卫生统计学案例分析
- 格式:ppt
- 大小:447.50 KB
- 文档页数:17
案例分析—四格表确切概率法【例1-5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ22=3.134,P>0.05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485.7西药6(8.67)7(4.33)1346.2合计1892766.7【问题1-5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1)该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
该资料是按中西药的治疗结果(有效、无效)分类的计数资料完全随机设计方案。
(2)27例患者随机分配到中药组和西药组,属于例患者随机分配到中药组和西药组,属于完全随机设计方案(3)患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in2×2table)直接计算概率案例分析-卡方检验(一)【例1-1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1-1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1)该资料是按中西药疗效(有效、无效)分类的该资料是按中西药疗效(有效、无效)分类的二分类资料,即计二分类资料,即计数资料。
(2)随机抽取140例胃炎患者分成西药组和中药组,属于属于完全随机设完全随机设计方案。
卫生统计学案例引言卫生统计学是一门重要的研究领域,通过对卫生数据的收集、整理和分析,可以为公共卫生政策提供科学依据。
本文将通过一个卫生统计学案例,深入探讨如何使用统计方法分析健康数据,为决策者提供有关公共卫生的信息。
数据收集在卫生统计学中,数据收集是至关重要的一步。
我们需要从可靠的来源获取数据,并确保数据的准确性和完整性。
对于本次案例,我们以一座城市的健康调查数据为例进行分析。
数据整理数据整理包括数据清洗、数据转换和数据标准化等过程。
在清洗过程中,需要删除重复数据、处理缺失值和异常值等。
在转换过程中,可能需要将数据转换为统一的单位或变量类型。
在标准化过程中,可以使不同数据源之间的数据可以进行比较和分析。
数据分析在数据分析阶段,我们可以使用不同的统计方法来探索数据,揭示数据背后的趋势和关联性。
下面是一些常用的统计方法:描述统计描述统计是对数据进行总结和描述的方法。
通过计算均值、标准差、中位数等指标,我们可以了解数据的分布情况和集中趋势。
假设检验假设检验是通过对数据进行统计推断,判断某个假设是否成立。
在卫生统计学中,假设检验可以用来判断两组数据之间是否存在显著差异,或者某个因素对健康影响是否显著。
回归分析回归分析用于研究因变量和一个或多个自变量之间的关系。
在卫生统计学中,回归分析可以用来探究不同因素对人群健康状况的影响,并预测未来趋势。
结果与讨论在本案例中,我们对一座城市的健康调查数据进行了整理和分析。
以下是我们的主要发现:1.饮食习惯与慢性病发病率之间存在显著相关性。
人们饮食不健康的程度越高,慢性病发病率也越高。
2.在不同年龄段中,糖尿病发病率呈现明显的上升趋势。
这提示我们在预防和治疗糖尿病方面需要加大力度。
3.女性与男性在心血管疾病发病率方面存在差异。
女性相对较少患心血管疾病,但一旦患病,症状和疾病进展可能更为严重。
这些结果与我们的假设相符,并对公共卫生政策制定者具有重要意义。
我们应该加强对健康饮食的宣传和教育,以及加大对糖尿病和心血管疾病的防治力度。
以下是一则卫生统计学案例:
某市区卫生局对该区域内的糖尿病患者进行了一次调查,共有1000人参与了调查。
调查结果如下:
1.男性患者占总患者人数的60%,女性患者占40%。
2.年龄在40岁以下的患者占总患者人数的30%,年龄在40岁至60岁之间的患者占总患者人数的50%,年龄在60岁以上的患者占总患者人数的20%。
3.有高血压病史的患者占总患者人数的40%,有心脏病史的患者占总患者人数的30%,有肾病病史的患者占总患者人数的20%,有视网膜病变的患者占总患者人数的10%。
根据以上数据,可以进行如下的卫生统计学分析:
1.男性患者比女性患者多,说明男性更容易患糖尿病,需要针对男性进行更多的预防宣传和治疗。
2.年龄在40岁至60岁之间的患者最多,说明这个年龄段的人更容易患糖尿病,需要针对这个年龄段的人进行更多的预防宣传和治疗。
3.有高血压病史、心脏病史、肾病病史的患者比例较高,说明这些疾病与糖尿病有一定的关联性,需要针对这些疾病的患者进行更多的糖尿病筛查和预防宣传。
同时,对于已经患有糖尿病的患者,还需要加强针对这些疾病的治疗和管理。
医学统计学案例分析医学统计学是应用数理统计学原理和方法对医学研究进行分析的学科。
下面介绍一个医学统计学案例分析。
某医院开展了一项针对心脏病患者的新药临床实验。
实验分为两组,A组为接受新药治疗的患者,B组为接受常规治疗的患者。
为了评估新药的疗效,研究者采集了每组患者的治疗前和治疗后的心脏功能数据。
实验结果如下表所示:组别治疗前心脏功能治疗后心脏功能A组 70 85B组 65 80为了分析和评估新药的疗效,可以采用配对样本T检验进行统计分析。
配对样本T检验是一种适用于两个相关样本的统计检验方法。
首先,可以计算出每组患者的差值(治疗后心脏功能-治疗前心脏功能):差值A组 = 85-70 = 15差值B组 = 80-65 = 15接下来,计算这些差值的平均值和标准差:平均值差值A组 = 15/1 = 15平均值差值B组 = 15/1 = 15标准差差值A组= sqrt(Σ(xi-平均值差值A组)²/(n-1)) = 0标准差差值B组= sqrt(Σ(xi-平均值差值B组)²/(n-1)) = 0然后,可以计算T值:T = (平均值差值A组-平均值差值B组)/sqrt((标准差差值A组²/样本容量)+(标准差差值B组²/样本容量))T = (15-15)/sqrt((0²/1)+(0²/1)) = 0最后,根据自由度和显著性水平可以查找T值对应的临界值。
假设显著性水平为0.05,查表可得临界值为1.96。
由于计算得到的T值为0,小于临界值1.96,所以可以得出结论:新药治疗和常规治疗在心脏功能上没有显著差异。
通过以上医学统计学案例分析,我们可以对新药的疗效进行客观评估,为临床医学提供科学依据。
实验七:参数估计【目的要求】1.掌握均数抽样误差的概念及产生原因2.掌握总体均数的可信区间及估计方法3.熟悉标准差与标准误的区别和联系【案例分析】案例1:某研究者于某年在某市随机调查了200例正常成年人血铅含量(μg/100g),将资料整理成表5-3的频数表形式,试估计该市正常成年人血铅含量的参考值范围及正常成年人平均血铅含量的置信区间。
由于血铅值高于某上限值才被看作异常,故作者将该数据代入公式X+1.64S计算得到该市正常成年人血铅含量95%参考值范围的上界;并用公式X+1.64 s计算得到正常成年人平均血铅含量的95%置信区间的上界。
试问这样做是否合适? 为什X么?应当怎么做?200名正常成年人血铅频数表组段(μg/100g)频数f累计频数累计频率(%)4~252512.58~325728.512~369346.516~3012361.520~2514874.024~2217085.028~1118190.532~818994.536~419396.540~419798.544~119899.048~119999.552~561200100.0合计∑f=200【SPSS操作】Analyze→Descriptive Statistics→Explore→选择变量到Dependent List列表中→选择Display选择框内的Statistics→OK【练习题】一、填空题1.抽样误差是指。
2.标准误是指。
3.总体均数置信区间的计算方法有和。
4.t分布的自由度是。
5.参数估计分为和。
6.总体概率置信区间的计算方法有和。
二、选择题1.表示均数抽样误差大小的统计指标是( )A.标准差B.方差C.均数标准误D.变异系数E.样本标准误S表示( )2.xA.总体均数B.样本均数的标准差C.总体均数离散程度D.变量值X的离散程度3.标准误越大,表示此次抽样得到的样本频率( )A.系统误差越大B.可靠程度越大C.抽样误差越大D.可比性越差4.要减小抽样误差,通常的做法是( )A.适当增加样本例数B.将个体变异控制在一个范围内C.严格挑选观察对象D.增加抽样次数5.关于t分布的图形,下列哪项是错误的( )A.当v趋于无穷时,标准正态分布是t分布的特例B.当v逐渐增大,t分布逐渐逼近标准正态分布C.v越小,则t分布的尾部越高D.t分布是一条以v为中心左右对称的曲线6.已知某地25岁正常成年男性平均收缩压为113.0mmHg,从该地随机抽取20名25岁正常成年男性,测得平均收缩压为119.0 mmHg. 113.0mmHg与119.0mmHg不同,原因是( )A.样本例数太少B.抽样误差C.总体均数不同D.系统误差E.个体差异太大7.从上题的同一个地区再随机抽取20名8岁正常男孩,测得平均收缩压为90 mmHg,标准差为9.8 mmHg.90 mmHg与113.0 mmHg不同,原因是( )A.样本例数太少B.抽样误差C.总体均数不同D.系统误差E.样本均数不可比8.在同一总体随机抽样,样本含量n固定时,a越大,用总体均数的可信区间估计总体均数,估计的情况是()A.错的概率越大B.错的概率越小C.错的概率不变D.其精度越差9.统计推断包括两个重要方面()A.参数估计和假设检验B.计算均数和标准差C.统计描述和假设检验D.计算均数和标准误10.总体均数的可信区间()A.随总体均数而变化B.不随总体均数而变化C.固定区间D.随样本不同而变化11.总体概率的区间估计中,a值越大()A.置信度越大B.置信度越低C.估计的精度下降D.抽样误差越大E.抽样误差越小12.样本频率的标准误越大,()A.置信度越大B.置信度越低C.估计的精度下降D.抽样误差越大E.抽样误差越小13.置信区间和医学参考值范围相比,()A.置信区间也能判断个体值是否正常B.估计的精度好C.估计的精度下降D.置信区间的宽度小于医学参考值范围的宽度E.两者的计算都利于标准误三、判断题1.一般情况下,同一批资料的标准误小于标准差()2.从同一总体中随机抽取样本含量相同的两个样本,他们的样本均数与总体均数相同()3.增加样本含量可以减小抽样误差,所以样本含量越大越好()4.样本含量足够大时,来自正偏峰分布的样本可用正态近似法作参数估计()5.t分布法计算置信区间只适合小样本而不适用于大样本()6.当v一定,a=0.05时,单侧t值小于双侧t值()7.t值相等时,单侧概率小于双侧概率()8.通过样本频率估计总体概率,99%置信区间的精度高于95%置信区间()S都是变异指标,因此它们都可以表示抽样误差的大小()9.S和x四、思考题1.参考值范围和置信区间有什么区别和联系?2.t分布有什么特点?3.什么是均数标准误?意义是什么?如何计算及控制?【作业】1.为了研究某地黄连中小檗碱含量,随机抽查该地20份黄连中小檗碱含量(mg/100g)得平均数为4.35,标准差为0.20,试计算:(1)总体均数的95%和99%的可信区间。
实验八:t检验、z检验【目的要求】1.熟悉假设检验的基本步骤2.掌握t检验、z检验的应用条件及分析过程3.熟悉假设检验的基本思想【案例分析】案例1:某医生研究脑缺氧对脑组织中生化指标的影响,将乳猪按出生体重配成7对,一组为对照组,一组为脑缺氧模型组。
两组乳猪脑组织钙泵的含量差值(对照组减脑缺氧模型组)均数为0.0441ug/g,标准差为0.05716ug/g,经配对t检验(双侧),得t=2.0412,P>0.05,按a=0.05的水准,不拒绝H0,差别无统计学意义,尚不能认为脑缺氧可造成钙泵含量的变化。
(1)本例结论是否正确?为什么?(2)该结论可能犯几型错误?案例2:7名接种卡介苗的儿童,8周后用两批不同的结核菌素,一批是标准结核菌素,一批是新制结核菌素,分别注射在儿童的左右前臂。
以皮肤浸润直径(mm)为指标。
数据如下表所示。
某医生计算标准品与新制品的差值,均数为3.19mm,故认为新制结核菌素的皮肤浸润直径比标准结核菌素小。
两种结核菌素皮肤浸润直径比较(mm)编号1234567标准品12.014.515.513.012.010.57.5新制品10.010.012.210.0 5.58.5 6.5该医师对资料的统计分析是否正确?为什么?若不正确,应该怎么做?案例3:2005年某县疾病预防控制中心为评价该县小学生卡介苗抗体效价,随机抽取了30名小学生,测定结果如表2。
经完全随机设计两样本均数比较的t检验(方差齐,F=0.05,P>0.05),t=0.014,P>0.05,故认为该县小学生卡介苗抗体效价无性别差异。
2005年某县30名小学生卡介苗抗体滴度测定结果分组卡介苗抗体滴度(倒数)男生40201604032080402040801604080404040女生80201604040160402040160160408040该案例中资料的统计分析是否正确?为什么?若不正确,应该怎么做?【SPSS操作】1.单样本t检验Analyze → Compare Means →one-sample T Test…→ Test Variable(s):变量→ Test Value:总体水平→OK2.配对t检验Analyze → Compare Means → Paired-Samples T Test …→ Paired Variables:x1-x2(同时选中)→OK3.两样本均数比较的t 检验Analyze → Compare Means →Independent-samples T Test …→ Test Variable(s):x → Grouping Variable:group →OK【练习题】一、填空题1.假设检验中的Ⅰ型错误指 。
案例分析—四格表确切概率法【例1-5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3.134,P>0.05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485.7西药 6(8.67)7(4.33)1346.2合计1892766.7【问题1-5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1) 该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案。
(3) 患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1-1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2.848,P=0.005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1-1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1) 该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2) 随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案。