是________.解析:令x >0,则-x <0,∴f (-x )=2-x ,又∵f (x )是奇函数,∴f (x )=-f (-x ),∴f (x )=-2-x ,∴g (x )=-2-x ,∴g (2)=-2-2=-14. 答案:-14三、解答题9.求函数y =(13)x 2-4x ,x ∈[0,5)的值域. 解:令u =x 2-4x ,x ∈[0,5),则-4≤u <5,∴(13)5<y ≤(13)-4,1243<y ≤81,即值域为(1243,81]. 10.已知f (x )=|2x -1|.求函数f (x )的单调区间.解:由f (x )=|2x -1|=⎩⎪⎨⎪⎧2x -1,x ≥0,1-2x ,x <0. 121212可作出函数的图象如图.因此函数f(x)在(-∞,0)上递减;函数f(x)在[0,+∞)上递增.11.已知f(x)=aa2-1(a x-a-x)(a>0且a≠1).(1)判断f(x)的奇偶性;(2)讨论f(x)的单调性;(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.解:(1)函数定义域为R,关于原点对称.又因为f(-x)=aa2-1(a-x-a x)=-f(x),所以f(x)为奇函数.(2)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a-x为增函数,所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x为减函数.所以f(x)为增函数.故当a>0,且a≠1时,f(x)在定义域内是增函数.(3)由(2)知f(x)在R上是增函数,∴在区间[-1,1]上为增函数.所以f(-1)≤f(x)≤f(1),∴f(x)min=f(-1)=aa2-1(a-1-a)=aa2-1·1-a2a=-1,∴要使f(x)≥b在[-1,1]上恒成立,则只需b≤-1,故b的取值范围是(-∞,-1].。
2023年高考数学总复习第二章函数概念与基本初等函数第5节指数与指数函数考试要求1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,12,13的指数函数的图像;4.体会指数函数是一类重要的函数模型.1.根式的概念及性质(1)概念:式子na 叫作根式,其中n 叫作根指数,a 叫作被开方数.(2)性质:(na )n =a (a 使na 有意义);当n 为奇数时,na n =a ,当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.3.指数幂的运算性质实数指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈R .4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫作指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.(2)指数函数的图像与性质a >10<a <1图像定义域R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1;当x <0时,0<y <1当x <0时,y >1;当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1.画指数函数y =a x (a >0,且a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),12.指数函数y =a x (a >0,且a ≠1)的图像和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.3.在第一象限内,指数函数y =a x (a >0,且a ≠1)的图像越高,底数越大.1.思考辨析(在括号内打“√”或“×”)(1)4(-4)4=-4.()(2)分数指数幂a mn 可以理解为mn 个a 相乘.()(3)函数y =2x -1是指数函数.()(4)函数y =a x2+1(a >1)的值域是(0,+∞).()2.(易错题)若函数f (x )=(a 2-3)·a x 为指数函数,则a =________.3.(易错题)函数y =21x -1的值域是________.4.函数f (x )=a x -1+2(a >0且a ≠1)的图像恒过定点________.5.(2021·贵阳一中月考)3213-76+814×42--2323________.6.已知a 35-13,b 35-14,c =3234,则a ,b ,c 的大小关系是________.考点一指数幂的运算1.计算:823--780+4(3-π)4+[(-2)6]12=________.2.[(0.06415)-2.5]23-3338-π0=________.3.(2021·沧州七校联考1412·(4ab -1)3(0.1)-1·(a 3·b -3)12(a >0,b >0)=________.4.已知f (x )=3x +3-x ,f (b )=4,则f (2b )=________.考点二指数函数的图像及应用例1(1)已知实数a ,b 满足等式2022a =2023b ,下列等式一定不成立的是()A.a =b =0B.a <b <0C.0<a <bD.0<b <a(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.训练1(1)函数f (x )=a x -b 的图像如图所示,其中a ,b 为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0(2)如果函数y =|3x -1|+m 的图像不经过第二象限,则实数m 的取值范围是________.考点三解决与指数函数性质有关的问题角度1比较指数式的大小例2(1)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是() A.a<b<c B.a<c<bC.b<a<cD.b<c<a(2)若e a+πb≥e-b+π-a,下列结论一定成立的是()A.a+b≤0B.a-b≥0C.a-b≤0D.a+b≥0角度2解简单的指数方程或不等式例3(1)已知实数a≠1,函数f(x)4x,x≥0,2a-x,x<0,若f(1-a)=f(a-1),则a的值为________.(2)若2x2+114x-2,则函数y=2x的值域是()A.18,2 B.18,2C.-∞,18 D.[2,+∞)角度3指数函数性质的综合应用例4(1)不等式4x-2x+1+a>0,对任意x∈R都成立,则实数a的取值范围是________.(2)已知定义域为R的函数f(x)=-12+12x+1,则关于t的不等式f(t2-2t)+f(2t2-1)<0的解集为________.训练2(1)(2021·郑州调研)已知函数f(x)=4x-12x,a=f(20.3),b=f(0.20.3),c=f(log0.32),则a,b,c的大小关系为()A.c<b<aB.b<a<cC.b<c<aD.c<a<b(2)若函数f (x )2+2x +3,19,则f (x )的单调递增区间是______.(3)函数y +1在区间[-3,2]上的值域是________.1.若函数f (x )=a x (a >0,且a ≠1)f (-1)=()A.1B.2C.3D.32.(2021·成都诊断)不论a 为何值,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是()113.(2022·哈尔滨质检)函数y =a x -1a(a >0,且a ≠1)的图像可能是()4.(2020·天津卷)设a =30.7,b 0.8,c =log 0.70.8,则a ,b ,c 的大小关系为()A.a <b <cB.b <a <cC.b <c <aD.c <a <b5.(2021·衡水中学检测)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是()A.(-2,1)B.(-4,3)C.(-3,4)D.(-1,2)6.(2020·新高考山东卷)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.化简:(a23·b-1)-12·a-12·b136a·b5(a>0,b>0)=________.8.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是____________.9.已知函数f(x),a≤x<0,x2+2x,0≤x≤4的值域是[-8,1],则实数a的取值范围是________.10.已知定义域为R的函数f(x)=-2x+b2x+1+2为奇函数.(1)求b的值;(2)任意t∈R,f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.11.已知函数f(x)=4x+m2x是奇函数.(1)求实数m的值;(2)设g(x)=2x+1-a,若函数f(x)与g(x)的图像有公共点,求实数a的取值范围.12.若关于x的方程|a x-1|=2a(a>0,且a≠1)有两个不相等的实根,则a的取值范围是()A.0,12(1,+∞) B.0,12C.12,1 D.(1,+∞)13.(2022·邯郸模拟)设f(x)|2x-1|,x≤2,-x+5,x>2,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)14.已知定义在R上的函数f(x)=2x-12|x|.(1)若f(x)=32,求x的值;(2)若2t f(2t)+mf(t)≥0对任意t∈[1,2]恒成立,求实数m的取值范围.。
第二章 函数与导数第5课时 函数的图象1. 函数f(x)=2x +1x -1图象的对称中心的坐标是________.答案:(1,2)解析:f(x)=2+3x -1.2. 函数f(x)=(2-a 2)x +a 的图象在区间[0,1]上恒在x 轴上方,则实数a 的取值范围是________.答案:(0,2)解析:由题意,只需⎩⎪⎨⎪⎧f (0)>0,f (1)>0,即可.3. 设函数y =f(x)是定义在R 上,则函数y =f(x -1)与y =f(1-x)的图象关于直线________对称.答案:x =1解析:由y =f(1-x)=f[-(x -1)],知y =f(1-x)的图象是由y =f(-x)的图象向右平移1个单位而得,而函数y =f(x -1)的图象是由y =f(x)的图象向右平移1个单位而得,函数y =f(-x)与y =f(x)的图象关于直线x =0对称,所以函数y =f(x -1)与y =f(1-x)的图象关于直线x =1对称.4. 函数f(x)=|x 2-ax +a|(a>0)的单调递增区间是________.答案:⎣⎡⎦⎤-a 2,0和⎣⎡⎭⎫a2,+∞ 5. 不等式lg(-x)<x +1的解集是________. 答案:(-1,0)6. 任取x 1、x 2∈(a ,b),且x 1≠x 2,若f ⎝⎛⎭⎫x 1+x 22>12[f(x 1)+f(x 2)],则称f(x)是(a ,b)上的凸函数.在下列图象中,是凸函数图象的是________.(填序号)答案:④7. 已知函数y =f(x)的周期为2,当x ∈[-1,1]时 f(x)=x 2,那么函数y =f(x)的图象与函数y =|lgx|的图象的交点共有________个.答案:10解析:根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:可验证当x =10时,y =|lg10|=1;当0<x<10时,|lgx|<1;x>10时,|lgx|>1.因此结合图象及数据特点y =f(x)与y =|lgx|的图象交点共有10个.8. 已知a >0,且a ≠1,f(x)=x 2-a x ,当x ∈(-1,1)时,均有f(x)<12,则实数a 的取值范围是________.答案:⎣⎡⎭⎫12,1∪(1,2]解析:由题知,当x ∈(-1,1)时,f(x)=x 2-a x <12,即x 2-12<a x .在同一坐标系中分别作出二次函数y =x 2-12,指数函数y =a x 的图象,如图,当x ∈(-1,1)时,要使指数函数的图象均在二次函数图象的上方,只需12≤a ≤2且a ≠1.故实数a 的取值范围是12≤a <1或1<a ≤2.9. 作出下列函数的图象,并根据图象说出函数的单调区间. (1) y =|3x -1|;(2) y =|x -2|(x +1).解:(1) y =|3x -1|=⎩⎪⎨⎪⎧3x -1,x ≥0,1-3x,x<0,图象如下,其单调增区间是(0,+∞),单调减区间是(-∞,0).(2) 由y =|x -2|(x +1)=⎩⎪⎨⎪⎧-⎝⎛⎭⎫x -122+94,x<2,⎝⎛⎭⎫x -122-94,x ≥2,图象如下,其单调增区间是⎝⎛⎭⎫-∞,12和(2,+∞),单调减区间是⎝⎛⎭⎫12,2.10. 已知定理:“若a 、b 为常数,g(x)满足g(a +x)+g(a -x)=2b ,则函数y =g(x)的图象关于点(a ,b)中心对称”.已知函数f(x)=-1+1a -x.(1) 试证明函数f(x)的图象关于点(a ,-1)中心对称;(2) 当x ∈[a -2,a -1]时,求证:f(x)∈⎣⎡⎦⎤-12,0.证明:(1) ∵ f(a +x)+f(a -x)=⎣⎡⎦⎤-1+1a -(a +x )+⎣⎡⎦⎤-1+1a -(a -x )=-2,∴ 函数f(x)的图象关于点(a ,-1)中心对称.(2) 由f(x)=-1+1a -x =-1-1x -a,知f(x)在(-∞,a)和(a ,+∞)上均为增函数,∴ f(x)在[a -2,a -1]上单调递增,从而f(x)∈[f(a -2),f(a -1)],即f(x)∈⎣⎡⎦⎤-12,0. 11. 已知a 、b 是实数,函数f(x)=ax +b|x -1|(x ∈R ).(1) 若a 、b ∈(-2,2),且函数f(x)在(0,+∞)内存在最大值,试在平面直角坐标系xOy 内,求出动点(a ,b)运动区域的面积;(2) 若b>0,且关于x 的不等式f(x)<0的解集中的整数恰有2个,试求ab的取值范围.解:(1) f(x)=⎩⎪⎨⎪⎧(a -b )x +b ,x ≤1,(a +b )x -b ,x>1,结合f(x)的图象知,f(x)在(0,+∞)内存在最大值的充要条件是⎩⎪⎨⎪⎧a -b ≥0,a +b ≤0,且两个等号不同时成立.当a 、b ∈(-2,2)时,点(a ,b)运动区域的面积为4.(2) f(x)<0b|x -1|<-ax ,即|x -1|<-abx.在同一坐标系内作出函数p(x)=|x -1|和q(x)=-a b x 的图象,由图可知,-23≤a b <-12.。
第5讲 指数与指数函数, )1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a mn=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编 化简12-(-1)0的结果为( ) A .-9 B .7 C .-10 D .9B2.教材习题改编 设x +x -1=3,则x 2+x -2的值为( ) A .9 B .7 C .5D .3B 因为x +x -1=3.所以(x +x -1)2=9,即x 2+x -2+2=9, 所以x 2+x -2=7. 3.函数f (x )=ax -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y =1-x 的图象上.4.教材习题改编 若a >1且a3x +1>a-2x,则x 的取值范围为________.因为a >1,所以y =a x为增函数, 又a3x +1>a-2x,所以3x +1>-2x ,即x >-15.⎝ ⎛⎭⎪⎫-15,+∞ 5.若指数函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝ ⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312. 【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab 3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100. (2)原式=2(4ab -1)3210a 32b -32=16a 32b-3210a 32b -32=85.指数函数的图象及应用(1)函数f (x )=ax -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)若方程|3x-1|=k 有一解,则k 的取值范围为________. 【解析】 (1)由f (x )=a x -b的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=ax -b的图象是在f (x )=a x的基础上向左平移得到的,所以b <0.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点, 所以方程有一解.【答案】 (1)D (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=1-e |x |的图象大致是( )A 将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.若关于x 的方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根转化为函数y =|a x-1|与y =2a 有两个交点.(1)当0<a <1时,如图①,所以0<2a <1,即 0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.⎝⎛⎭⎪⎫0,12指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下四个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质;(4)求解指数型函数中参数的取值范围.(1)(2016·高考全国卷丙)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b(2)(2017·福州模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(3)若偶函数f (x )满足f (x )=2x-4(x ≥0),则不等式f (x -2)>0的解集为________. 【解析】 (1)因为a =243=1613,b =425=1615,c =2513,且幂函数y =x 13在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .(2)当a <1时,41-a=21,所以a =12;当a >1时,代入不成立. (3)f (x )为偶函数,当x <0时,f (x )=f (-x )=2-x-4.所以f (x )=⎩⎪⎨⎪⎧2x-4,x ≥0,2-x -4,x <0,当f (x -2)>0时,有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0 或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0, 解得x >4或x <0.所以不等式的解集为{x |x >4或x <0}. 【答案】 (1)A (2)12(3){x |x >4或x <0}有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小1.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <cD .b <c <aC 因为指数函数y =0.6x在(-∞,+∞)上为减函数, 所以0.60.6>0.61.5,即a >b ,又0<0.60.6<1,1.50.6>1,所以a <c ,故选C.角度二 解简单的指数方程或不等式 2.(2015·高考江苏卷)不等式2x 2-x<4的解集为________.因为2x 2-x<4,所以2x 2-x<22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质3.(2017·太原模拟)函数y =2x -2-x是( ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减A 令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C 、D.又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数.角度四 求解指数型函数中参数的取值范围4.已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a<1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b=-32.-32, )——利用换元法求解指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x 与a 2x (log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数f (x )=2a ·4x-2x-1.(1)当a =1时,求函数f (x )在x ∈上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. (1)当a =1时,f (x )=2·4x-2x-1=2(2x )2-2x-1, 令t =2x,x ∈,则t ∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1,故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0在(0,+∞)上有解.记g (m )=2am 2-m -1, 当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立,当a >0时,开口向上, 对称轴m =14a >0,过点(0,-1)必有一个根为正, 所以a >0.综上所述,a 的取值范围是(0,+∞)., )1.化简(a 23·b -1)-12·a -12·b 136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD .1aD 解析] 原式=a -13b 12·a -12b 13a 16b 56=a-13-12-16·b 12+13-56=1a. 2.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .B .C .D . 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9,可知C 正确.3.函数y =a x-1a(a >0,a ≠1)的图象可能是()D 当a >1时函数单调递增,且函数图象过点⎝ ⎛⎭⎪⎫0,1-1a ,因为0<1-1a<1,故A ,B均不正确;当0<a <1时,函数单调递减,且函数图象恒过点⎝ ⎛⎭⎪⎫0,1-1a ,因为1-1a<0,所以选D.4.(2017·德州模拟)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <aD 因为y =⎝ ⎛⎭⎪⎫25x为减函数,所以b <c ,又因为y =x 25在(0,+∞)上为增函数,所以a >c , 所以b <c <a ,故选D.5.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1). 6.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在上递增,在,则实数a =________. 当a >1时,f (x )=a x-1在上为增函数,则a 2-1=2,所以a =±3,又因为a >1,所以a = 3. 当0<a <1时,f (x )=a x-1在上为减函数, 又因为f (0)=0≠2,所以0<a <1不成立. 综上可知,a = 3.38.已知函数f (x )=e x-e -xe x +e -x ,若f (a )=-12,则f (-a )=________.因为f (x )=e x -e -xe x +e -x ,f (a )=-12,所以e a -e -ae a +e -a =-12.所以f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a =-⎝ ⎛⎭⎪⎫-12=12.129.(2017·济宁月考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是________.当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).(0,1)∪(2,+∞)10.(2017·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.由于f (x )=max{e |x |,e|x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x ,x <1. 当x ≥1时,f (x )≥e ,且当x =1时,取得最小值e ; 当x <1时,f (x )>e. 故f (x )的最小值为f (1)=e. e11.已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3, 结合a >0,且a ≠1,解得⎩⎪⎨⎪⎧a =2,b =3.所以f (x )=3·2x.要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在x ∈(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上的最小值不小于m 即可.因为函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上为减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x有最小值56. 所以只需m ≤56即可.即m 的取值范围为⎝⎛⎦⎥⎤-∞,56.12.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个B 函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x的图象如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b得,a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立. 13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值为1. 14.已知定义在R 上的函数f (x )=2x-12|x |,(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈恒成立,求实数m 的取值范围. (1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x -12x =32,得2·22x -3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x =-12,因为2x>0,所以x =1.(2)当t ∈时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1),因为22t-1>0, 所以m ≥-(22t+1), 因为t ∈,所以-(22t+1)∈, 故实数m 的取值范围是[-5,+∞).。
第二章第5课时指数函数课时闯关(含答案解析)一、选择题
1.化简4
16x8y4(x<0,y<0)得( )
A.2x2y B.2xy C.4x2y D.-2x2y
解析:选D.4
16x8y4
=(16x8y4)
=[24(-x)8·(-y)4] =24··(-x)8··(-y)4·
=2(-x)2(-y)=-2x2y.
2.(2012·保定质检)已知a=
5-1
2
,函数f(x)=a x,若实数m、n满足f(m)>f(n),则m、n的关系为( )
A.m+n<0 B.m+n>0
C.m>n D.m<n
解析:选D.∵0<
5-1
2
<1,∴f(x)=a x=
⎝
⎛
⎭
⎪
⎫
5-1
2
x,且f(x)在R上单调递减,又∵f(m)>f(n),∴m<n,故选D.
3.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于( )
A.5 B.7
C.9 D.11
解析:选B.由f(a)=3得2a+2-a=3,
∴(2a+2-a)2=9,即22a+2-2a+2=9.
所以22a+2-2a=7,故f(2a)=22a+2-2a=7.故选B.
4.若函数f(x)=a|2x-4|(a>0,a≠1),满足f(1)=
1
9
,则f(x)的单调递减区间是( ) A.(-∞,2] B.[2,+∞)
C.[-2,+∞) D.(-∞,-2]
解析:选B.由f(1)=
1
9
得a2=
1
9
,
∴a=
1
3
(a=-
1
3
舍去),即f(x)=(
1
3
)|2x-4|.
由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.故选B.
5.定义一种运算:a⊗b=
⎩⎪
⎨
⎪⎧a a≥b
b a<b
,已知函数f(x)=2x⊗(3-x),那么函数y=f(x+1)的大致图象是( )
1
4
1
4
1
4
1
4
1
4
解析:选B.由题意得函数f (x )=⎩⎪⎨⎪⎧ 2x ,x ≥13-x ,x <1,所以函数f (x )的大致图象如图所示,函
数f (x +1)的图象可由函数f (x )的图象向左平移1个单位得到,故选B.
二、填空题
6.函数y =(14)-|x |的值域为________. 解析:-|x |≤0,∴(14
)-|x |≥1,即y ≥1. ∴值域为[1,+∞).
答案:[1,+∞) 7.(0.002)- -10(5-2)-1+(2-3)0=________.
解析:原式=(1500)- -105-2
+1=500 -10(5+2)+1 =105-105-20+1=-19.
答案:-19
8.(2012·洛阳质检)设函数f (x )=⎩⎪⎨⎪⎧ 2x ,x <0g x ,x >0,若f (x )是奇函数,则g (2)的值是
________.
解析:令x >0,则-x <0,∴f (-x )=2-x ,
又∵f (x )是奇函数,∴f (x )=-f (-x ),
∴f (x )=-2-x ,∴g (x )=-2-x ,
∴g (2)=-2-2=-14
. 答案:-14
三、解答题
9.求函数y =(13
)x 2-4x ,x ∈[0,5)的值域. 解:令u =x 2-4x ,x ∈[0,5),则-4≤u <5,
∴(13)5<y ≤(13)-4,1243<y ≤81,即值域为(1243
,81]. 10.已知f (x )=|2x -1|.求函数f (x )的单调区间.
解:由f (x )=|2x -1|
=⎩⎪⎨⎪⎧
2x -1,x ≥0,1-2x ,x <0. 121212
可作出函数的图象如图.因此函数f(x)在(-∞,0)上递减;函数f(x)在[0,+∞)上递增.
11.已知f(x)=a
a2-1
(a x-a-x)(a>0且a≠1).
(1)判断f(x)的奇偶性;
(2)讨论f(x)的单调性;
(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.解:(1)函数定义域为R,关于原点对称.
又因为f(-x)=a
a2-1
(a-x-a x)=-f(x),
所以f(x)为奇函数.
(2)当a>1时,a2-1>0,
y=a x为增函数,y=a-x为减函数,从而y=a x-a-x为增函数,所以f(x)为增函数.
当0<a<1时,a2-1<0,
y=a x为减函数,y=a-x为增函数,
从而y=a x-a-x为减函数.
所以f(x)为增函数.
故当a>0,且a≠1时,f(x)在定义域内是增函数.
(3)由(2)知f(x)在R上是增函数,
∴在区间[-1,1]上为增函数.
所以f(-1)≤f(x)≤f(1),
∴f(x)min=f(-1)=a
a2-1
(a-1-a)
=
a
a2-1
·
1-a2
a
=-1,
∴要使f(x)≥b在[-1,1]上恒成立,则只需b≤-1,
故b的取值范围是(-∞,-1].。