导学案222用样本的数字特征估计总体的数字特征doc
- 格式:pdf
- 大小:421.73 KB
- 文档页数:3
§2.2.2用样本的数字特征估计总体的数字特征学习目标(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
重点难点重点:用样本平均数和标准差估计总体的平均数与标准差。
难点:能应用相关知识解决简单的实际问题。
学法指导在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
知识链接用样本的频率分布去估计总体的分布,当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
问题探究一、情景设置:美国NBA在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29.如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.二、探究新知:知识探究(一):众数、中位数和平均数思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?思考2:在城市居民月均用水量样本数据的频率分布直方图中(参考课本72页图2-2-5),你认为众数应在哪个小矩形内?由此估计总体的众数是什么?思考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?思考5:平均数是频率分布直方图的“重心”,在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少? 思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?思考7:从居民月均用水量样本数据可知,该样本的众数是 2.3,中位数是 2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会额成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说明什么问题?你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?知识探究(二):标准差样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7甲、乙两人本次射击的平均成绩分别为多少环?思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?思考3:对于样本数据x1,x2,…,xn ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?频率0.4 0.3 0.2 0.1 4 5 6 7 8 9 10 环数O (甲)环数 频率 0.40.3 0.2 0.14 5 6 7 8 9 O (乙)思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x1,x2,…,nx 的平均数为,则标准差的计算公式是:那么标准差的取值范围是什么?标准差为0的样本数据有何特点?思考5:对于一个容量为2的样本:()1212,x x x x 〈, 则1221,22x x x x x s +-==在数轴上,这两个统计数据有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响?知识补充:1.标准差的平方称为方差,有时用方差代替标准差测量样本数据的离散度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.3.对于城市居民月均用水量样本数据,其平均数 1.973x =,标准差s=0.868.在这100个数据中,落在区间(),x s x s -+=[1.105,2.841]外的有28个;落在区间()2,2x s x s -+=[0.237,3.709]外的只有4个; 落在区间()3,3x s x s -+=[-0.631,4.577]外的有0个.一般地,对于一个正态总体,数据落在区间(),x s x s -+、()2,2x s x s -+、()3,3x s x s -+内的百分比分别为68.3%、95.4%、99.7%,这个原理在产品质量控制中有着广泛的应用(参考教材P79“阅读与思考”).三、典例分析:例 1 计算甲、乙两名运动员的射击成绩的标准差,比较其射击水平的稳定性.甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7例 2 画出下列四组样本数据的条形图,说明他们的异同点. (1) 5,5,5,5,5,5,5,5,5;(2) 4,4,4,5,5,5,6,6,6;(3) 3,3,4,4,5,6,6,7,7;(4) 2,2,2,2,5,8,8,8,8.分析:先画出数据的直方图,22212()()()n x x x x x x s n-+-++-=L根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差。
一、知识点归纳整理:1. 中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据或中间两数的平均数叫这组数据的中位数2.众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数 (可能有多个或没有众数)3.平均数:n个数x1,x2,…,x n,x = 1n( x1+x2+…+x n )叫n个数的算术平均数,简称平均数4. 方差和标准差的符号和计算公式是怎样的?它们反映了这组数据哪方面的特征?答:方差和标准差分别用S 2和s表示.用表示一组数据的平均数,x1、x2、… x n表示n 个数据,则这组数据方差的计算公式是标准差的计算公式是方差和标准差反映的是一组数据与平均值的离散程度或一组数据的稳定程度.方差反映数据波动大小,方差越大,则波动越大, 越不稳定标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定.标准差越小,数据的离散程度就越小,也就越稳定.从标准差的定义可以看出,标准差s≥0,当s=0时,意味着所有的样本数据都等于样本平均数练习1:这三组数据的平均数、方差和标准差。
平均数方差标准差1、2、3、4、5 3 211、12、13、14、15 13 23、6、9、12、15 9 18撰稿人:赵志岩练习2:请你用上面发现的结论来解决以下的问题。
已知数据a1,a2,a3,…,a n的平均数为X,方差Y, 标准差Z, 则①数据a1+3,a2 +3,a3 +3,…,a n +3平均数为---------,方差为-------,标准差为----------。
②数据a1-3,a2 -3,a3 -3,…,a n -3平均数为----------,方差为--------,标准差为----------。
③数据3a1,3a2 ,3a3 ,…,3a n的平均数为-----------,方差为-----------,标准差为----------。
④数据2a1-3,2a2 -3,2a3 -3,…,2a n -3的平均数为----------,方差为---------,标准差为----------。
2。
2。
2 用样本的数字特征估计总体的数字特征一、教学目标1.能从样本数据中提取基本的数字特征,并做出合理的解释. 2.会求样本的众数、中位数、平均数.3.能从频率分布直方图中,求得众数、中位数、平均数. 二、教学重难点重点:根据实际问题,对样本数据提取基本的数字特征并做出合理解释,估计总体的基本数字特征;体会样本数字特征具有随机性.难点:在频率分布直方图中分析众数、中位数、平均数. 三、众数、中位数、平均数的概念 1。
众数的概念一组数据中重复出现次数_____的数叫做这组数的众数 2。
中位数的定义把一组数据按大小顺序排列,把处于_____位置的那个数称为这组数据的中位数; 当数据个数为奇数时,中位数是按大小顺序排列的____的那个数;当数据个数为偶数时,中位数是按大小顺序排列的最中间两个数的_________。
3.平均数的概念 如果有n 个数12,,,n x x x ,那么这n 个数的算术平均数就是这组数平均数,即例1:在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下: 甲运动员:7,8,6,8,6,5,8,10,7,4 乙运动员:9,5,7,8,7,6,8,6,7,7观察上述样本数据,分别求这些运动员成绩的众数,中位数与平均数? 甲运动员命中环数:众数: 中位数:平均数:786865810746.910x +++++++++==乙运动员命中环数:众数: 中位数:平均数:9578768677710x +++++++++==例2、在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:分别求这些运动员成绩的众数,中位数与平均数 。
众数(最多的): ;中位数(最中间的): 平均数 :四、众数、中位数、平均数与频率分布直方图的关系 思考1:如何从频率分布直方图中估计出众数的值?例3:在上一节调查的100位居民的月均用水量的问题中,这些样本数据的频率分布直方图如下所示:观察图形,估计出众数的思考2:如何从频率分布直方图中估计出中位数的值?在样本中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数反映到频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值. 所以,中位数在频率分布直方图中,就是使其左右小矩形面积和相等 思考3:如何从频率分布直方图中估计出平均数的值?例4:射击选手甲10次的射击情况,求其命中环数的平数2.54.5所以,平均数为:456272831010x ++⨯+⨯+⨯+=1122314567810101010101010=⨯+⨯+⨯+⨯+⨯+⨯即:平均数等于每个命中环数乘以该数的频率之和例5:100位居民月均用水量的频率分布表,求其平均数的估计值0.250.040.750.08 1.250.15 1.750.22 2.250.252.750.14 3.250.06 3.750.04 4.250.022.02x=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=所以,平均数的估计值=小矩形底边中点的横坐标乘以对应频率之和 思考4:怎么在样本的频率分布直方图中估计出平均数的值?平均数的估计值=每个小矩形的面积乘以小矩形底边中点的横坐标之和 五、反思与感悟 :众数:最高矩形端点的横坐标;中位数:直方图面积平分线与横轴交点的横坐标;平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和。
数学(高二上)导学案必修三第二章第二节课题:用样本估计总体二、合作探究归纳展示任务1 标准差问题平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,只有平均数还难以概括样本数据的实际状态.如:有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:甲:7879549107 4乙:9578768677如果你是教练,你应当如何对这次射击作出评价?思考1甲、乙两人本次射击的平均成绩分别为多少环?答经计算得:x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.思考2观察下图中两人成绩的频率分布条形图,你能说明其水平差异在哪里吗?答直观上看,还是有差异的.如:甲成绩比较分散,乙成绩相对集中.思考3对于甲乙的射击成绩除了画出频率分布条形图比较外,还有没有其它方法来说明两组数据的分散程度?答还经常用甲乙的极差与平均数一起比较说明数据的分散程度.甲的环数极差=10-4=6,乙的环数极差=9-5=4.它们在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息.显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.思考4 如何用数字去刻画这种分散程度呢?答 考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示 . 思考5 所谓“平均距离”,其含义如何理解?答 假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ).于是,样本数据是x 1,x 2,…,x n 到x 的“平均距离”是S =|x 1-x |+|x 2-x |+…+|x n -x |n .由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 思考6 标准差的取值范围如何?若s =0表示怎样的意义?答 从标准差的定义可以看出,标准差s ≥0,当s =0时,意味着所有的样本数据等于样本平均数. 任务2 方差思考1 方差的概念是怎样定义的?答 人们有时用标准差的平方s 2—方差来代替标准差,作为测量样本数据分散程度的工具,方差:s 2=1n ·[(x 1-x )2+(x 2-x )2+…+(x n -x )2].思考2 对于一个容量为2的样本:x 1,x 2(x 1<x 2),它们的平均数和标准差如果分别用x 和a 表示,那么x 和a 分别等于什么? 答 x =12(x 1+x 2),a =12(x 2-x 1).思考3 在数轴上,x 和a 有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响?答 x 和a 的几何意义如下图所示.说明了标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.思考4 现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?答 通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.例1求出问题中的甲乙两运动员射击成绩的标准差,并说明他们的成绩谁比较稳定?解x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.根据标准差的公式,s甲=110[(7-7)2+(8-7)2+…+(4-7)2]=2;同理可得s乙≈1.095.所以s甲>s乙.因此说明甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.跟踪训练1如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案 6.8任务3标准差及方差的应用例2画出下列四组样本数据的条形图,说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.解四组样本数据的条形图如下:四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83.它们有相同的平均数,但它们有不同的标准差,说明数据的分散程度是不一样的.跟踪训练2从甲、乙两种玉米中各抽10株,分别测得它们的株高如下:甲:25、41、40、37、22、14、19、39、21、42;乙:27、16、44、27、44、16、40、40、16、40;(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=30,x乙=110(27+16+44+27+44+16+40+40+16+40)=31,x甲<x乙.即乙种玉米的苗长得高.(2)由方差公式得:s2甲=110[(25-30)2+(41-30)2+…+(42-30)2]=104.2,同理s2乙=128.8,∴s2甲<s2乙.即甲种玉米的苗长得齐.答乙种玉米苗长得高,甲种玉米苗长得齐.例3甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.4625.3225.4525.3925.3625.3425.4225.4525.3825.4225.3925.4325.3925.4025.44的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.四、作业布置 1、基础知识:1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 答案 B2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( )A.1169B.367C .36D.677答案 B3.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13B .2,1C .4,13D .4,3答案 D4.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为________; (2)命中环数的标准差为________.。
2.2.2 用样本的数字特征估计总体的数字特征学习目标1.理解样本数据标准差的意义和作用,学会计算数据的标准差.2.会用样本的基本数字特征来估计总体的基本数字特征.知识点一 众数、中位数、平均数 众数、中位数、平均数定义(1)众数:一组数据中出现次数最多的数.(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.思考 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点? 答案 平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大. 知识点二 方差、标准差 标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种平均距离,一般用s 表示. s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为x . 知识拓展:平均数、方差公式的推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a , mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a . (2)设数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则①s 2=1n[(x 21+x 22+…+x 2n )-n x 2]; ②数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; ③数据ax 1,ax 2,…,ax n 的方差为a 2s 2;④数据ax 1+b ,ax 2+b ,…,ax n +b 的方差也为a 2s 2,标准差为as .1.中位数是一组数据中间的数.( × ) 2.众数是一组数据中出现次数最多的数.( √ )3.一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( √ ) 4.一组数据的标准差不大于极差.( √ )题型一 众数、中位数、平均数的计算例1 (1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为( ) A .85,85,85 B .87,85,86 C .87,85,85D .87,85,90(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8 答案 (1)C (2)C解析 (1)平均数为100+95+90×2+85×4+80+7510=87,众数为85,中位数为85.(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.由于甲组数据的中位数为15=10+x ,所以x =5.又乙组数据的平均数为9+15+(10+y )+18+245=16.8,所以y =8,所以x ,y 的值分别为5,8.反思感悟 平均数、众数、中位数的计算方法平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:分别求这些运动员成绩的众数、中位数与平均数.解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70.这组数据的平均数是x =117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69(m). 故17名运动员成绩的众数、中位数、平均数依次为1.75m ,1.70m,1.69m. 题型二 标准差、方差的计算及应用例2 甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数; (2)分别求出两组数据的方差;(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适? 解 (1)x 甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环), x乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环). (2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],得s 2甲=3,s 2乙=1.2. (3)x甲=x 乙,说明甲、乙两战士的平均水平相当.又s 2甲>s 2乙说明甲战士射击情况波动比乙大. 因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛. 反思感悟 (1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散. (3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg): 甲:102 101 99 98 103 98 99 乙:110 115 90 85 75 115 110 (1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定. 解 (1)采用的抽样方法是:系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100; x乙=17(110+115+90+85+75+115+110)=100; s 2甲=17[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]=17(4+1+1+4+9+4+1)≈3.43; s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]=17(100+225+100+225+625+225+100) ≈228.57.所以s 2甲<s 2乙,故甲车间产品较稳定.频率分布直方图与数字特征的综合应用典例 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1)求这次测试数学成绩的众数; (2)求这次测试数学成绩的中位数. 解 (1)知众数为70+802=75.(2)设中位数为x ,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x -70),所以x ≈73.3. 引申探究1.若本例条件不变,求数学成绩的平均分. 解 由题干图知这次数学成绩的平均分为40+502×0.005×10+50+602×0.015×10+60+702×0.02×10+70+802×0.03×10+80+902×0.025×10+90+1002×0.005×10=72.2.本例条件不变,求80分以上(含80分)的学生人数. 解 [80,90)分的频率为0.025×10=0.25, 频数为0.25×80=20.[90,100]分的频率为0.005×10=0.05, 频数为0.05×80=4.所以80分以上的学生人数为20+4=24.[素养评析] (1)利用频率分布直方图估计总体数字特征①众数是最高的矩形的底边中点的横坐标;②中位数左右两侧直方图的面积相等;③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.(2)利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.(3)在解决本题时,需要选择运算方法,掌握运算法则,求得运算结果,并根据结果进行合理推断,获得结论.这些都是数学核心素养的内含所在.1.某市2017年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是()A.19 B.20C.21.5 D.23答案 B解析由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.2.下列关于平均数、中位数、众数的说法中正确的一个是()A.中位数可以准确地反映出总体的情况B.平均数可以准确地反映出总体的情况C.众数可以准确地反映出总体的情况D.平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况答案 D3.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得的数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数B .平均数C .中位数D .标准差 答案 D4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1,a 2的大小与m 的值有关 答案 B解析 由茎叶图知,a 1=80+1+5+5+4+55=84,a 2=80+4+4+6+4+75=85,故选B.5.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________. 答案 16解析 设样本数据x 1,x 2,…,x 10的标准差为s ,则s =8, 可知数据2x 1-1,2x 2-1,…,2x 10-1的标准差为2s =16.高中数学必修三导学案1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.11。
编号:201203020202 使用时间:2013年 5 月 16 日编写人:审核人:班级:小组:姓名:组内评价:A.很好 B.较好 C.一般 D.较差个人评价:A.很好 B.较好 C.一般 D.较差教师评价:A.很好 B.较好 C.一般 D.较差课题:2.2.2用样本的数字特征估计总体的数字特征学习目标:1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差;2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;3. 会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
重点:用样本平均数和标准差估计总体的平均数与标准差。
难点:能应用相关知识解决简单的实际问题。
使用说明及学法指导:1.当天落实用10分钟左右的时间,阅读探究课本中的内容,熟记基础知识,自主高效预习。
2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题。
3. 将预习中不能解决的问题标出来,并写到“我的疑惑”处。
一.知识回顾1.作频率分布直方图分几个步骤?各步骤需要注意哪些问题?二.教材助读1.众数、中位数、平均数的概念众数:_______________________________________________________ 中位数:______________________________________________________ 平均数:______________________________________________________3.众数、中位数、平均数与频率分布直方图的关系:众数在样本数据的频率分布直方图中,就是______________________中位数左边和右边的直方图的________应该相等,由此可估计中位数的值。
平均数是直方图的___________________________________.4.标准差、方差方差s2=___________________________________________________ 标准差 s=____________________________________________________ 三.预习自测(自测题体现一定的基础性,又有一定的思维含量,只有“细心才对,思考才会”)1.下列各数字特征中,能反映一组数据离散程度的是()A.众数B.平均数C.标准差D.中位数2.3.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x为____________.我的疑惑?(请你将预习中未能解决的问题和疑惑的问题写下来,待课堂上与老师同学探究解决)一.学始于疑---我思考、我收获学习建议:请同学们用5分钟的时间认真思考这些问题,并结合预习中自己的疑惑开始下面的探究学习。