石墨烯产业现状及发展
- 格式:pdf
- 大小:161.28 KB
- 文档页数:4
石墨烯的研究和发展趋势石墨烯被誉为“二十一世纪最重要的材料之一”,其具有高强度、高导电性、高热导性、良好的透明性、柔韧性及耐腐蚀性等多种优良性能,吸引着科学家和工程师的极大关注。
本文将从石墨烯的基本结构和性质、石墨烯的研究历程、产业化进展以及未来的发展趋势等方面阐述石墨烯的研究和发展趋势。
一、石墨烯的基本结构和性质石墨烯是由单层碳原子构成的二维晶体结构,具有独特的二维结构。
以图1为例,石墨烯由一个或多个六元环组成,碳原子通过共价键相连,形成六角形的晶格结构。
其中,每个碳原子有三个共价键和一个未饱和的π键,形成一个sp2杂化轨道。
从宏观上看,石墨烯的厚度仅为0.33纳米,但其面积却可以达到平方米级别。
石墨烯因其独特的结构,具有多种优异的物理、化学和电学性质,是一种具有极高应用价值的新型材料。
石墨烯的性质之一是高导电性。
由于其电荷载流子是电子,且具有极高的电子迁移速率,所以石墨烯的电导率要高于铜。
石墨烯的热传导率也非常高,比铜高达10倍以上。
此外,石墨烯具有良好的透明度和柔韧性,对紫外线和红外线也有很好的吸收和反射能力,因此被广泛应用于透明电子器件和导电柔性器件。
二、石墨烯的研究历程石墨烯的发现可以追溯到1947年,当时瑞士化学家Hanns-Peter Boehm发现石墨烯在电子显微镜下具有“聚集”现象。
但直到2004年,英国曼彻斯特大学的安德烈·盖姆(Andre Geim)和孔德·诺沃肖洛夫(Konstantin Novoselov)两位研究员通过一种新颖的机械剥离法成功分离出石墨烯,同时发现了石墨烯的导电性和稳定性。
他们的发现为石墨烯的研究开启了新的篇章。
自此以后,石墨烯的研究发展取得了突飞猛进的进展。
石墨烯团队开创了预测、制备和研究石墨烯的学科领域,石墨烯的研究成果也获得了多种国际奖项的荣誉。
石墨烯成为自第二次世界大战以来引起全球科学家共同关注的新型材料。
三、石墨烯的产业化进展我们刚刚谈到石墨烯在研究上的重要性,而在工业化方面,石墨烯也有广泛的应用前景。
2023年石墨行业市场前景分析石墨是一种重要的非金属矿产资源,是工业生产中不可替代的原材料之一。
石墨行业的发展,涉及到诸多领域,如新材料制备、能源储存、电子元器件、石墨烯等,具有广泛的应用前景。
本文将从市场需求、供应现状、行业竞争、政策环境等方面,系统分析石墨行业的市场前景。
一、市场需求石墨是一种热稳定、化学惰性、导电导热性强、摩擦系数低、具有优良机械性能的材料,具有广泛的应用前景。
当前,石墨的主要应用领域包括电力钢铁、有色金属、碳素材料和电子元器件等。
其中,电子元器件是石墨的重要应用领域之一,占据了石墨消费总量的70%以上。
当前,互联网、智能终端、新能源汽车等行业的快速发展,为石墨行业带来了巨大的市场需求。
二、供应现状石墨是一种重要的矿产资源,其资源分布也比较广泛。
全球石墨产量约为130万吨/年,其中中国的石墨产量占全球的70%以上。
中国石墨资源主要分布在山东、贵州、内蒙古等地,具有较高的开采难度和成本。
当前,石墨行业的供给存在严重不足的问题。
一方面,石墨产能过剩,石墨企业面临着较大的利润压力;另一方面,市场对高品质石墨的需求不断增长,中国石墨行业需要大力提高品质,改善石墨产业的发展形式。
三、行业竞争中国石墨行业存在一定的竞争格局。
中国石墨市场主要由中国北方石墨、五矿地质总局、河北大有等企业主导,这些企业在中国石墨行业中地位较为重要。
同样,全球石墨行业也存在一定的竞争格局,主要竞争者包括印度Tirupati、韩国Graphite Korea等企业。
当前,中国石墨市场竞争加剧,企业需要通过提升技术、降低成本、优化产品结构等措施,来提高市场竞争力。
四、政策环境政策环境对石墨行业的市场前景有着重要的影响。
2019年,我国出台了《关于促进石墨烯等新兴产业创新发展的若干政策》,明确了支持石墨烯等新兴产业发展的相关措施。
同时,我国还出台了一系列环保政策,对石墨等化学品企业的生产经营形成了一定影响。
未来,随着我国产业结构调整和产业政策的创新,石墨行业的市场前景将逐步趋向稳健发展。
石墨烯材料的应用前景和挑战石墨烯是一种新兴的纳米材料,是纯碳原子的二维晶格,拥有许多独特的性质。
自从2004年被发现以来,在科学和工业应用领域引起了极大的关注。
石墨烯的应用前景广阔,但其中也存在着一些挑战。
本文将分析石墨烯材料的应用前景和挑战。
一、石墨烯的应用前景石墨烯具有很多优异的物理和化学性质,如极高的电导率、强度、韧性和导热性等。
由于这些特性,石墨烯能够被应用在各种领域。
1. 电子领域石墨烯的最大应用可能就是在电子领域。
石墨烯具有极高的电导率和电子迁移率,可用于制造超薄、高速和低功耗的电子元件。
它可以被用于制造晶体管、振荡器、传感器、太阳能电池等。
另外,石墨烯还可以用于构建高强度、低密度的纳米电线。
2. 生物医学领域石墨烯在生物医学领域也有许多应用。
由于其高表面积和二维结构,它可以被用于制造药物递送系统,如纳米药物递送载体。
同时,石墨烯还具有良好的生物相容性,可以用于紫外线和红外线光疗、组织工程等。
3. 能源领域石墨烯也有着很大的应用前景在能源领域。
石墨烯和其他材料复合,可以用于制造超级电池和超级电容器。
同时,石墨烯还可以作为太阳能电池中的电极材料。
4. 其他领域除了上述领域,石墨烯还可以应用在诸如航天、化学、材料科学等领域。
二、石墨烯的挑战尽管石墨烯具有很多优异的特性,但它的应用仍然面临着一些挑战。
1. 制备技术仍不完善石墨烯的制备技术向来是一个难题。
尽管制备技术不断改进,但仍然存在一些技术上的挑战。
例如,单层石墨烯的生长需要高温和高真空,这很难在大规模生产中进行。
此外,石墨烯制备过程中容易受到杂质和缺陷的影响。
2. 质量和可靠性不稳定石墨烯材料的质量和可靠性不太稳定。
由于制备工艺、工作环境、物理和化学过程等因素的影响,石墨烯的性质可能会发生变化。
这也使得石墨烯在实际应用中面临着一些挑战。
3. 稳定性和可持续性石墨烯的稳定性和可持续性也是石墨烯面临的挑战之一。
石墨烯很容易受到氧化、水解和光降解的影响,在使用过程中容易失去效果。
石墨烯的应用现状及发展石墨烯是一种由碳原子形成的二维薄膜,具有单层结构、高比表面积、强的力学特性和电学特性等优良性质。
自2004年石墨烯被发现以来,人们已经发现了其在许多领域的广泛应用前景,包括电子学、能源、生物医学、化学催化和材料等领域。
本文将就石墨烯的现状及未来发展做一个概括性介绍。
1. 电子学应用石墨烯是电子迁移速度最快的材料之一,这使得石墨烯在电子学领域具有广阔的应用前景。
石墨烯的电学性质主要基于电荷移动和相互作用,它在高频电子器件、太阳能电池、柔性电子学和传感器等应用方面都有潜力。
2. 能源应用石墨烯的高电导性和低电子转移电阻使其成为能源存储材料的理想候选者。
石墨烯和其衍生物已在超级电容器、锂离子电池、燃料电池和太阳能电池等能源体系中被成功应用,同时还有石墨烯纳米线、石墨烯石墨烯氧化物等材料也正逐渐被广泛应用于新型能源系统中。
3. 生物医学应用石墨烯因其具有优异的生物相容性、生物功能化进一步拓展了它在生物医学领域的应用。
石墨烯在生物成像、控制释放和药物传递等方面发挥着重要作用。
石墨烯的电学和热学性质、强半导体特性使其成为一种重要的生物传感器,被用于在应用生物医学和生化传感领域的研究。
4. 化学催化石墨烯的高比表面积和化学稳定性赋予了它在催化领域的应用潜力。
石墨烯可以与不同的催化剂相结合形成多种复合材料,这些复合物在氧化还原催化、光催化和热催化等领域中拥有良好的应用前景,可以在催化剂的降低、催化过程的高选择性和催化剂重复利用等方面发挥重要作用。
5. 材料应用石墨烯的高比表面积和高电导率使得它成为一种理想的复合材料和增强材料,目前已经被广泛应用于汽车和航空领域等。
石墨烯纳米管等复合材料已经被用于制备纳米传感器,同时在消费电子、高性能运动器材等领域得到了广泛应用。
石墨烯的应用前景非常广泛,但是现有工艺、设备等硬件条件限制了大规模石墨烯材料的生产。
同时,石墨烯具有较高的价格,这也限制了其在一定程度上的应用。
2024年石墨烯市场调研报告1. 引言石墨烯是一种由碳原子单层构成的奇特材料,具有出色的导电性、导热性和机械强度。
近年来,石墨烯在各个领域展示出广阔的应用前景,引起了广泛的关注。
本报告旨在对石墨烯市场进行调研,了解其现状与发展趋势。
2. 石墨烯产业概况2.1 石墨烯的定义和特点石墨烯是一种由单层碳原子构成的二维材料,具有高度的结构稳定性和化学惰性。
它的高导电性、高导热性和优异机械性能使其在诸多领域具备广泛的应用潜力。
2.2 石墨烯的制备方法目前,石墨烯的制备方法主要包括机械剥离法、化学气相沉积法、化学剥离法和还原氧化石墨烯法等。
每种制备方法都有其特点和适用范围。
2.3 石墨烯的应用领域石墨烯在材料科学、电子器件、能源存储、生物医药和环境保护等领域具有广泛的应用。
例如,石墨烯可以用于制备高性能的传感器、电池、超级电容器和柔性显示屏等。
3. 石墨烯市场概况3.1 全球石墨烯市场规模和发展趋势石墨烯市场在过去几年取得了快速发展,全球市场规模逐渐扩大。
预计未来几年,石墨烯市场将持续增长,并且在诸多领域有望取得重大突破。
3.2 中国石墨烯市场现状与前景中国是石墨烯产业的重要市场,拥有庞大的潜在需求和产业基础。
目前,中国的石墨烯市场发展迅速,但与国外主要竞争对手相比,整体水平仍有差距。
中国石墨烯企业应加强技术创新和市场拓展,提高国内市场占有率。
4. 石墨烯市场竞争格局4.1 全球石墨烯产业竞争格局全球石墨烯市场竞争激烈,主要由美国、欧洲和亚洲国家主导。
美国和欧洲拥有较早的石墨烯研究起点和较为成熟的产业链,而亚洲国家如中国和韩国在石墨烯技术研究和市场开发方面也有显著进展。
4.2 中国石墨烯产业竞争格局中国的石墨烯产业竞争格局逐渐形成,部分企业在技术研发、生产能力和市场销售等方面具备一定竞争力。
然而,与国外主要竞争对手相比,中国石墨烯企业仍面临着诸多挑战,包括技术水平不高、产品质量不稳定等问题。
5. 石墨烯市场发展趋势5.1 技术创新推动市场发展石墨烯市场在不断推动技术创新的力量下不断发展。
石墨烯技术产业现状及发展建议1 石墨烯技术产业:现状及发展建议石墨烯是一种具有罕见性能的单层原子层碳材料,2018年被国际认可并列入《国际材料科学与工程术语》,是一种具有重要的基础理论和应用价值的新型功能性材料,其中很多应用前景令人振奋。
石墨烯技术产业目前在材料、仪器、制造及设备、电子零部件、电池及储能、高速隧道及地下管道、建筑材料、生物医疗、海洋技术、传感器、汽车行业有着广泛的应用,同时在比较早期石墨烯的发展过程中,我国石墨烯技术产业也取得了突飞猛进的发展,2018年我国石墨烯行业综合市场规模已达20.2亿元,2019年市场规模仍在持续上升的态势,预计到2020年市场规模将超过50亿元。
然而,石墨烯技术产业仍面临着系统性发展困境。
从制造过程中质量控制、研发石墨烯应用遇到的基础科学未解决问题以及国内产业链发展缓慢等方面,已经明显阻碍了石墨烯产业的发展步伐。
针对石墨烯技术产业这些发展困境,其发展建议如下:(1)推动到产业化。
政府应支持石墨烯在基础理论与原材料研发、应用领域的技术和工艺的创新,加快现有石墨烯关键材料、设备和半成品行业的企业化、产业化发展。
(2)发展价值链。
不断优化我国石墨烯的价值链结构,加快从原料到半成品到成品的转化过程,研发先进的端到端解决方案。
(3)建立发展团队。
着力培养高端石墨烯技术研发人才,建立专业服务团队,加强市场营销服务,以实现石墨烯技术及应用的深入开发和实践。
总的来说,石墨烯技术的发展潜力巨大,政府需要继续支持其在基础理论与原材料研发、应用领域的技术和工艺的创新,培育多元发展团队,极大地提升石墨烯产业资源整合能力,最终让石墨烯技术得以全面应用。
全球石墨产业供需现状分析一、石墨的分类及应用领域石墨被国际公认为是“21世纪支撑高新技术发展的战略资源”。
欧盟等国家根据经济重要性和供应风险将石墨列入关键矿产名单,我国2016年将晶质石墨确定为战略性矿产,工业和信息化部将石墨烯入选为2019年工业强基工程“一条龙”应用计划。
未来天然石墨将被广泛地应用到高新技术领域,成为支撑高新技术发展的重要战略资源,对国家未来发展具有重要的战略意义。
石墨是工业体系中多个产业部门的基础性原料,对工业发展有重要作用,世界石墨的消费结构以制造耐火材料和铸造为主,石墨烯材料和高纯石墨、球形石墨、膨胀石墨等高端材料在新能源汽车、储能和环保等战略性新兴产业领域逐年迅速增长。
二、全球石墨行业市场现状分析全球石墨资源分布广泛又相对集中。
2012年,全球石墨储量为7680万吨,随着石墨在战略性新兴产业的应用不断提升,各国加大了石墨的勘查投入,到2019年全球石墨储量增至30000万吨,相比2012年增加了2.91倍。
2012年,全球石墨产量117万吨;2019年,全球石墨产量增至167.65万吨。
近年来,全球石墨勘查热度持续,石墨储量不断增加,天然石墨储采比呈持续快速增长的趋势。
中国是世界第一大石墨生产国,据统计,2019年中国石墨产量为125万吨,占比全球产量74.6%;莫桑比克2019年石墨产量为10万吨,居世界第二,占比全球产量6%,其巴拉马石墨矿是全球最大的石墨矿之一。
2019年巴西石墨产量为9.6万吨,占比全球5.7%,主要生产企业为巴西国家石墨有限公司,它是全球最大的天然晶质石墨生产矿山之一。
2019年马达加斯加石墨产量为4.7万吨,占比全球2.8%,马达加斯加Molo石墨矿是世界储量最大的大鳞片石墨矿之一。
2019年加拿大石墨产量为4万吨,占比全球2.4%,其特高密公司的石墨矿山和加工厂位于魁北克的依勒湖,石墨产量2.00万吨,碳含量94%~99.99%。
2019年印度石墨产量为3.5万吨,占比全球2.1%,主要生产企业有主要有泰米尔纳都矿产有限公司、蒂鲁帕蒂碳素公司和阿格拉瓦尔石墨工业公司。
2024年氧化石墨烯市场分析现状简介氧化石墨烯是一种石墨烯的衍生物,具有优异的电学、热学、机械和化学性质,被广泛应用于能源储存、传感器、催化剂等领域。
本文将对氧化石墨烯市场的现状进行分析,包括市场规模、应用领域、竞争格局等。
市场规模氧化石墨烯市场在近年来迅速发展,预计将保持高速增长。
根据市场研究公司的数据,2019年全球氧化石墨烯市场规模达到X亿美元,并预计到2025年将增长到X 亿美元。
应用领域氧化石墨烯在多个领域具有广泛的应用前景。
能源储存氧化石墨烯作为电容器和锂离子电池的电极材料,具有高比容量、长循环寿命和快速充放电等优势。
它可以被应用于电动汽车、可再生能源储存系统等领域。
传感器氧化石墨烯可以作为传感器的敏感层,实现对光、气体、压力等信号的高灵敏度检测。
它被广泛应用于环境监测、生物传感等领域。
催化剂氧化石墨烯由于其高比表面积和特殊的电子结构,在催化剂领域具有广泛的应用前景。
它可以用于电催化、光催化、电化学合成等反应中,提高催化效率和选择性。
其他领域氧化石墨烯还可以应用于导热材料、抗菌材料、防腐材料等领域,具有广泛的应用前景。
竞争格局当前,氧化石墨烯市场竞争激烈,存在着多家企业参与的局面。
主要竞争者包括国内外的石墨烯制造商、材料供应商、科研机构等。
生产商在氧化石墨烯生产环节,国内外的石墨烯制造商起到关键作用。
目前国内外的生产商已经建立了一定的生产能力,并且通过技术创新不断提高产品质量和降低成本。
材料供应商氧化石墨烯作为一种新型材料,需要大量的原材料供应。
目前国内外的材料供应商已经形成了一定规模,并且通过提供多样化的产品满足市场需求。
科研机构科研机构在氧化石墨烯市场中起到技术创新的关键作用。
它们通过开展基础研究和应用研究,推动了氧化石墨烯的进一步发展。
发展趋势氧化石墨烯市场的发展将受到多个因素的影响。
技术进步随着科技的不断进步,氧化石墨烯的制备技术和应用技术将不断改进和创新,推动市场的发展。
政策支持各国政府在新材料领域加大支持力度,为氧化石墨烯的发展提供了良好的政策环境。
石墨烯技术的应用及前景展望一、石墨烯简介石墨烯是一种单层厚度为纳米级的碳材料,具有极高的导电性、热导率、机械强度和超轻质量等优异性能。
其结构由一层层的强共价键连接而成的六角形碳原子组成,具有较强的化学稳定性和生物相容性。
自2004年石墨烯首次被制备出来以来,其受到了广泛的研究和关注,由此产生了许多的石墨烯应用技术。
二、石墨烯技术的应用领域1. 电子行业石墨烯作为半导体材料,能够极大地提高电子器件的性能和加工效率。
石墨烯晶体管、石墨烯场效应晶体管、石墨烯超快速电路等将成为未来电子技术的核心组成部分。
2. 光电行业石墨烯具有优异的光电性能,能够制备出高效率的光伏电池、高性能的光电传感器、高亮度、高稳定性的LED灯等,在光电行业具有广阔的应用前景。
3. 材料行业石墨烯具有很高的强度、硬度和韧性,可以被制备成各种复合材料,被广泛应用于建筑、汽车工业等领域。
4. 生物医学石墨烯具有极好的生物相容性和生物稳定性,可以用于生物医学材料的制备和医疗器械的研发。
石墨烯的超薄结构和强烈的光电响应性质可以用于制造生物传感器和绿色荧光剂,并在生物光子学中提供全新的解决方案。
三、石墨烯技术的前景石墨烯技术的广泛应用,将深刻地影响人类现代科技的发展方向。
由于石墨烯具有非常高效的导电性和热导率,可以用于新型节能材料、新型锂电池、高效率的热电材料等。
除此之外,石墨烯还可以被制备成高效的催化剂和光催化剂,能够用于环保、化学工业等众多领域。
石墨烯技术将帮助解决许多现代科技所面临的挑战,具有巨大的市场潜力和发展前景。
与此同时,围绕着石墨烯技术的研究也在不断地推进。
人们正在努力探索其应用范围,开发新的石墨烯制备方法和技术。
石墨烯的可控性、可扩展性以及生产成本的降低也成为了研究重点,这将更有利于石墨烯技术的推广和工业化应用。
总之,石墨烯技术将会在未来的科技发展道路中发挥越来越重要的作用。
石墨烯具有不同于其他材料的独特优异性能,其应用领域将逐渐拓展,未来还将会有更多的惊人应用被发掘出来。
石墨烯热度不减,为此小编又整理分析了该行业的主要特点。
一、当前发展石墨烯产业主要面临以下问题和挑战(一)高端应用技术有待突破。
石墨烯最具前景、高附加值的应用领域主要集中在电子信息、动力电池、医疗健康等新兴产业,但上述领域应用多处于技术攻关和储备期,离产业化仍有较长距离。
在集成电路、光电器件、传感器、信息存储等领域的石墨烯应用研究偏弱,技术储备、基础配套不足,取得产业突破尚需时日。
(二)传统产业应用效果不突出。
目前石墨烯应用主要是以“添加剂”形式对涂料、改性纤维、热管理器件等传统产品的性能进行改进,而现阶段石墨烯对这些传统材料的性能并没有“质”的提升。
如“石墨烯 ”涂料防腐性能以及润滑剂的润滑效果没有大数量级的提高。
石墨烯在强度、光学、电学等方面的超优异性能并未在产品中体现,“杀手锏”级、颠覆性的石墨烯应用技术和产品尚未出现。
(三)标准缺失导致概念混淆。
目前国家层面石墨烯材料标准尚未出台,部份企业与地方政府将石墨与石墨烯的概念混为一谈,学术界与企业界对石墨烯层数的标准判定也存在争议。
如一些企业宣称实现石墨烯量产,但多是晶格缺陷高、多层堆叠的类石墨烯产品,并非真正单层石墨烯;一些企业将“类石墨烯”产品甚至是纯石墨产品宣传为石墨烯产品,混淆市场。
二、下一步发展趋势和建议为此,应尊重产业发展规律,把握发展阶段和技术发展路径,聚焦重点基础研究和应用技术,构建健康有序的石墨烯产业发展格局。
(一)合理控制制备产能布局。
石墨烯现阶段主要作为材料添加剂,使用量极少,所需产能有限,产业发展的主要问题是优质产品开发不足,并非产能不足。
因此应对新上产能项目的市场前景进行评估,避免无效投资和资源浪费。
对存在环保和安全风险的石墨烯制备工艺,加强环保和安全把关。
(二)重点支持基础科学研究。
石墨烯产业仍处于技术攻坚期,基础研究是关键。
持续跟踪欧盟石墨烯旗舰计划和美国二维原子材料研究计划的进展,加强石墨烯基础研究,攻克一批制约应用发展的关键技术。
石墨烯产业现状及发展报告
一、概述
石墨烯,即单层石墨片,是由一层碳原子通过构成。
这种材料潜力巨大,集多种优异特性于一身,具有超强的导电性能、导热性能、机械强度,超高的载流子迁移率、透光性及超大的比表面积。
继富勒稀和碳纳米管之后,石墨烯成为被发现的又一里程碑式的新型碳纳米材料,引发了世界范围内的研究热潮。
作为碳的二维晶体结构,石墨烯的发现,最终使碳的同素异形体获得从零维的富勒稀、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系,即点、线、面、体的统一。
二、石墨烯的发展历程:
2004年英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯;
2006年3月佐治亚理工学院研究员宣布成功制造出石墨烯平面场效应晶体管,并基于此研究出以石墨烯为基材的电路;
2009年11月日本东北大学与会津大学通过合作研究发现,石墨烯可产生太赫兹光的电磁波。
研究人员在硅衬底上制作了石墨烯薄膜,将红外线照射到石墨烯薄膜上,只需很短时间就能放射出太赫兹光;
2009年12月1日在美国召开的材料科学国际会议上,日本富士通研究所宣布,他们用石墨烯制作出了几千个晶体管
2010年美国莱斯大学利用该石墨烯量子点,制作出单分子传感器;
2010年安德烈·海姆和康斯坦丁·诺沃肖洛夫,因“在二维石墨烯材料的开创性实验”,共同获得诺贝尔物理学奖;
2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1 550亿个循环操作,比之前的试验用晶体管快50%;
2012年1月上海江南石墨烯研究院对外发布,全球首款手机用石墨烯电容触摸屏在常州研制成功。
该成果经上海科学技术情报研究所和厦门大学查新,显示为国内首创,国外尚处于研发和概念机阶段;
2013年6月新加坡南洋理工大学的研究人员宣布,他们已经成功研发出了以石墨烯为原料制造图像传感器;
2013年12月全球首条年产300t石墨烯生产线在宁波慈溪建成投产,这是宁
波墨西科技有限公司千吨级石墨烯生产线项目首期工程;
2014年5月28日拥有全球首条年产300t石墨烯生产线的宁波墨西科技有限公司举行新产品发布会,标志着中国石墨烯产业化的成功;
2014年6月英国曼彻斯特大学(University of Manchester)国家石墨烯研究所(National Grapheme Institute)的研究人员们利用石墨烯作为添加材料,致力于探索得以减少电池尺寸与质量以及扩展电池寿命的各种新方法。
三、石墨烯的制备方法
石墨烯的基础研究和应用研究的前提是开发各种可靠的制备石墨烯的方法。
目前,制备石墨烯的方法主要包括机械剥离法、外延生长法、氧化还原法、液相剥离法、有机合成法、溶剂热法、化学气相沉积法等。
1)机械剥离法
机械剥离法是借助外力,克服石墨层片之间的范德华力作用,从石幾上直接将石墨烯剥离下来。
海姆等人就是采用了这种简单的机械剥离法成功从高定向热裂解石墨上剥离下单层石墨烯其基本思路是用胶带黏住石墨片,经过反撕扯剥离,从而最终获得石墨烦。
这种方法可以获得高质量的石墨烯尺寸一般在几微米至几十微米,甚至可达毫米量级,可以通过肉眼观察机械剥离被广泛用于基础研究以获得石墨烯本征的物理、化学性质,然而这种方法耗时较长、产率很低、且无法控制尺寸和厚度,更不能满足规模化生产的需要。
2)外延生长法
外延生长法是通过加热单晶或脱除来制备石墨烯。
将样品的表面通过氧化或氧气刻烛后,在超低压高真空环境下进行电子轰击,加热到°以除去表面的氧化物,继续升温到1000摄氏度,并保持恒温,即可获得石墨烯薄片,其厚度由加热温度决定。
外延生长法可以生长高质量的石墨烯,有利于电子器件的研究,但是这种方法的造价昂贵,产量很低,制备大面积具有单层厚度的石墨烯比较困难,而且由于基底跟石墨炼之间的作用很强,制备的石墨烯难以被转移,限制了其应用。
3)氧化还原法
氧化还原法是目前被广泛应用的可以大量制备石墨烯的方法。
这是一种自上而下的制备方法,起始原料是石墨。
将石墨氧化并分散在水中,然后采用肼还原制备石墨烯,并且可以调节PH值使还原石墨烯带负电荷以避免石墨烯的团聚。
,第一步,将石墨进行氧化处理,使其表面带上含氧官能团比如经基、梭基、裁基、
环氧基团等这些含氧官能团可以降低石墨层片间的范德华力,增加石墨片层的亲水性,便于分散在水中;第二步,将氧化石墨在水中超声剥离,形成均匀稳定的石墨烯氧化物胶体溶液;第三步,将石墨烯氧化物还原为石墨烯。
石墨烯氧化物是绝缘体,由于含有大量的官能团和缺陷,需要将其还原为石墨烯。
常用的还原方法化学还原和热还原等,但是由于还原石墨烯表面官能团的减少,导致其在水中的分散性变差,常采用共价或非共价功能化的方式对石墨烯进行修饰以改善其分散性。
4)液相分散法
超声分散法是通过直接将石墨或石墨层间化合物在特定溶剂(具有匹配表面能)中超声剥离与分散,再将得到的悬池液离心分离,除去厚层石墨,以获得剥离石墨炼的方法。
液相剥离法可以不经过氧化过程,不引入缺陷得到高质量石墨烯片,可以保留石墨烯优异的力学、电学、光学等性质,但是这种方法产率很低,过程繁琐,需要消耗大量昂贵的有机试剂,超声时间太长,而限制了获得的石墨烯片、子的大小。
5)化学气相沉积法
化学气相沉积(法制备石墨烯是指利用碳源(气态、液态、固态)在高温反应区中分解,释放碳原子在金属基底上沉积,并逐渐生长成连续的石墨烯薄膜的过程。
常用的金属基底包括铜箔和铝箔等,生成的石墨烯薄膜可以转移到其它的衬底上,并能够保持原有的透光性和导电性,在有机薄膜太阳能电池和触摸屏等领域具有广阔的应用前景。
四、应用前景
2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中用机械的方法——人工用胶带从石墨中分离出石墨烯,从而证实了石墨的烯类结构可以单独存在。
此前,这种结构一直被认为是假设性的结构,无法单独稳定存在。
两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。
石墨烯是目前已发现的最薄、最坚硬的纳米材料,以其极高的电子跃迁速率、透明度,极强的机械强度和优良的导电性能,被应用于超级电容器、集成电路、透明电极、海水淡化、太阳能电池、导热材料、感光器件等领域。
尤其是石墨烯具有10倍于商用硅片的高载流子迁移率,并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性,被普遍认为有望代替硅的最佳材料。
首先,石墨烯如果取代硅,有望让计算机处理器的运行速度快数百倍。
其次,
石墨烯有望引发触摸屏和显示器产品的革命,制造出可折叠、伸缩的显示器件。
再次,石墨烯可以推动超级电容器发展,使得同等体积的电容扩充5倍以上的容量。
此外,石墨烯加入锂电池电极中能够大幅提高导电性能。
石墨烯因其超出钢铁数十倍的强度,也有望被用于制造纸片般薄的超轻型飞机材料、超坚韧的防弹衣和“太空电梯”的缆线,并在这些领域引发革命性的突破。
作为一种技术含量极高的碳材料,石墨烯在半导体、光伏、锂电池、航天、军工、LED、触控屏等领域都将带来一次材料革命。
华为总裁任正非在接受媒体采访时声称,未来10 ~20年内会爆发一场技术革命,“我认为这个时代将来最大的颠覆,是石墨烯时代颠覆硅时代”,“现在芯片有极限宽度,硅的极限是7nm,已经临近边界了,石墨烯是技术革命的前沿”。
尽管石墨烯发展速度极快,从诞生到获得诺贝尔奖只用了短短的6年时间,但石墨烯的量产技术和巨大的生产成本一直成为制约其应用的最大难题。
推动石墨烯应用的首要基础,就是石墨烯的产业化,而推动其产业化的2个重要因素是量产技术的突破和价格的降低。
技术方面,媒体虽然报道了世界许多科研机构提出了制备石墨烯的不同方法,但一直停留在实验室阶段,距离真正的产业化还有很远的路程要走;价格方面,根据实验室方法制备的石墨烯售价达到3000 ~5000元/g,与传统材料相比,高昂的石墨烯价格让下游的应用企业望尘莫及。