解直角三角形练习题2
- 格式:doc
- 大小:176.00 KB
- 文档页数:4
2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。
28.2 解直角三角形(二)1.如图1,在△ABC中,∠C=90°,点D在BC上,CD=3,AD=BC,且cos∠ADC=3/5,则BD的长是( ) A.4 B.3 C.2 D.1a图1 图2图3 图42,图2在离地面高度5 m处引拉线固定电线杆,拉线与地面成60°角,则AC=____,AD=____.(用根号表示)3.如图3,初三年级某同学要测量校园内的旗杆AB的高度.在地面上C点用测角仪测得旗杆顶A 点的仰角为∠AFE=60°,再沿着直线BC后退8米到D,在D点又测得旗杆顶A的仰角∠AGE=45°.已知测角仪的高度为1.6米,求旗杆AB的高度.(3的近似值取1.7,结果保留1位小数)4.如图4,在比水面高2 m的A地,观测河对岸有一直立树BC的顶部B的仰角为30°,它在水中的倒影B′C顶部B′的俯角是45°,求树高BC.(结果保留根号)5.如图5,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物CD的高度为( ) A.a B.atanα C.a(s inα-cosα) D.a(tanβ-tanα)图5 图6 图7 图86.有人说,数学家就是不用爬树或把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高度(如图6),他测得CB=10米,∠ACB=50°,请你帮他算出树高AB,约为________________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)7.如图7,塔AB和楼CD的水平距离为80米,从楼顶C处及楼底D处测得塔顶A的仰角分别是45°和60°.求塔高与楼高.(精确到0.01米)(参考数据2=1.414 21,3=1.732 05)8.如图8,某船向正东方向航行,在A处望见某岛C在北偏东60°方向,前进6海里到B点,测得该岛在北偏东30°方向.已知该岛周围6海里内有暗礁,若该船继续向东航行,有无触礁危险?请说明理由.(参考数据:3≈1.732)9.如图9,武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44°减至32°,已知原台阶AB的长为5米(BC所在地面为水平面).(1)改善后的台阶会加长多少?(2)改善后的台阶多占多长一段地面?(精确到0.01米)(sin44°= 0.6946 ,sin32°)= 0.5299, tan32° = 0.6248)图910.如图10,某海关缉私艇巡逻到达A处时接到情报,在A处北偏西60°方向的B处发现一艘可疑船只正以24海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏西45°的方向快速前进,经过1个小时的航行,恰好在C处截住可疑船只,求该艇的速度.(结果保留整数,6=2.449,3=1.732,2=1.414)图1028.2 解直角三角形(三)一、课前预习 (5分钟训练)1.在下列情况下,可解的直角三角形是( ) A.已知b=3,∠C=90° B.已知∠C=90°,∠B=46°C.已知a=3,b=6,∠C=90°D.已知∠B=15°,∠A=65°2.如图1,用测倾仪测得校园内旗杆顶点A 的仰角α=45°,仪器高CD =1.2 m ,测倾仪底部中心位置D 到旗杆根部B 的距离DB=9.8 m ,这时旗杆AB 的高为________ m.3.有一大坝其横截面为一等腰梯形,它的上底为6 m ,下底为10 m ,高为32 m,则坡角为_______. 二、课中强化(10分钟训练)1树被风折断,折断部分与地面夹角为30°,树尖着地处与树根的距离是35米,则原树高是____ m. 2.一等腰三角形顶角为100°,底边长为12,则它的面积是______________ (tan40° = 0.8391). 3.如图2,在Rt △ABC 中,∠C=90°,AD 平分∠CAB,CD=3,BD=32,求AB 及∠B.4.如图3,已知线段AB 、CD 分别表示甲、乙两幢楼的高,AB ⊥BD ,CD ⊥BD ,从甲楼顶部A 处测得乙楼顶部C 的仰角α=30°,测得乙楼底部D 的俯角β=60°,已知甲楼高AB=24 m , 求乙楼CD 的高.三、课后巩固(30分钟训练)1.菱形ABCD 的对角线AC 长为10 cm,∠BAC=30°,那么AD 为( ) A.3310B.33C.3315 D.32.Rt △ABC 中,∠C=90°,CD 是斜边AB 上的中线,BC=4,CD=3,则∠A≈_________. sinA≈0.666 73.如图4所示,为了测量河流某一段的宽度,在河北岸选了一点A ,在河南岸选相距200米的B 、C 两点,分别测得∠ABC=60°,∠ACB=45°.求这段河的宽度.(精确到0.1米)4.如图4,高速公路路基的横断面为梯形,高为4 m ,上底宽为16 m ,路基两边斜坡的坡度分别为i=1∶1,i′=1∶2,求路基下底宽.图45.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图(图5).按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1 m )(,,)图56.如图6,某校九年级3班的学习小组进行测量小山高度的实验活动.部分同学在山脚下点A 测得山腰上一点D 的仰角为30°,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45°,山腰点D 的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果不取近似值)图628.2 解直角三角形(二)参考答案1.如图1,在△ABC 中,∠C=90°,点D 在BC 上,CD=3,AD=BC,且cos ∠ADC=53,则BD 的长是()图1A.4B.3C.2D.1解析:求BD 需求BC,而BC=AD,在Rt △ADC 中,已知一角一边,可求出AD. 在Rt △ADC 中,CD=3,且cos ∠ADC=53,∴AD=5,∴BC=AD=5.∴BD=2. 答案:C2.如图2,在离地面高度 5 m 处引拉线固定电线杆,拉线与地面成60°角,则AC=______,AD=__________.(用根号表示)图2解析:在Rt △ABD 中,∠A=60°,CD=5,∴AC=331060sin =︒CD ,AD=33560tan =︒CD .答案:33103353.如图3,初三年级某同学要测量校园内的旗杆AB 的高度.在地面上C 点用测角仪测得旗杆顶A 点的仰角为∠AFE=60°,再沿着直线BC 后退8米到D ,在D 点又测得旗杆顶A 的仰角∠AGE=45°.已知测角仪的高度为1.6米,求旗杆AB 的高度.(3的近似值取1.7,结果保留1位小数)图3解:设EF 为x 米, 在Rt △AEF 中,∠AFE=60°, ∴AE=EF·tan60°=3x ,在Rt △AGE 中,∠AGE=45°, ∴AE=GE·tan45°=GE=8+x. ∴3x=8+x.解之,得x=4+43.∴AE=12+43≈18.8.∴AB=20.4(米). 答:旗杆AB 高20.4米.4.如图4,在比水面高2 m 的A 地,观测河对岸有一直立树BC 的顶部B 的仰角为30°,它在水中的倒影B′C 顶部B′的俯角是45°,求树高BC.(结果保留根号)图4解Rt △AEB 与Rt △AEB′,得AE 与BE 、EB′的关系,解关于x 的方程可求得答案. 解:设树高BC=x(m),过A 作AE ⊥BC 于E ,在Rt △ABE 中,BE=x -2,∠BAE=30°,cot ∠BAE=BEAE,∴AE=BE·cot ∠BAE=(x -2)·3=3 (x -2).∵∠B′AE=45°,AE ⊥BC. ∴B′E=AE=3(x -2).又∵B′E=B′C+EC=BC+AD=x+2, ∴3(x -2)=x+2.∴x=(4+23)(m).答:树高BC 为(4+23) m.5.如图5,两建筑物的水平距离为a 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高度为()图5A.aB.atanαC.a(sinα-cosα)D.a(tanβ-tanα) 解析:过D 点作AB 的垂线交AB 于E 点,在 Rt △ADE 中,∠ADE=α,DE=a, ∴AE=a·tanα.在Rt △ABC 中,∠ACB=β,BC=a, ∴AB=a·tan β.∴CD=AB -AE=a·tan β-a·tan α. 答案:D6.有人说,数学家就是不用爬树或把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高度(如图6),他测得CB=10米,∠ACB=50°,请你帮他算出树高AB,约为________________米. (注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)图6解析:AB=BC·tanC=12(米). 答案:127.如图7,塔AB 和楼CD 的水平距离为80米,从楼顶C 处及楼底D 处测得塔顶A 的仰角分别是45°和60°.求塔高与楼高.(精确到0.01米)(参考数据2=1.414 21,3=1.732 05)图7解:在Rt △ABD 中,BD=80米,∠BDA=60°,∴AB=BD·tan60°=803≈138.56(米). Rt △AEC 中,EC=BD=80,∠ACE=45°, ∴AE=CE=80(米).∴CD=AB -AE≈58.56(米).答:塔高与楼高分别为138.56米、58.56米.8.如图8,某船向正东方向航行,在A 处望见某岛C 在北偏东60°方向,前进6海里到B 点,测得该岛在北偏东30°方向.已知该岛周围6海里内有暗礁,若该船继续向东航行,有无触礁危险?请说明理由.(参考数据:3≈1.732)图8解:继续向东行驶,有触礁的危险. 过点C 作CD 垂直AB 的延长线于D,∵∠CAB=30°,∠CBD=60°,∴∠BCD=30°. 设CD 的长为x,则tan ∠CBD=BDxBD CD =,∴BD=33x. ∴tan ∠CAB=tan30°=x x AD CD 33633+==.∴x=33.∴x≈5.2<6.∴继续向东行驶,有触礁的危险.9.如图9,武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44°减至32°,已知原台阶AB 的长为5米(BC 所在地面为水平面). (1)改善后的台阶会加长多少?(精确到0.01米) (2)改善后的台阶多占多长一段地面?(精确到0.01米)图9解:(1)如图,在Rt △ABC 中,AC=AB·sin44°=5sin 44°≈3.473. 在Rt △ACD 中,AD=︒=︒32sin 473.332sin AC ≈6.554.∴AD -AB=6.554-5≈1.55.即改善后的台阶会加长1.55米, (2)如图,在Rt △ABC 中, BC=ABcos44°=5cos44°≈3.597. 在Rt △ACD 中,CD=︒=︒32tan 473.332tan AC ≈5.558,∴BD=CD -BC=5.558-3.597≈1.96,即改善后的台阶多占1.96米长的一段地面.10.如图10,某海关缉私艇巡逻到达A 处时接到情报,在A 处北偏西60°方向的B 处发现一艘可疑船只正以24海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏西45°的方向快速前进,经过1个小时的航行,恰好在C 处截住可疑船只,求该艇的速度.(结果保留整数,6=2.449,3=1.732,2=1.414)图10解:设OA 的长为x ,由于点C 在点A 的北偏西45°的方向上,∴OC=OA=x.根据题意,得tan30°=312243324=⇒+==⇒+x xxx x x +12.AC 2=x 2+x 2⇒AC=22x x +,∴AC≈46(海里).答:该艇的速度是46海里/时.28.2 解直角三角形(三)参考答案一、课前预习 (5分钟训练)1.在下列情况下,可解的直角三角形是( )A.已知b=3,∠C=90°B.已知∠C=90°,∠B=46°C.已知a=3,b=6,∠C=90°D.已知∠B=15°,∠A=65°解析:一般地,已知两边、已知一个锐角一边、已知一个锐角和两个边的关系或已知三边的关系的直角三角形可解.∴C 正确. 答案:C2.如图-1,用测倾仪测得校园内旗杆顶点A 的仰角α=45°,仪器高CD =1.2 m ,测倾仪底部中心位置D 到旗杆根部B 的距离DB=9.8 m ,这时旗杆AB 的高为________ m.图1解:过C 点作AB的垂线,垂足为E点,在Rt △ACE 中,∠ACE=α=45°,BD=9.8,∴AE=9.8.∴AB=AE+CD=11(m). 答案:113.有一大坝其横截面为一等腰梯形,它的上底为6 m ,下底为10 m ,高为32m,则坡角为_______.解:设坡角为α,则坡度=tanα=3)610(2132=-,∴坡角为60°.答案:60°二、课中强化(10分钟训练)1.有一棵树被风折断,折断部分与地面夹角为30°,树尖着地处与树根的距离是35米,则原树高是_______________ m.解析:如图,在Rt △ABC 中,∠A=30°,∠C=90°,AC=35,∴AB=AACcos =10,BC=AC·tanA=5.∴原树高为15米.答案:152.一等腰三角形顶角为100°,底边长为12,则它的面积是_________________.解析:如图所示,作CD ⊥A B ,在Rt △ADC 中,得AD=6,∠ACD=50°,∴CD≈5.03,∴面积为30.18.答案:30.183.如图28-2-3-2,在Rt △ABC 中,∠C=90°,AD 平分∠CAB,CD=3,BD=32,求AB 及∠B.图2解:过D 点作DE ⊥AB 于E 点,设AC=x ,则AE=x.在Rt △BED 中,得到BE=3,又由AB 2=AC 2+BC 2,得(3+x )2=x 2+27,解得x=3,AB=6, sinB=21,∴∠B=30°.4.如图3,已知线段AB 、CD 分别表示甲、乙两幢楼的高,AB ⊥BD ,CD ⊥BD ,从甲楼顶部A 处测得乙楼顶部C 的仰角α=30°,测得乙楼底部D 的俯角β=60°,已知甲楼高AB=24 m ,求乙楼CD 的高.图3解:过点A 作AE ⊥CD ,在Rt △ABD 中,∠ADB=β,AB=24,∴BD=38.在Rt △AEC中,∠CAE=α,BD=38,∴CE=8.∴CD=CE+AB=32(米).三、课后巩固(30分钟训练)1.菱形ABCD 的对角线AC 长为10 cm,∠BAC=30°,那么AD 为( )A.3310 B.33 C.3315 D.3解析:如图,∵AC ⊥BD,∴AD=331030cos 5=︒. 答案:A2.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的中线,BC=4,CD=3,则∠A≈_________.解析:由CD=3,得AB=6,∴sinA≈0.666 7.∴∠A≈41.8°. 答案:41.8°3.如图4所示,为了测量河流某一段的宽度,在河北岸选了一点A ,在河南岸选相距200米的B 、C 两点,分别测得∠ABC=60°,∠ACB=45°.求这段河的宽度.(精确到0.1米) 解:过A 作BC 的垂线,垂足为D. 在Rt △ADB 中,∠B=60°, ∴∠BAD=30°.∴BD=AD·tan30°=33AD. 在Rt △ADC 中,∠C=45°,∴CD=AD. 又∵BC=200,∴BD+CD=33AD+AD=200. ∴AD=331200≈126.8(米).答:这段河宽约为126.8米.4.如图4,高速公路路基的横断面为梯形,高为4 m ,上底宽为16 m ,路基两边斜坡的坡度分别为i=1∶1,i′=1∶2,求路基下底宽.图4解:作高AE 、DF ,则BE=4,CF=8. ∴CB=28(米).5.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图(图5).按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1 m )图5解:在Rt △ABD 中,AB=9,∠BAD=18°, ∴BD≈2.9.∴CD=2.4.在Rt △CDE 中,∠DCE=18°, ∴CE≈2.3(米). 答:略.6.如图6,某校九年级3班的学习小组进行测量小山高度的实验活动.部分同学在山脚下点A 测得山腰上一点D 的仰角为30°,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45°,山腰点D 的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果不取近似值)图6解:如图,作DE ⊥AC 于E,DF ⊥BC 于F,设山高为x 米,在Rt △ADE 中,DE=90,AE=390,∴DF=x-390,BF=x-90.在Rt △BFD 中,DF ∶BF=tan30°, ∴x=90+390(米).。
[7.5 第2课时 解直角三角形的应用]一、选择题1.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ) A .7sin35° B.7cos35°C .7cos35°D .7tan35°2.如图K -31-1,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 等于( )图K -31-1A .0.5B .1.5C .4.5D .23.等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为链接听课例2归纳总结( )A. 3 cmB.4 33cmC .2 cmD .2 3 cm 4.如图K -31-2,⊙O 的直径AB =2,弦AC =1,点D 在⊙O 上,则∠D 的度数为( )图K-31-2A.30° B.45° C.60° D.75°5.如图K-31-3,在△ABC中,∠BAC=90°,AB=AC,D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )图K-31-3A.13B.2-1 C.2- 3 D.14二、填空题6.如图K-31-4,在平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP与x轴正半轴所夹的锐角为________.(精确到0.1°)图K-31-47.如图K-31-5,在菱形ABCD中,AC=6,BD=8,则sin∠ABC=________.图K-31-58.如图K-31-6,在△ABC中,∠A=30°,∠B=45°,AC=2 3,则AB的长为________.图K-31-69.2018·安徽四模如图K-31-7,在△ABC中,AB=AC,AH⊥BC,垂足为H,如果AH =BC,那么tan∠BAH的值是________.图K -31-710.2017·黑龙江在△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是________. 三、解答题11.2018·淮南模拟如图K -31-8,在△ABC 中,∠A =30°,cos B =45,AC =6 3.求AB 的长.链接听课例2归纳总结图K -31-812.如图K -31-9,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO =5,sin ∠BOA =35.求:(1)点B 的坐标; (2)cos ∠BAO 的值.图K -31-913.2018·广安改编如图K -31-10,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,连接AC ,CG 是⊙O 的弦,CG ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,连接BE .若cos P =45,PC =10,求BE 的长.图K -31-10阅读理解在锐角三角形ABC 中,∠A ,∠B ,∠ACB 的对边分别是a ,b ,c .如图K -31-11所示,过点C 作CD ⊥AB 于点D ,则cos A =AD b,即AD =b cos A ,图K -31-11∴BD =c -AD =c -b cos A .在Rt △ADC 和Rt △BDC 中,有CD 2=AC 2-AD 2=BC 2-BD 2, ∴b 2-b 2cos 2A =a 2-(c -b cos A )2,整理,得a 2=b 2+c 2-2bc cos A ,(1)同理可得b 2=a 2+c 2-2ac cos B ,(2) c 2=a 2+b 2-2ab cos ∠ACB . (3)这个结论就是著名的余弦定理,在以上三个等式中有六个元素a ,b ,c ,∠A ,∠B ,∠ACB ,若已知其中的任意三个元素,可求出其余的另外三个元素.如:在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,已知∠A =60°,b =3,c =6,则由(1)式可得a 2=32+62-2×3×6cos60°=27, ∴a =3 3,则∠B ,∠C 可由式子(2),(3)分别求出,在此略. 根据以上阅读理解,请你试着解决如下问题:已知锐角三角形ABC 的三边a ,b ,c (a ,b ,c 分别是∠A ,∠B ,∠C 的对边)分别是7,8,9,求∠A ,∠B ,∠C 的度数.(结果精确到1°)详解详析[课堂达标]1.[解析] C 在Rt △ABC 中,cos B =BCAB ,所以BC =AB ·cos B =7cos 35°.故选C .2.[解析] C 如图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限, ∴AB =t ,OB =3. 又∵tan α=AB OB =t 3=32,∴t =4.5. 故选C .3.[解析] D 如图,过点A 作AD ⊥BC 于点D ,则∠BAD =∠CAD =60°,BD =DC.∵AD ⊥BC ,∴∠B =30°.∵AB =2 cm , ∴AD =1 cm ,BD = 3 cm , ∴BC =2 3 cm .故选D .4.[解析] C ∵AB 是⊙O 的直径,∴∠ACB =90°.∵AC =1,AB =2,∴sin ∠ABC =ACAB =12,∴∠ABC =30°,∠A =60°,∴∠D =60°,故选C . 5.[解析] A ∵在△ABC 中,∠BAC =90°,AB =AC , ∴∠ABC =∠C =45°,BC =2AC. 又∵D 为边AC 的中点, ∴AD =DC =12AC.∵DE ⊥BC 于点E , ∴∠CDE =∠C =45°, ∴DE =EC =22DC =24AC , ∴tan ∠DBC =DEBE =24AC 2AC -24AC =13. 故选A .6.[答案] 67.4°[解析] 如图,过点P 作PA ⊥x 轴,垂足为A.由勾股定理,得OP =122+52=13,∴cos ∠POA =513,∴∠POA ≈67.4°.7.[答案] 2425[解析] 过点A 作AE ⊥BC ,垂足为E ,由AC =6,BD =8,根据勾股定理得AB =32+42=5,菱形ABCD 的面积=12AC·BD=BC·AE,即12×6×8=5×AE ,得AE =245,所以sin ∠ABC=AE AB =2455=2425. 8.[答案] 3+ 3[解析] 如图,过点C 作CD ⊥AB 于点D ,则∠ADC =∠BDC =90°. ∵∠B =45°,∴∠BCD =∠B =45°, ∴CD =BD.∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3, ∴AB =AD +BD =3+ 3.9.[答案] 12[解析] 设AH =BC =2x.∵AB =AC ,AH ⊥BC ,∴BH =CH =12BC =x ,∴tan ∠BAH =BH AH =x 2x =12.10.[答案] 21 3或15 3[解析] (1)当∠ACB 为锐角时,如图①,过点A 作AD ⊥BC ,垂足为D.在Rt △ABD 中,∵AB =12,∠B =30°, ∴AD =12AB =6,BD =AB·cos B =12×32=6 3.在Rt △ACD 中,CD =AC 2-AD 2=(39)2-62=3, ∴BC =BD +CD =6 3+3=7 3, 则S △ABC =12BC·AD=12×7 3×6=21 3;(2)当∠ACB 为钝角时,如图②,过点A 作AD ⊥BC ,交BC 的延长线于点D.由(1)知,AD =6,BD =6 3,CD =3,则BC =BD -CD =5 3,∴S △ABC =12BC·AD=12×5 3×6=15 3.故答案为21 3或15 3.11.解:如图,过点C 作CD ⊥AB 于点D.∵∠A =30°,∴CD =12AC =3 3,AD =AC ·cos A =9.∵cos B =45,∴设BD =4x ,则BC =5x.由勾股定理,得CD =3x.由题意,得3x =3 3,解得x =3, ∴BD =4 3,∴AB =AD +BD =9+4 3.12.解:(1)如图,过点B 作BH ⊥OA ,垂足为H.在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =BO·sin ∠BOA =5×35=3,∴OH =BO 2-BH 2=4, ∴点B 的坐标为(4,3).(2)∵OA =10,OH =4,∴AH =6. 在Rt △AHB 中, ∵BH =3,AH =6, ∴AB =BH 2+AH 2=3 5, ∴cos ∠BAO =AH AB =2 55.13.解:(1)证明:连接OC.∵PC 与⊙O 相切于点C ,∴∠PCO =90°,∴∠PCA +∠OCA =90°. ∵AB 是⊙O 的直径,∴∠ACB =90°, ∴∠OCB +∠OCA =90°, ∴∠PCA =∠OCB.∵OC =OB ,∴∠OCB =∠ABC , ∴∠PCA =∠ABC.(2)∵cos P =PC OP =45,PC =10,∴OP =252,∴OC =OP 2-CP 2=152,∴AB =15.∵AE ∥PC ,∴∠BAE =∠P.∵AB 是⊙O 的直径,∴∠E =90°, ∴AE =AB·cos ∠BAE =15×45=12,∴BE =AB 2-AE 2=9. [素养提升][解析] 此题只要把三边长代入余弦定理公式即可求出三角的余弦值,从而求出三角.解:由(1)得72=82+92-2×8×9cos A , 则cos A =23,∠A ≈48°.由(2)得82=72+92-2×7×9cos B , 则cos B =1121,∠B ≈58°,∴∠C =180°-∠A -∠B ≈74°.。
解三角形的实际应用问题专练一、选择题1.从A处望B处的仰角为,从B处望A的俯角为,则与的关系为()A .>B.=C.+=90°D.+=180°【答案】B【解析】根据仰角和俯角的概念,根据平行线的性质得解.【详解】因为与为两平行线的内错角,所以=.故答案为:B【点睛】本题主要考查仰角和俯角的概念,意在考查学生对这些知识的掌握水平和分析推理能力.2.有一长为1 km的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A.0.5 km B.1 km C.1.5 km D. km【答案】B【解析】根据题意作图,设出相应参数,根据∠BAC=∠ABD﹣∠C,求得∠BAC=∠C,判断出三角形ABC 为等腰三角形,进而求得BC.【详解】如图设坡顶为A,A到地面的垂足为D,坡底为B,改造后的坡底为C,根据题意要求得BC的长度,∵∠ABD=20°,∠C=10°,∴∠BAC=20°﹣10°=10°.∴AB=BC,∴BC=1,即坡底要加长1km,故选:B.【点睛】本题主要考查了解三角形的实际应用.考查了学生分析问题和解决问题的能力,属于中档题.3.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20 n mile,随后货轮按北偏西30°的方向航行30 min后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A.n mile/h B.n mile/hC.n mile/h D.n mile/h【答案】B【解析】由题意可知:,与正东方向的夹角为,与正东方向的夹角为,,中利用正弦定理可得货轮的速度故选4.要测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A、B两点,观察对岸的点C,测得∠CAB=45°,∠CBA=75°,且AB=120m ,由此可得河宽为(精确到1 cm)()A .170 mB .98 mC .95 mD .86 m 【答案】C【解析】在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45406sin60︒=︒.设△ABC 中,AB 边上的高为h ,则h 即为河宽,所以h =BC ·sin ∠CBA =406 ×sin 75°≈95(m).故选C.【点睛】正弦定理对于任意三角形都成立,它指出三角形三条边与对应角的正弦之间的关系式,描述了任意三角形中边与角的数量关系,主要功能是实现三角形中边角的关系转化.本题的关键是根据正弦定理利用角大小来求出边长大小.5.两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在C 北偏东300,B 在C 南偏东600,则A 、B 之间相距: A .a km B .3a km C .2a km D .2a km【答案】C【解析】如图,由题意可得90ACB ∠=︒,在Rt ACB ∆中, 22222AB CA CB a a =+=+ 22a =,∴2AB a =。
九年级数学家庭作业(06-09-26) 姓名⒈精亚·新天地为方便顾客购物,准备在一至二楼之间安装电梯,如图所示,楼顶与地面平行。
要使身高2米以下的人在笔直站立的情况下搭乘电梯时,在B 处不碰到头部。
请你帮该集团设计,则电梯与一楼地面的夹角α最小为 度。
⒉课外实践活动中,数学老师带领学生测量学校旗杆的高度. 如图,在A 处用测角仪(离 地高度1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30°,则旗杆EG 的高度为 .⒊一段路基的横断面是直角梯形,如左下图所示,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如右下图所示的技术要求。
试求出改造后坡面的坡度是多少?⒋如图,山脚下有一棵树AB ,小强从点B 沿山坡向上走50m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到0.1m )BC PD A10°15°⒌如图,我校九(4)班的一个学习小组进行测量孤山高度的实践活动。
部分同学在山脚点A 测得山腰上一点D 的仰角为30°,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45°,山腰点D 的俯角为60°。
请你帮助他们计算出小山的高度BC (计算过程和结果都不取近似值)。
⒍如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心、500m 为半径的圆形区域为居民区。
取MN 上的另一点B ,测得BA 的方向为南偏东75°。
已知MB =400m ,通过计算回答,如果不改变方向,输水管道是否会穿过居民区。
⒎如图,城市规划期间,要拆除一电线杆AB ,已知距电线杆水平距离14米的D 处有一大坝,背水坡的坡度i =1: 0.5,坝高CF 为2米,在坝顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽为2米的人行道.请问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域)。
一、直角三角形的性质《解直角三角形》专题复习1、直角三角形的两个锐角互余A几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
1D几何表示:【∵∠C=90°∠A=30°∴BC= AB 】23、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为 AB 的中点 ∴ CD= 1 AB=BD=AD 】2C B4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在 Rt△ABC 中∵∠ACB=90° ∴ a 2 + b 2 = c 2 】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项, 每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD⊥AB∴ CD 2 = AD • BDAC 2 = AD • AB BC 2 = BD • AB 】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
( a • b = c • h )由上图可得:AB • CD=AC • BC二、锐角三角函数的概念如图,在△ABC 中,∠C=90°sin A = ∠A 的对边 =a斜边 c cos A = ∠A 的邻边 =b斜边 c tan A = ∠A 的对边 =a∠A 的邻边 b cot A = ∠A 的邻边 =b ∠A 的对边 a锐角 A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sinα≤1,0≤cosα≤1,tanα≥0,cotα≥0.三、锐角三角函数之间的关系(1) 平方关系(同一锐角的正弦和余弦值的平方和等于 1) sin 2 A + cos 2 A = 1 (2) 倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA • tan(90°—A)=1; cotA • cot(90°—A)=1; (3) 弦切关系tanA= sin A cos A cotA= cos Asin A (4) 互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A)30°23 60°C仰角俯角北东南iα1tanA=cot(90°—A),cotA=tan(90°—A)四、特殊角的三角函数值A说明:锐角三角函数的增减性,当角度在 0°~90°之间变化时. (1) 正弦值随着角度的增大(或减小)而增大(或减小) B(2)余弦值随着角度的增大(或减小)而减小(或增大) A(3) 正切值随着角度的增大(或减小)而增大(或减小) (4) 余切值随着角度的增大(或减小)而减小(或增大)2五、 解直角三角形2 在 Rt△中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三 角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
解直角三角形(二)主讲:黄冈中学数学高级教师 知识归纳:李平友仰角与俯角:在进行测量时,从下向上看,视线与水平线的夹角叫仰角;从 上往下看,视线与水平线的夹角叫俯角.如图所示:精讲精练: 例 1、如图所示,一位同学在高为 40m 的建筑物的顶端 A 处,测得另一建筑物的 顶部 D 点的俯角α 为 50°,测得底部 C 点的俯角β 为 65°,试求另一建筑物的 高 CD(精确到 0.1m).解: 延长 CD 交过 A 点的水平线于 E,则∠E=90°.设 AE 的长为 x m,在 Rt△ADE 中, ∴ED=AE·tanα =tan50°·x.,在 Rt△ACE 中,,∴CE=tanβ ·AE=tan65°·x.∵CE=40m,∴tan65°·x=40, ∴DE=tan50°·x=18.65×tan50°≈22.23(m) ∴DC=CE-DE=40-22.23≈17.8(m) 答:另一建筑物 CD 的高约为 17.8m. 变式练习 1:.如图,为测量建筑物 AB 的高度,先测标杆 CD 的高度为 2m,并分别在 C、D 处测得建筑物 AB 的顶点处的仰角为β =60°,α =45°,求建筑物 AB 的高度.解: 过 D 作 DE⊥AB 于 E,则四边形 EBCD 为矩形, ∴DE=CB,BE=CD,设 DE=BC=x m.(视频中应加括号)例 2、汶川地震后,抢险队派一架直升机去 A、B 两个村庄抢险,飞机在距地面 450 米的上空 P 点,测得 A 村的俯角为 30°,B 村的俯角为 60°,如图所示,求 A、B 两个村庄之间的距离.(精确到 1m.参考数据 )解: 如图,过 P 作 PC⊥AB 于 C,依题意∠DPA=30°,∠DPB=60°, ∵PD∥AC,∴∠A=30°,∠PBC=60°.变式练习 2: 如图,B、C 是河岸边两点,A 是对岸岸边一点,小明测得∠ABC=45°,∠ ACB=30°,BC=60m,他很快求出了河的宽度,你知道他是怎样求出来的吗?变式练习 3: 如图,河两岸 a,b 互相平行,C,D 为河岸 a 上间隔 50m 的两根电线杆,某 人在河岸 b 上的 A 处测得∠DAB=30°,然后沿河岸走了 100m 到达 B 处,测得∠ CBF=60°.求河流的宽(精确到 1m).答案: 如图,过 C 作 CE∥AD 交 b 于 E,过 C 作 CF⊥AB 于 F, 则∠CEB=30°,∵∠CBF=60°,∴∠ECB=30°=∠CEB, ∴CB=BE=100-50=50(m)即河宽为 43m. 例 3、如图所示,A、B 两地间有一条河,原来从 A 地到 B 地需要经过 D、C,沿 折线 A→D→C→B 到达,现在新建了桥 EF,可直接沿直线 AB 从 A 地到 B 地.已 知 BC=11km,∠A=45°,∠B=37°,桥 DC 与 AB 平行,则现在从 A 地到达 B 地可 比原来少走多少路程?(精确到 0.1km, 0.80) ,sin37°≈0.60,cos37°≈答案: 分别过 D、C 作 DH⊥AB 于 H,CG⊥AB 于 G. 在 Rt△CBG 中,CG=sin37°×11(km),∴DH=sin37°×11(km), 在 Rt△ADH 中,AH=DH=sin37°×11≈6.60(km),, 在 Rt△CBG 中,BG=BCcos37°=11cos37°≈8.80(km). ∴少走 9.33+11-6.60-8.80≈4.9(km) 1、桥头堡高 10 米,在堡顶发现附近有一可疑点,测得其俯角为 40°,则可疑 物距堡底__________米(精确到 0.1 米). 2、如图,太阳光线与地面成 60°角,一棵倾斜的大树与地面成 30°角,这时测 得大树在底面的影长为 10 米, 则大树的长约为__________ (保留两个有效数字) .3、如图,小明在操场上距离旗杆 AB 的距离为 9m 的 C 处,用测角仪测得旗杆顶 端 A 的仰角为 30°,测角仪高 CD=1.2 米,则旗杆 AB 的高为__________米.4、把一块三角形草地记为△ABC,量得∠A=60°,AB=6m,AC=4m,则△ABC 的面 积为__________m .25、一架飞机在空中 A 处测得地面 B 处的俯角为 30°,飞行高度 AC=1200m,则飞 机在 A 处距 B 处水平距离__________m. 6、 一架飞机在高为 1000m 的高空, 在前进的方向上同时测得桥头的俯角为 30°, 桥尾的俯角为 60°,由此算出桥长为__________m.隐藏答案1、11.9 2、17 米 3、4、5、6、二、选择题 7、王师傅在楼顶的 A 处测得楼前一棵树 CD 的顶端 C 的俯角为 60°,又知水平 距离 BD 为 10m,楼高 AB 为 24m,则树高 CD 为( )m.8、 如图, 在高为 60m 的小山上, 测得山底一建筑物顶端与底部的俯角分别为 30°, 60°,则这个建筑物的高度为( )m.A.20 三、综合题B.30C.40D.509、某市在迎接奥运圣火活动中,在一教学楼上悬挂着宣传条幅 DC,如图.小明 同学在点 A 处,测得条幅顶端 D 的仰角为 30°,再向条幅方向前进 10 米后,又 在点 B 处测得条幅顶端 D 的仰角为 45°, 已知测点 A、 B 和 C 离地面高度都为 1.44 米,求条幅顶端 D 点距离地面的高度.(结果精确到 0.1 米,参考数据 )隐藏答案10、如图,小明为测量一氢气球离地的高度 CD,他在地面上相距 80 米的 A、B 两点,测得∠CAD=43.8°,∠CBD=39.2°,已知 A、D、B 三点在同一条直线上,求氢气球离地面的高度.(结果精确到 0.1 米.参考数据:sin43.8°=0.69, tan43.8°=0.96,sin39.2°=0.63,tan39.2°=0.82)隐藏答案11、如图,某海滨浴场的岸边可以近似地看成直线,位于岸边 A 处的救生员发现 海中 B 处有人求救,1 号救生员没有直接从 A 处游向 B 处,而是在岸边自 A 处跑 300 米到距离 B 最近的 D 处,然后游向 B 处.假若所在救生员在岸边跑的速度为 6m/s,在海中游的速度为 2m/s,∠BAD=45°. (1)根据以上条件分析 1 号救生员的选择是否正确; (2) 若 2 号救生员同时从 A 处在岸边跑到 C 处, 再游向 B 处, 且∠BCD=65°, 问哪名救生员先赶到 B 处救人(本题计算过程中的数值均可精确到 0.1)?隐藏答案解:(1)依题意△ABD 为等腰直角三角形,∴BD=AD=300(m).,∴1 号救生员直接由 A 游到 B 的时间为:,1 号救生员由 A 到 D 再游到 B 的时间为 ∵210s>200s,∴1 号救生员选择正确. (2)在 Rt△BCD 中,,∴AC=AD-CD=300-142.9=157.1(m)∴2 号救生员由 A 到 C 再游到 B 的时间为 而 1 号救生员到 B 处时间为 200s,200s>192.9s, ∴2 号救生员先赶到 B 处救人..如图 1 是一个三棱柱包装盒,它的底面是边长为 10cm 的正三角形,三个侧面都 是矩形.现将宽为 15cm 的彩色矩形纸带 AMCN 裁剪成一个平行四边形 ABCD(如 图 2),然后用这条平行四边形纸带按如图 3 的方式把这个三棱柱包装盒的侧面 进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱 柱包装盒的侧面全部包贴满.在图 3 中,将三棱柱沿过点 A 的侧棱剪开,得到如 图 4 的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件 的平行四边形进行研究. (1)请在图 4 中画出拼接后符合条件的平行四边形; (2)请在图 2 中,计算裁剪的角度(即∠ABM 的度数).分析: (1)将三棱柱侧面展开,通过平移拼成平行四边形. 解: (1)将图 4 中的△ABE 向左平移 30cm,△CDF 向右平移 30cm,拼成如图下 中的平行四边形,此平行四边形即为图 2 中的□ABCD.(2)由图 2 的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB=30. ∵纸带宽为 15,∴ sin∠ABM= ∴∠AMB=30°..点评:如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是()A、B、C、D、分析:由题意,连接OQ,则OQ垂直于AQ,在直角三角形OQA中,利用三角函数解得.解:由题意,连接OQ,则OQ垂直于AQ,如图,则在直角△OAQ中有,即.在直角△OAQ中,则∠O=90°-∠A=90°-α,由弧长公式得PQ为.故选B.例2、(宁德)图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求(1)真空管上端B到AD的距离(结果精确到0.01米);(2)铁架垂直管CE的长(结果精确到0.01米).分析:(1)过B作BF⊥AD于F.构建Rt△ABF中,根据三角函数的定义与三角函数值即可求出答案.(2)根据BF的长可求出AF的长,再判定出四边形BFDC是矩形,可求出AD与ED的长,再用CD的长减去ED的长即可解答.解:(1)过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=ABsin∠BAF=2.1sin40°≈1.350.∴真空管上端B到AD的距离约为1.35米.(2)在Rt△ABF中,∵cos∠BAF=,∴AF=ABcos∠BAF=2.1cos40°≈1.609.∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD.在Rt△EAD中,∵tan∠EAD=,∴ED=ADtan∠EAD=1.809tan25°≈0.844.∴CE=CD-ED=1.350-0.844=0.506≈0.51 ∴安装铁架上垂直管CE的长约为0.51米.。
青岛版九年级上册数学第2章解直角三角形含答案一、单选题(共15题,共计45分)1、已知sin6°=a,sin36°=b,则sin26°=()A.a 2B.2aC.b 2D.b2、等腰三角形的底角为15,腰长a为,则此等腰三角形的底长为()A. B. C. D. a3、如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A. B. C. D.4、如图,⊙A经过点E、B、C、O,且C(0,8),E(﹣6,0),O(0,0),则cos∠OBC的值为()A. B. C. D.5、如图,水库大坝的横断面为梯形,坝顶宽6米,坝高8米,斜坡AB的坡角为45°,斜坡CD的坡度为1:3,则坝底宽BC为()A.36米B.72米C.78米D.38米6、如图,内接于⊙ ,是⊙ 的直径,,平分交⊙ 于,交于点,连接,则的值等于().A. B. C. D.7、在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,c=3a,则sinA的值是()A. B. C.3 D.以上都不对8、计算的值为()A. B. C.1 D.9、如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s 的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ 的最大面积是()A.18cm 2B.12cm 2C.9cm 2D.3cm 210、如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°11、三角形在方格纸中的位置如图所示,则tan的值是()A. B. C. D.12、Rt△ACB中,∠C=90°,AB=5,BC=4,则tan∠A= ( )A. B. C. D.13、如图,过点,点C是上的一点,连接,则的度数为()A. B. C. D.14、下列等式:①sin30°+sin30°=sin60°;②sin25°=cos65°;③cos45°=sin45°;④cos62°=sin18°.其中正确的个数是()A.1B.2C.3D.415、如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35°C.D.二、填空题(共10题,共计30分)16、如图,一个斜坡长m,坡顶离水平地面的距离为m,那么这个斜坡的坡度为________.17、如图,在边长为6的等边△ABC中,点D在边AB上,且AD=2,长度为1的线段PQ在边AC上运动,则线段DP的最小值为________,四边形DPQB面积的最大值为________.18、如图,已知在Rt△ABC中,∠ACB=90°,,BC=8,点D在边BC上,将△ABC沿着过点D的一条直线翻折,使点B落在AB边上的点E处,联结CE、DE,当∠BDE=∠AEC时,则BE的长是________.19、如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB =500米,则这名滑雪运动员的高度下降了________米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)20、如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC于点D,则AC的长为________,sin∠ABD的值为________.21、规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是________(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°= ;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.22、等腰三角形底边长10cm,周长为36cm,则一底角的正切值为________23、某处欲建一观景平台,如图所示,原设计平台的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°,则调整后楼梯AD的长为________m.(结果保留根号)24、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.25、如图,已知弧AB所在的圆O半径为2,菱形CMON的顶点C在弧AB上,顶点M,在弦AB上,连接OA,OB,当AM=OM时,则阴影部分的面积是________.三、解答题(共5题,共计25分)26、计算:27、已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东,若小岛周围海里内有暗礁,问该轮船是否能一直向东航行?28、在△ABC中,sinB= ,AB=15,∠C=45°,求△ABC的周长(结果保留根号).29、如图是春运期间的一个回家场景。
解直角三角形练习题 1 姓名
一、 真空题:
1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则A sin = ;
2、 在Rt △ABC 中,∠C =900,AB =,3,5cm BC cm =
则A sin = ,B cos = ; 3、 Rt △ABC 中,∠C =900,A sin =54
,AB =10,则BC = ;
4、α是锐角,若︒=15cos sin α,则α= 若8018.0'1853sin =︒,则'4236cos ︒= ;
5、∠B 为锐角,且01cos 2=-B ,则∠B = ;
6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a 、b 、c ,12,9==b a 则
A sin = ,
B sin = ;
7、Rt △ABC 中,∠C =900,21
tan =A ,则=A cot ;
8、在Rt △ABC 中,∠C =900,若b a 32=
则_____tan =A ; 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是 ;
11、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;
13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =
14、在△ABC 中,︒=∠90B ,AC 边上的中线BD =5,AB =8,则ACB ∠tan = ;
二、选择题
1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )
(A ) 都扩大2倍 (B ) 都扩大4倍 (C ) 没有变化 (D ) 都缩小一半
2、若∠A 为锐角,且3cot <,则∠A ( )
(A ) 小于300 (B ) 大于300 (C ) 大于450且小于600 (D ) 大于600
3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( )
(A ) a A sin (B ) A a
sin (C ) a A cos (D ) A a cos
4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( )
(A ) 600 (B ) 900 (C ) 1200 (D ) 1500
5、在△ABC 中,A ,B 为锐角,且有 B A cos sin =,则这个三角形是 ( )
(A ) 等腰三角形 (B ) 直角三角形 (C ) 钝角三角形 (D ) 锐角三角形
6、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( )
(A ) cm 41
(B ) cm 21
(C ) cm 43
(D ) cm 23
如图1,已知正方形ABCD 的边长为2,如果将线段BD 绕点B 旋转,使点D 落到CB 的延长线上的D '处,那么tan '∠B A D 等于( )
A. 1
B. 2
C. 2
2 D. 22
1/如图2,在∆A B C 中,∠=︒C 90,∠=︒B 30,AD 是∠B A C 的平分线。
已知AB =43,那么AD=____________。
2、︒︒-︒30cos 30sin 260sin
3、︒-︒45cos 30sin 2
4、3245cos 2-+
︒ 5、0
045cos 360sin 2+
四、解答下列各题
1、(贵阳市中考题)某居民小区有一朝向正南方向的居民楼(如图3),该居民楼的一楼是高6m 的小区超市,超市以上是居民住房,在该楼的前面15m 处要盖一栋高20m 的新楼,设冬季正午的阳光与水平线的夹角是32︒。
(1)通过计算判断超市以上的居民住房采光是否会受影响;
(2)若要使超市采光不受影响,两楼应相距多少米?
(结果保留整数,参考数据sin 3253
100︒=,cos 32105
125︒=,tan 325
8︒=)
2. 在Rt △ABC 中,∠C =900,若1312sin =
A 求 A cos ,
B sin ,B cos ;
3. 如图7,一轮船原在A 处,它的北偏东45︒方向上有一灯塔P ,轮船沿着北偏西30︒方向航行4h 到达B 处,这时灯塔P 正好在轮船的正东方向上。
已知轮船的航速为25n mile/h
求轮船在B 处时与灯塔的距离(结果可保留根号)。
五、等腰梯形的一个底角的余弦值是
232,腰长是6,上底是22求下底及面积
六、如图,
海岛A的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60º,航行12海里后到达点C处,又测得海岛A位于北偏东30º,如果渔船不改变航向继续向东航行.有没有触礁的危险?。