无机物修饰 黑磷(Black-Phosphorus)
J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. Xiong, Y. Cui, Advanced Materials, 28 (2016) 9797-9803.
.
复合材料修饰 PVDF-C
H. Wei, J. Ma, B. Li, Y. Zuo, D. Xia, ACS Applied Materials & Interfaces, 6 (2014) 20276-20281.
.
复合材料修饰 PVDF-C
.
复合材料修饰
微孔碳/聚乙二醇(MPC/PEG)
S.H. Chung, A. Manthiram, Advanced Materials, 26 (2014) 7352-7357.
碳材料修饰 石墨烯(Graphene)
G. Zhou, S. Pei, L. Li, D.W. Wang, S. Wang, K. Huang, L.C. Yin, F. Li, H.M. Cheng, Advanced Materials, 26 (2014) 625-631.
.
聚合物修饰(Nafion-全氟磺酸酯)
◆导电性和多硫化物的阻隔性应是商业化Li-S电池复合膜的关键考虑因素。 ◆采用物理或化学方法阻隔多硫化物的功能材料涂覆旨在拦截、吸收和捕获 这些多硫化物。 ◆导电涂层应有较高的导电性并且具备多孔的孔道结构从而有利于电子、 Li+ 和重新激活被困的活性物质的电解液的传输。 ◆通过不同的制备工艺来提高轻质涂覆层与基膜的粘附力,比如流延法、真 空过滤、旋涂、丝网印刷等技术。 ◆单独的陶瓷或者聚合物涂覆由于涂层本身导电性差而不利于电子的高效转 移,而结合导电碳与功能陶瓷或聚合物作为复合涂层可提高循环稳定性。 ◆未来的Li-S电池涂覆膜应该有合适的孔道结构、轻质、额外的物理和化学 性能,其在提高Li-S电池性能方面可能会占据主导地位。