泛函分析中的概念和命题
- 格式:doc
- 大小:646.50 KB
- 文档页数:10
理解泛函分析学习泛函分析的基本概念和方法泛函分析是数学中的一个重要分支,它研究的是函数的集合和函数间的映射关系。
泛函分析的基本概念和方法对于理解和应用许多数学分支和应用科学领域都具有重要意义。
本文将介绍泛函分析的基本概念和方法,帮助读者更好地理解和学习泛函分析。
1. 范数和内积空间泛函分析的基本概念之一是范数和内积。
范数是定义在线性空间上的一种函数,用来度量空间中的向量的大小。
内积是定义在内积空间上的一种函数,用来度量空间中向量之间的夹角和长度。
了解范数和内积的定义和性质是学习泛函分析的基础。
2. 巴拿赫空间巴拿赫空间是泛函分析中的一个重要概念,它是一个完备的赋范线性空间。
完备性意味着空间中的柯西序列在该空间中有极限。
了解巴拿赫空间的定义和性质对于理解泛函分析的相关定理和方法至关重要。
3. 可分性和正交性可分性是指线性空间中存在可数的稠密子集。
泛函分析中的许多定理和方法依赖于对可分空间的研究。
正交性是指内积空间中存在满足正交关系的向量组。
正交性在泛函分析中有重要应用,如勾股定理和傅里叶级数展开等。
4. 对偶空间和弱收敛对偶空间是泛函分析中的一个重要概念,它是一个原空间的线性函数全体构成的线性空间。
对偶空间的研究对于理解泛函分析的双重性质及其在数学和物理问题中的应用具有重要意义。
弱收敛是指序列在对偶空间中的收敛性质。
了解对偶空间和弱收敛的定义和性质有助于掌握泛函分析中的重要思想和方法。
5. 紧算子和谱理论紧算子是泛函分析中的一个重要概念,它是一种在巴拿赫空间中有紧性的线性算子。
紧算子在泛函分析和泛函微分方程等领域的研究中具有重要应用。
谱理论研究的是算子的谱结构及其与算子性质的关系。
理解紧算子和谱理论对于深入理解泛函分析的相关概念和方法非常重要。
6. 泛函分析的应用领域泛函分析作为数学中的一个重要分支,在许多领域都有广泛的应用,包括数学分析、微分方程、优化理论、量子力学等。
了解泛函分析在不同领域的应用,可以帮助读者更好地理解泛函分析的实际意义,并将其应用于实际问题的研究和解决中。
泛函分析课件泛函分析是数学中的一门重要学科,它研究的是无限维空间中的函数和算子。
在实际应用中,泛函分析广泛应用于物理学、工程学、经济学等领域。
本文将介绍泛函分析的基本概念和主要内容,以及其在实际应用中的一些例子。
一、泛函分析的基本概念泛函分析的基本概念包括向量空间、线性映射、内积、范数等。
向量空间是泛函分析的基础,它是一组满足一定条件的向量的集合。
线性映射是指将一个向量空间映射到另一个向量空间的函数,它保持向量空间的加法和数乘运算。
内积是向量空间中的一种运算,它是一个函数,将两个向量映射到一个实数。
范数是向量空间中的一种度量,它衡量向量的大小。
二、泛函分析的主要内容泛函分析的主要内容包括线性算子、连续性、紧性、谱理论等。
线性算子是指将一个向量空间映射到另一个向量空间的线性映射,它在泛函分析中起到了重要的作用。
连续性是指在一个向量空间中,如果两个向量足够接近,它们的映射也应该足够接近。
紧性是指一个映射将有界集映射到有界集,且将紧集映射到紧集。
谱理论是研究线性算子谱性质的一门学科,它对于解析和估计线性算子的特征值和特征向量具有重要意义。
三、泛函分析在实际应用中的例子泛函分析在实际应用中有许多例子,下面将介绍其中的几个。
首先是量子力学中的波函数,它是一个复数函数,描述了量子系统的状态。
泛函分析提供了一种理论框架,可以对波函数进行分析和计算。
其次是信号处理中的傅里叶变换,它将一个信号分解成一系列正弦和余弦函数的叠加。
泛函分析提供了一种数学工具,可以对信号进行分析和处理。
再次是优化问题中的拉格朗日乘子法,它是一种求解约束优化问题的方法。
泛函分析提供了一种理论基础,可以对优化问题进行建模和求解。
最后是经济学中的效用函数,它描述了个体对不同商品或服务的偏好程度。
泛函分析提供了一种数学工具,可以对效用函数进行分析和计算。
综上所述,泛函分析是一门重要的数学学科,它研究的是无限维空间中的函数和算子。
泛函分析的基本概念包括向量空间、线性映射、内积、范数等。
泛函分析简介什么是泛函分析泛函分析是数学的一个分支,主要研究无限维空间的线性算子及其性质。
它源于传统的分析学,特别是微分方程、积分方程和最优化理论等领域的发展。
通过研究空间中的点和函数,以及这些点和函数之间的映射关系,泛函分析提供了一种强大的工具用于解决各种实际问题。
在物理学、工程学、经济学和其他科学领域中,泛函分析有着广泛的应用。
泛函分析的基本概念线性空间线性空间(或称向量空间)是泛函分析的基础。
它由一组元素组成,这些元素可以通过向量加法和标量乘法进行组合。
形式上,若 (V) 是一个集合,满足以下条件,则 (V) 是一个线性空间:对于任意 (u, v V),则 (u + v V)(封闭性)。
对于任意 (u V) 和标量 (c),则 (c u V)(封闭性)。
存在零向量 (0 V),使得对于任意 (u V),有 (u + 0 = u)。
对于每个向量 (u V),存在一个对应的负向量 (-u V),使得 (u + (-u) = 0)。
向量加法满足交换律和结合律。
标量乘法满足分配律以及结合律。
拓扑空间拓扑空间是讨论连续性和极限的重要工具。
在泛函分析中,通常会结合线性空间与拓扑结构。
例如,一个拓扑向量空间需要具备以下性质:每个点都有邻域;任意多个开集的并集仍为开集;有限多个开集的交集仍为开集。
此时,可以引入收敛、限制、开集、闭集等概念,从而更深入地研究函数的性质。
巴拿赫空间与希尔伯特空间巴拿赫空间(Banach Space)是一类重要的完备线性空间,其定义为一个带有范数的线性空间,使得它是完备的。
也就是说,在这个空间中,每个柯西序列都收敛于某个元素。
范数是一个度量,用来描述向量之间的“距离”。
希尔伯特空间(Hilbert Space)则是一个完备的内积空间,是巴拿赫空间的一种特殊情况。
内积允许我们定义角度、正交性等概念,对于研究四维空间中的物理现象尤为重要。
主要定理与结果超平面定理与 Hahn-Banach 定理超平面定理指出,在有限维欧几里德空间中,任何非空闭子集至少可以由一个超平面相切。
高等数学中的泛函分析及应用泛函分析是数学中一个重要的分支,广泛应用于物理学、工程学、经济学和计算机科学等领域。
在高等数学中,泛函分析是一个非常重要的课程,它不仅是数学基础课程的一部分,也是许多专业的必修课程。
本文旨在介绍泛函分析的基本概念和应用,以便读者对该领域有更深入的了解。
一、泛函的概念泛函是将一个函数映射到一个实数集上的函数。
通常的情况下,泛函被定义为一个变量为函数的积分或微积分方程,这种定义方式在实际问题中更加常见。
泛函经常用来描述物理学和工程学中的问题,例如流体力学中的能量等。
具体地说,泛函是对一个无限维的向量空间内的函数进行操作的工具,可以对其进行求导、积分等运算。
二、泛函分析的基本概念泛函分析中的基本概念包括:线性空间、范数、内积、完备性、集合的紧性、分离性等。
线性空间:泛函分析描述的是函数空间,函数空间是一个线性空间,即一个向量空间,它含有基本的数乘和向量加法运算。
泛函分析中讨论的函数通常是连续函数,函数值域是实数或者复数。
范数:范数是度量向量的大小的函数,它可以是任意实数或者复数。
标准范数是欧几里得范数,也就是向量的模长。
内积:内积是一个向量空间中定义的二元函数,它满足线性性和对称性。
对于实向量空间中的两个向量,内积定义为它们的点积积分。
对于复向量空间中的两个向量,内积定义为它们的共轭积的积分。
完备性:完备性是一个在泛函分析中很重要的概念,它指函数空间中存在极限。
对于一个函数序列,如果其所有元素的范围在函数空间中,则该函数序列完备。
集合的紧性:一个函数集合是紧的,当且仅当它满足一直存在最小诺依曼-阿克马兹斯基定理(弱紧定理)。
分离性:在泛函分析中,分离性是指向量空间中可以找到保证它们不等同的闭子空间的一对向量。
这对向量的分离距离是它们之间的最小距离。
分离性是基本的、非常重要的概念,因为它形成了许多定理和原理的基础。
三、泛函分析的应用泛函分析在实际问题中的应用非常广泛,例如:1、量子力学:量子力学中的哈密顿算子可以被视为一个泛函,而波函数则可以被视为一个函数。
浅析泛函分析的基本概念泛函分析是现代数学中的一个重要分支, 它研究的是无限维空间上的函数集合, 以及函数与函数之间的关系, 使我们能够描述、研究和解决很多实际问题. 泛函分析独有的优点在于它能够描述和处理各种各样的无限维问题, 能够更加完美地对函数序列或函数空间上的各类性质进行分析, 而且很多经典数学中不能解决的问题, 泛函分析却能够给出解决的方案.泛函分析的基本概念主要包括:向量空间、集合、范数、内积、正交、测度、函数空间等等.以下是这些概念的具体阐述: 1. 向量空间向量空间是指一个满足一定公理的集合,其中这些公理一般包括向量运算的封闭性、加法结合律和交换律、零向量的存在、负向量的存在等等. 这些公理使得向量空间在进行加法和数乘运算时能够满足特定的条件.2. 范数范数是将向量空间中的向量映射到实数集合上的函数, 它通常定义为一个函数||·|| : V → R ,使得对于向量空间V中的任意两个向量,它们的范数都会有一定的关系,这关系通常包括非负性、齐次性和三角不等式等三个条件. 知道向量的范数, 可以想象向量在向量空间中的长度.3. 内积内积是向量空间中的两个向量进行一种数乘运算得到的数. 通常表示为(x, y) .内积可以描述两个向量在几何意义上是夹角余弦值. 从而可以定义正交和两个向量之间的距离.4. 正交在向量空间中, 如果两个向量的内积为0, 则这两个向量互相称之为正交向量. 在物理、机械等领域, 这个概念是经常用到的, 比如向量空间中的两个力相对偏轴正交等等,都是通过正交概念来进行描述的.5. 测度测度是将集合映射为其在一定空间上的数字性质.测度通常用于描述空间上的某些性质,如长度、面积、体积等,它们都是通过某种测度来进行度量的.这个概念经常用于描述概率论、拓扑学、微积分等领域中的问题.6. 函数空间函数空间是指一类函数的集合,函数空间中的元素是函数. 这些函数在某些特定的条件下,可以构成一个向量空间.通过对函数空间的研究, 可以得到很多关于函数性质的结论.总之,泛函分析中涉及的基本概念非常多,范围也很广.我们无法在短时间内全部理解, 因此需要不断地进行学习、思考、理解与探索, 才能真正掌握这门学科.。
数学无穷维空间中的泛函分析数学无穷维空间中的泛函分析是研究无穷维空间上的线性泛函及其性质的一个分支领域。
在数学的发展过程中,泛函分析发展得相当完整,并且在许多领域中都有广泛的应用,包括物理学、工程学、经济学等。
本文将介绍泛函分析的基本概念和主要理论。
一、泛函分析的基本概念1.1 线性空间泛函分析的研究对象是线性空间,即一组满足线性运算规则的元素的集合。
线性空间中的元素可以是实数或复数,具有加法和乘法运算。
1.2 范数和完备性在泛函分析中,我们关注的是向量的长度和距离的概念。
范数是定义在线性空间上的函数,满足非负性、齐次性和三角不等式。
完备性是指一个空间中的柯西序列收敛于该空间中的一个点。
在泛函分析中,完备性通常与范数空间中的闭性等价。
1.3 泛函和泛函的连续性泛函是定义在线性空间上的映射,将每个向量映射到一个标量。
泛函的连续性是指在向量变化很小时,映射的结果也有小的变化。
二、泛函分析的主要理论2.1 勒贝格空间勒贝格空间是指具有完备而有界的范数的空间。
在泛函分析中,勒贝格空间是常用的研究对象,它的完备性和范数的性质使其成为研究分析问题的基础。
2.2 算子理论算子是指将一个线性空间映射到另一个线性空间的映射。
在泛函分析中,算子理论研究了算子的范数、连续性、对偶性等性质。
特别地,Banach空间和Hilbert空间中的算子理论是泛函分析的重要组成部分。
2.3 凸分析凸分析是研究凸集和凸函数的性质的分析学分支。
在泛函分析中,凸分析是一种重要的工具,用于研究凸问题的最优性和最优解的存在性。
2.4 对偶理论对偶理论是泛函分析中的重要概念,它描述了两个线性空间之间的关系。
通过对偶理论,我们可以将一个线性空间映射到它的对偶空间,并研究它们之间的一些性质和关系。
三、泛函分析的应用泛函分析在许多领域都有广泛的应用。
以下是几个典型的应用领域:3.1 物理学中的泛函分析泛函分析在物理学中有广泛的应用,特别是在量子力学和流体力学等领域。
泛函分析复习与总结汇编泛函分析是数学中的一个重要分支,它研究的是无穷维空间中的函数和函数空间的性质。
泛函分析具有很强的抽象性和广泛的应用性,在数学和物理学中都有着重要的地位。
本文将对泛函分析的基本概念、定理与应用进行复习与总结。
一、基本概念1.线性空间与赋范线性空间:线性空间是指满足线性运算规则的集合,包括实数域上的向量空间和复数域上的向量空间。
赋范线性空间是在线性空间的基础上,引入了范数的概念,即给每个向量赋予一个非负实数,满足非负性、齐次性和三角不等式等性质。
2.内积空间与希尔伯特空间:内积空间是在赋范线性空间的基础上,引入了内积的概念,即给每一对向量赋予一个复数,满足线性性、共轭对称性和正定性等性质。
希尔伯特空间是一个完备的内积空间,即内积空间中的柯西序列收敛于该空间中的元素。
3.函数空间:函数空间是指由特定性质的函数组成的集合,常见的函数空间有连续函数空间、可微函数空间和L^p空间等。
二、定理与性质1.希尔伯特空间的性质:希尔伯特空间是一个完备的内积空间,任意一序列收敛于希尔伯特空间中的元素,该序列收敛于该元素的充分必要条件是该序列的柯西序列。
2. Riesz表示定理:Riesz表示定理是希尔伯特空间的一个重要定理,它指出了希尔伯特空间中的任意线性连续泛函都可以由内积表示。
具体地说,对于希尔伯特空间中的任意线性连续泛函f,存在唯一的y∈H,使得对于所有的x∈H,有f(x)=(x,y)。
3.泛函分析的基本算子理论:算子是泛函分析中的一个重要概念,它用来描述线性变换的性质。
常见的算子包括线性算子、连续算子和紧算子等。
4.开放映射定理:开放映射定理是泛函分析中的一个重要定理,它指出了一个连续算子的开集的像还是开集。
具体地说,如果X和Y是两个赋范线性空间,并且T:X→Y是一个连续线性算子,如果T是开映射,则其像T(X)也是Y中的开集。
三、应用泛函分析在数学和物理学的各个领域都有重要的应用,包括偏微分方程、最优控制理论和量子力学等。
泛函分析中的概念和命题赋范空间,算子,泛函定理:赋范线性空间是有限维的当且仅当它的单位球是列紧的;有限维赋范线性空间上的任两个范数是等价的;有限维赋范线性空间是Banach 空间.定理:M 是赋范线性空间()||||,⋅X 的一个真闭线性子空间,则,1||||,,0=∈∃>∀y X y ε使得: M x x y ∈∀->-,1||||ε定理:设X 是赋范线性空间,f 是X 上的线性泛函,则1.*X f ∈()()的闭线性子空间是X x f X x f N }0|{=∈=⇔ 2.()()中稠密在是不连续的非零线性泛函X f N x f ⇔定理:()空间是空间是则是赋范空间,Banach ,Banach },{,Y X B Y X Y X ⇔≠θ()()()||||||||||||,,,,,,,,B A AB Z X B AB Z Y B Y X B A Z Y X ≤∈∈∈且则是赋范空间,可分B 空间:()()[]可分b a C c c p l L p P ,,,,1,1,00∞<≤ ()∞∞l L ,10,不可分 Hahn-Banach 泛函延拓定理设X 为线性空间,上的实值函数是定义在X p ,若:(1)()()()()为次可加泛函则称p X y x y p x p y x p ,,,∈∀+≤+(2)()()()为正齐性泛函,则称p X x x p x p ∈∀≥∀=,0,ααα (3) ()()()为对称泛函,则称p X x x p x p ∈∀∈∀=,K ,||ααα 实Hahn-Banach 泛函定理: 设X 是实线性空间,()x p 是定义在X 上的次可加正齐性泛函,0X 是X 的线性子空间,0f 是定义在0X 上的实线性泛函且满足()()()00X x x p x f ∈∀≤,则必存在一个定义在X 上的实线性泛函f ,且满足:1.()()()X x x p x f ∈∀≤02. ()()()00X x x f x f ∈∀=复Hahn-Banach 泛函定理: 设X 是复线性空间,()x p 是定义在X 上的次可加对称泛函,0X 是X 的线性子空间,0f 是定义在0X 上的线性泛函且满足()()()00||X x x p x f ∈∀≤,则必存在一个定义在X 上的线性泛函f ,且满足:1.()()()X x x p x f ∈∀≤||02. ()()()00X x x f x f ∈∀=定理: 设X 是线性空间, 若}{θ≠X , 则在X 上必存在非零线性泛函。
Hahn-Banach 延拓定理: 设X 是赋范线性空间, 0X 是X 的线性子空间,0f 是定义在0X 上的有界线性泛函,则必存在一个定义在X 上的有界线性泛函f ,满足:1.0||||||||0X f f =2. ()()()00X x x f x f ∈∀=定理:设X 是赋范线性空间,M 是X 的线性子空间,(),0,,00>=∈d M x X x ρ则必有 *X f ∈,满足:(1)()()1||||)3()2(,00==∈∀=f d x f M x x f ;;定理:设X 是赋范空间,()1||||||,||,},{00*0==∈∃-∈∀f x x f X f X x 使必θ定理:设X 是赋范空间,1}||||,|)(sup{|||||,*000=∈=∈∀f X f x f x X x :必有凸集分离定理极大线性子空间:一个线性空间的子空间,真包含它的线性空间是全空间超平面:它是线性空间中某个极大线性子空间对某个向量的平移,也称极大线性流形承托超平面:的在点凸集0x E 承托超平面0x L L E L 有公共点的一侧,且与在是指Minkowski 泛函:上作一个点的凸子集,在的含有是是线性空间,设X X M X θ取值于],0[+∞的函数: ()()X x M x x p ∈∀∈>=},|0inf{λλ与M 对应,称函数p 为M 的Minkowski 泛函定理:L 是赋范空间X 的(闭)超平面⇔存在X 上的非零(连续)线性泛函f 及()}|{,,r x f X x H H L R r r f rf =∈==∈其中使Hahn-Banach 定理的几何形式: 设X 是赋范空间,E 是X 的具有内点的真凸子集,又设00,x E E X x 与离则必存在一个超平面分-∈定理:设X 是赋范空间,;具有内点,且的两个非空凸集,是和φ=⋂F E E X F E 0则 F E H X f s sf 和分离使得超平面及},{R *θ-∈∈∃Ascoli 定理:设X 是赋范空间,E 是X 的真闭凸子集,则R ,,*0∈∈∃-∈∀αX f E X x 适合()()()E x x f x f ∈∀<<,0α Mazur 定理:设X 是赋范空间,E 是X 的一个有内点的凸子集,F 是X 的一个线性流形,又设的一侧在,使的闭超平面则存在一个包含L E L F F E ,0φ=⋂定理:设X 是赋范空间,E 是X 的一个含有内点的闭凸集,则通过E 的每个边界点都可以作出E 的一个承托超平面 基本定理定理:()()()εθθε,1,,0,Banach ,O TB Y X B T Y X ⊃>∃∈使得是满射,则空间,是设 开映射定理:()是开映射是满射,则空间,是设T Y X B T Y X ,Banach ,∈Banach 逆算子定理:()()Y X B T Y X B T Y X ,,Banach ,1∈∈-是双射,则空间,是设 等价范数定理:设X 是线性空间,1||||•和2||||•是X 上的两个范数,若X 关于这两个范数都成为Banach 空间,而且2||||•强于1||||•,则1||||•也强于2||||•,从而1||||•和2||||•等价闭算子:是赋范空间,设Y X ,()的映射,到是Y X T D T ⊂若T 的图像()()}|,{T D x Tx x ∈是赋范线性空间Y X ⨯中的闭集,则称T 是闭映射或闭算子闭算子判别定理:设Y X ,是赋范空间,()⇔⊂是闭映射的映射,则到是T Y X T D T (),}{T D x n ⊂∀若()00000,,Tx y T D x Y y Tx X x x n n =∈∈→∈→,且则闭图像定理:空间,是设Banach ,Y X ()的线性映射到是Y X T D T ⊂,而且是闭算子,若 ()T D 是X 的闭线性子空间,则T 是连续的定理:空间,是设Banach ,Y X 的线性算子到是Y X T ,则T 连续⇔T 是闭算子 共鸣定理:空间,是设Banach X Y 是赋范空间,().,,Λ∈∈λλY X B T 如果X x ∈∀,都有有界:则}||{||,||||sup Λ∈+∞<Λ∈λλλλT x T自反空间与共轭算子除声明外下面的Y X ,都是一般的赋范线性空间共轭空间:[]()[]()共轭,,q p p b a C l c c l l L L q p q P ,,1b ,a V ,,)(,)(,)(0*1*0***∞<≤===== 伴随算子:()()()()||||||||,,*******T T X Y B T f f T Tx f x f Y X B T =∈==∈,,,, 1.()()||||||||,,,**********T T T T X X T T X B T ==∈的延拓且是则的子空间看成若将记 2.()()1**1*)(,--=⇔∈T T T T Y X B T 有有界逆,且此时有有界逆,则3.()()的保范线性算子到是由映射***,,X Y B Y X B A A α4.()()()***,,,,A B AB Z Y B B Y X B A =∈∈则若 定理:若)(11*不自反,可分。
可分,则l L X X ⇒;X 是Banach 空间,自反自反X X ⇔* 自反空间的闭线性子空间是自反空间自然嵌入映射**x x →:τ是赋范空间X 到**X 的保范的有界线性算子,即:||||||||**x x =Riesz 表示定理:设X 是局部紧空间,()()则:时,},|sup{|||||X x x f f X C f c ∈=∈ (1) 若()X C c 是ϕ上的正线性泛函,则存在X 上一个正则Borel 测度u ,使得对任()X C f c ∈都有()⎰=u f f d ϕ(2) 若()*X C c ∈ϕ,则存在X 上一个广义正则Borel 测度u ,使()⎰=u f f d ϕ(3) 若()X C c 是X 上具有紧支集的复连续函数空间,则对()X C c 上任一有界复线性泛函ϕ,存在复正则Borel 测度u ,使()⎰=u f f d ϕ弱收敛和弱列紧基本概念:弱收敛;算子列的一致收敛,强收敛,弱收敛;泛函列的*弱收敛;弱列紧;局部弱列紧;*弱列紧;局部*弱列紧定理:设()()当且仅当:强收敛于某个空间,是Y X T Y X B T Y X n ,B ,}{Banach ,∈⊂1.()K ,3,2,1||||0||}{||=≤>n M T M T n n ,使有界,即有2.收敛,,使中的稠集存在}{x T D x D X n ∈∀定理:设当且仅当:弱收敛于某个则空间,是***}{,}{Banach X f f X f X n n ∈⊂1.有界;||}{||n f2.()收敛,,使中的稠集存在}{x f D x D X n ∈∀ 定理:设当且仅当:弱收敛于某个是赋范空间,则X x X x X n ∈⊂}{1.有界;||}{||n x2.()()x f x f D f D X n 收敛于,有,使中的稠集存在}{*∈∀定理:设,}{X x X x X n ∈⊂弱收敛于某个是赋范空间,则存在由}{n x 的凸组合构成的点列使其强收敛到x ,且||||lim ||||n n x x ∞→≤ 定理:可分赋范空间的共轭空间是局部*弱列紧的;自反空间是局部弱列紧的Hilbert Space基本概念:除声明外下面所涉及的空间都是Real or Complex Hilbert Space X内积:一个(数域K 上)线性空间X 上的内积指的是共轭双线性泛函:K →⨯X X ,它满足正定性和共轭对称性。
内积空间:定义了内积的线性空间。
定义了内积的复(实)线性空间称为复(实)内积空间。
内积导出的范数满足平行四边形公式。
内积(按内积导出的范数)是X X ⨯上的连续函数.若由内积导出的范数是完备的,这样的内积空间称为Hilbert 空间定理:设()()⋅⋅,,X 是内积空间,||||⋅是由内积()⋅⋅,导出的范数,则||||⋅与()⋅⋅,满足如下关系:当X 是实线性空间时,()()X y x y x y x y x ∈∀--+=,,||||||||41,22 当X 是复线性空间时,()()X y x iy x i iy x i y x y x y x ∈∀--++--+=,,||||||||||||||||41,2222 极化恒等式:()()()()()[]iy x iA iy x iA y x A y x A y Ax --++--+=41,,()()x Ax x A ,= 定理:为了在赋范线性空间()||||,⋅X 中引入内积()⋅⋅,,使得由()⋅⋅,导出的范数就是||||⋅,当且仅当||||⋅满足平行四边形公式:()2222||||||||2||||||||y x y x y x +=-++定理:设()()⋅⋅,,X 是内积空间,M 是X 的非空子集,()X n y y x n ∈=K ,2,1,,,则1.222||||||||||||y x y x y x +=+⇒⊥ 2.()y x y y n y x n n ⊥⇒→=⊥,,2,1K 3.M x M x span ⊥⇒⊥ 4.()⊥⊥⊥⊥=⊂M M M M , 5.}{θ=⇒⊥MX M 中稠在 6.()⊥⊥⊥=spanM M X M 的闭线性子空间,且是定理:设X 是希尔伯特空间,M 是X 的非空闭凸子集,则M y X x o ∈∃∈∀唯一的,,使得()}||inf{||,||||0M y y x M x y x ∈-==-:ρ正交分解定理:设M 是希尔伯特空间X 的一个闭线性子空间,X x ∈∀,存在唯一的正交分解:⊥⊥⊕=∈∈+=M M X M x M x x x x 即:),,(,1010定理:设()()⋅⋅,,X 是希尔伯特空间,M 是X 的线性子空间,则:1.()M M =⊥⊥2. }{θ=⇔⊥M X M 中稠在定理:系中必存在完备标准正交空间}){(θ≠H H H ilb ert定理:假定}|{Λ∈=ααe S 是中的标准正交系空间H H ilb ert ,那么.H x ∈∀有Parseval 不等式:∑Λ∈≥αα2||||2||||c x定理:}|{Λ∈=ααe S 是中的完备标准正交系空间H Hilbert ,⇔.H x ∈∀有Fourier 展开式和Parseval 等式:∑Λ∈=∑Λ∈=ααααα2||||2||||,c x e c x ,其中:()()系数的称为Fourier ,x e x c Λ∈=ααα。