初一七年级绝对值练习(含例题基础培优)
- 格式:doc
- 大小:281.00 KB
- 文档页数:13
第2讲 绝对值知识点1 绝对值的非负性绝对值的性质:互为相反数的两数绝对值相等.若|x|=a (a≥0),则x=±a.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【典例】1.若|a|=3,|b|=2,且a <0<b ,则a 的相反数与b 的和为________.【方法总结】根据绝对值的性质即可求得a ,b 的值,然后代入数据即可求解.本题考查了绝对值的性质,正确确定a ,b 的值是解题的关键.2.已知|x-2017|+|y ﹣2016|=0,则x+y=____【方法总结】此题主要考查了绝对值的性质,关键是掌握绝对值具有非负性.由“若几个非负数的和为0,则每一个数都为0”可得x+2017=0,y ﹣2016=0,计算出x 、y 的值,进而可得答案.【随堂练习】1.(2017秋•河北区校级月考)|a|=﹣a ,则a 一定是( )A .负数B .正数C .非正数D .非负数⎧⎪⎪⎨⎪⎪⎩绝对值的非负性比较大小绝对值数轴与绝对值绝对值的几何意义(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(0)(0)a a a a a ≥⎧⎪=⎨⎪-<⎩(0)(0)a a a a a >⎧⎪=⎨⎪-≤⎩2.(2016秋•青龙县期末)若|n+2|+|m+8|=0,则n﹣m等于()A.6 B.﹣10 C.﹣6 D.103.(2017秋•尚志市期末)|m﹣n+2|+|m﹣3|=0,则m+n=____.4.(2017秋•伊通县期末)已知|x﹣2|+|y+2|=0,则x+y=____.知识点2比较大小两个正数,绝对值大的正数大;两个负数,绝对值大的负数小.正数都大于0,负数都小于0,正数大于一切负数.【典例】1.有理数﹣2,0,﹣3.2,4中最小的数是()A. ﹣2B. 0C. ﹣3.2D. 4【方法总结】先将各数两两比较,再按照从小到大顺序排列,找出最小的数即可.此题考查了有理数比较大小,牢记两个有理数比较大小的方法是解本题的关键.【随堂练习】1.(2018•十堰)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)22.(2018•重庆模拟)在﹣7,5,0,﹣3这四个数中,最大的数是()A.﹣7 B.5 C.0 D.﹣33.(2018•莒县模拟)下列比较大小结果正确的是()A.﹣3<﹣4 B.﹣(﹣2)<|﹣2| C.D.知识点3数轴与绝对值绝对值:数轴上表示一个数的点与原点的距离叫做这个数的绝对值.在数轴上,小于0的点在原点左边,大于0的点在原点右边.【典例】1.已知|a|=2,|b|=2,|c|=4,且有理数a,b,c在数轴上的位置如图所示,试求a,b,c的值.【方法总结】先根据绝对值的意义得到a=±2,b=±2,c=±4,然后根据数轴表示数的方法得到a<0,b>0,c>0,从而得a、b、c的值.本题考查了绝对值的性质和数在数轴上的表示,体现了数形结合的思想.【随堂练习】1.(2017秋•金堂县期末)如图所示,a、b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为_____.2.(2016秋•庆城县期末)如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.知识点4 绝对值的几何意义式子|x﹣a|的几何意义是数轴上表示数x的点与表示数a的点之间的距离.∣x-a∣+∣x-b∣的几何意义是数轴上表示x的点到表示a的点和表示b的点的距离和. 【典例】1.有理数a、b、c、d所表示的点在数轴上的位置如图所示,若|a﹣c|=|b﹣d|=4,|a﹣d|=5,则|b﹣c|=______【方法总结】根据绝对值的几何意义,将两个数的差的绝对值看成是这两个点之间的距离,在数轴上由线段的和差关系可求|a﹣b|,|c﹣d|,再根据线段的和差关系即可求解.本题考查了绝对值、数轴,熟练掌握绝对值的几何意义是解题的关键.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.2. 同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是___________,(2)数轴上表示x与2的两点之间的距离可以表示为___________.(3)如果|x﹣2|=5,则x=___________.(4)同理|x-(-3)|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是______________________.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【方法总结】本题是一道去绝对值和数轴相联系的综合试题,体现了数形结合的思想.式子|x﹣a|的几何意义是数轴上表示数x的点与表示数a的点之间的距离,式子∣x-a∣+∣x-b∣的几何意义是数轴上表示x的点到表示a的点和表示b的点的距离和.数形结合往往能使问题变得直观、简洁,省去复杂的分析过程.【随堂练习】1.(2017秋•卫辉市期中)|x+1|+|x﹣3|的最小值是_____.2.(2017秋•宜兴市期中)当有理数a满足______条件时,|a+4|+|a﹣5|的值最小.3.(2017秋•高新区期末)阅读材料:我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,则x=____;(2)式子|x﹣3|+|x+1|的最小值为____;(3)若|x﹣3|+|x+1|=7,求x的值.综合集训1.在﹣(﹣2),﹣|﹣7|,﹣|+1|,|﹣|中,负数有_______________.2.若|m|=|﹣7|,则m=__________.3.在数﹣5,﹣,,中,大于﹣的数有___________.4.填空:(1)﹣的绝对值的相反数是________,﹣0.3的相反数的绝对值是________;(2)在数轴上,到原点的距离是2的点所表示的数是________;(3)互为相反数的两个数在数轴上对应点之间的距离为6,这两个数分别为________和________;(4)相反数等于它本身的数是________,相反数等于它的绝对值的数是_______.5.已知|x﹣2|+|y-3|=0,则x+y=________.6.若|x+1|+|y﹣2|+|z+3|=0,求|x|+|y|+|z|的值.7.如图表示数轴上四个点的位置关系,且它们表示的数分别为p,q,r,s.若|p﹣r|=10,|p ﹣s|=12,|q﹣s|=9,求|q﹣r|的值.8.已知|a﹣2|+|b﹣3|+|c﹣4|=0,求式子a+2b+3c的值.9.如果∣x-3∣+∣x+1∣=4,则x的取值范围是什么?10.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a ﹣b|.理解:(1)数轴上表示2和﹣4的两点之间的距离是__________;(2)数轴上表示x和﹣6的两点A和B之间的距离是__________;应用:(1)当代数式|x﹣1|+|x-(-2)|取最小值时,相应的x的取值范围是_______,最小值为_____;(2)当x≤﹣2时,代数式|x﹣1|﹣|x-(-2)|的值_____3(填写“≥、≤或=”).。
初一数学培优经典试题及答案试题一:有理数的加减法题目:计算下列有理数的和:\[ 3 + (-2) + 4 + (-1) \]答案:首先,我们可以将正数和负数分别相加:\[ 3 + 4 = 7 \]\[ -2 + (-1) = -3 \]然后,将两个结果相加:\[ 7 + (-3) = 4 \]所以,最终结果是4。
试题二:绝对值的计算题目:求下列数的绝对值:\[ |-5|, |-(-3)|, |0| \]答案:绝对值表示一个数距离0的距离,不考虑正负号。
因此:\[ |-5| = 5 \]\[ |-(-3)| = |3| = 3 \]\[ |0| = 0 \]所以,这三个数的绝对值分别是5, 3, 和0。
试题三:一元一次方程的解法题目:解下列方程:\[ 2x - 3 = 7 \]答案:首先,将方程中的常数项移到等号的另一边:\[ 2x = 7 + 3 \]\[ 2x = 10 \]然后,将等式两边同时除以2,得到x的值:\[ x = \frac{10}{2} \]\[ x = 5 \]所以,方程的解是x = 5。
试题四:代数式的值题目:当a=3,b=-2时,求代数式\( ab + a - b \)的值。
答案:将给定的a和b的值代入代数式中:\[ ab + a - b = 3 \times (-2) + 3 - (-2) \]\[ = -6 + 3 + 2 \]\[ = -1 \]所以,代数式的值是-1。
试题五:几何图形的周长和面积题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:长方形的周长是长和宽的两倍之和:\[ 周长 = 2 \times (长 + 宽) \]\[ 周长 = 2 \times (10 + 5) \]\[ 周长 = 2 \times 15 \]\[ 周长 = 30 \] 厘米长方形的面积是长乘以宽:\[ 面积 = 长 \times 宽 \]\[ 面积 = 10 \times 5 \]\[ 面积 = 50 \] 平方厘米结束语:以上是初一数学培优的经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用。
七年级培优——绝对值绝对值是七年级数学中的一个非常重要的基本概念,但涉及到的数学思想非常重要,所涉及的方法也会对整个初中数学的学习有很大的帮助,本节课我们将从几种方法对绝对值的综合题进行讲解。
一、利用绝对值的定义求绝对值的值。
绝对值的定义如下:⎪⎩⎪⎨⎧<-=>=.0,0,00,||时当时,当时,当a a a a a a例题1:已知1||≤x ,1||≤y ,求|52||1|--++x y y 的最小值。
方法点拨:要化简|52||1|--++x y y ,必须要搞清楚1+y 和52--x y 的正负情况,当不能判断的时候就需要通过分类来进行化简.解:因为1||≤x ,1||≤y 可得11≤≤-x ,11≤≤-y ,所以210≤+≤y ,从而得1|1|+=+y y因为11≤≤-y ,所以222≤≤-y ,因为11≤≤-x ,所以11≤-≤-x所以323≤-≤-x y所以2528-≤--≤-x y ,即052<--x y ,从而有52)52|52|++-=---=--x y x y x y ( 所以6521|52||1|+-=++-+=--++y x x y y x y y所以当x 取最小值,y 取最大值时,6+-y x 的值最小即当1-=x ,1=y 时,|52||1|--++x y y 的最小值为4611=+--.练习1:若3||=x ,2||=y ,且x y y x -=-||,求y x +的值.练习2:已知0<a ,0>b ,求|5||1|---+-b a a b 的值.练习3:已知a 、b 、c 是非零有理数,且0=++c b a ,求abcabc c c b b a a ||||||||+++的值.练习4:已知1||≤x ,1||≤y ,求|42||1|||--++++x y y y x 的最大值和最小值.练习5:已知152||=++y x x ,3| |=-+y y x ,求x ,y 的值.二、利用数轴解绝对值的值由绝对值的几何意义可知,||a 表示的几何意义为实数a 到原点的距离,||b a -表示的几何意思为实数a 到实数b 在数轴上的距离。
初一有理数绝对值题50道一、基础巩固1、绝对值等于 5 的数是()A 5B -5C 5 或-5D 02、绝对值小于 4 的整数有()A 3 个B 5 个C 7 个D 9 个3、若|x|=3,则 x=()A 3B -3C 3 或-3D 04、计算:| 7 |=()A -7B 7C 1/7D 1/75、若|a|= a,则 a 是()A 正数B 负数C 非正数D 非负数6、绝对值最小的数是()A 1B 0C -1D 不存在7、若|x 2|=0,则 x=()A 2B -2C 0D ±28、若|x + 3|=5,则 x=()A 2 或-8B -2 或 8C 2 或 8D -2 或-89、下列说法正确的是()A | 5 |= 5B | 06 |= 06C | 1/3 |= 1/3D | 8 |=810、比较大小:| 3 |()| 4 |A >B <C =D 无法比较二、能力提升11、若|a|=5,|b|=3,且 a>b,则 a + b 的值为()A 8B 2C 8 或 2D ±8 或 ±212、已知|x|=4,|y|=1/2,且 xy<0,则 x/y 的值为()A -8B 8C 1/8D 1/813、若|x 1| +|y + 2| = 0,则 x + y 的值为()A -1B 1C -3D 314、当 a<0 时,化简|a 1| |a 2| =()A -1B 1C 2a 3D 3 2a15、若 0<x<1,则 x,1/x,x²的大小关系是()A x<x²<1/xB x²<x<1/xC 1/x<x<x²D 1/x<x²<x16、有理数 a,b 在数轴上的位置如图所示,则|a b| =()(数轴略)A a bB b aC a + bD a b17、若|x + 1| +|x 2| = 5,则 x 的值为()A 3B -2C 3 或-2D 不存在18、已知 a,b 互为相反数,c,d 互为倒数,m 的绝对值为 2,求|a + b|/m cd + m 的值。
2 - 1 =22 2 2 进而 ⎪⎨,解得 ⎪⎨ ⎩ ⎩一元一次方程培优专题——绝对值方程例题1. 解方程: 2 x + 3 = 5【解析】根据绝对值的意义,原方程可化为 2x + 3 = 5 或者 2x + 3 = -5 ,解得 x = 1 或 x = -4【答案】 x = 1 或 x = -4例题2. 解方程 x + 1 - 1 2 - x + 13【解析】原方程整理得: x + 1 = 13 ,即 x + 1 = 13 或者 x + 1 = - 13 ,所以原方程的解为 x = 8 或 x = - 1855 5 5 5【答案】 x = 8 或 x = - 1855例题3. 已知:当 m > n 时,代数式(m 2- n 2+ 3) 和 m 2+ n 2- 5 的值互为相反数,求关于x 的方程m 1 - x = n的解.【解析】因为代数式 (m 2 - n 2 + 3) 和 m 2 + n 2 - 5 的值互为相反数,所以 (m 2 - n 2 + 3) + m 2 + n 2 - 5 = 0 , 所以 (m 2 - n 2 + 3) = 0 , m 2 + n 2 - 5 = 0 ,⎧m 2 - n 2 = -3 ⎪m 2 + n 2 = 5⎧m 2 = 1 ⎪n 2 = 4,所以 m = ±1, n = ±2 ,因为 m > n ,当 m = 1时, n = -2 ;当 m = -1 时, n = -2 ;当 m = 1,n = -2 时,方程为 1 - x = -2 ,该方程无解;当 m = -1, n = -2 时,方程为 - 1 - x = -2 ,解得 x = -1 或 x = 3 .【答案】 x = -1 或 x = 3例题4.解方程4x+3=2x+9【解析】解法一:令4x+3=0得x=-3,将数分成两段进行讨论:4①当x≤-3时,原方程可化简为:-4x-3=2x+9,x=-2在x≤-3的范围内,是方程的解.44②当x>-3时,原方程可化简为:4x+3=2x+9,x=3在x>-3的范围内,是方程的解.44综上所述x=-2和x=3是方程的解.解法二:依据绝对值的非负性可知2x+9≥0,即x≥-9.原绝对值方程可以转化为①4x+3=2x+9,2解得x=3,经检验符合题意.②4x+3=-(2x+9),解得x=-2,经检验符合题意.综合①②可知x=-2和x=3是方程的解.【答案】x=-2或x=3例题5.解方程4x+3=2x+9【答案】x=3或x=-2例题6.a为有理数,a=2a-3,求a的值.【解析】解法一:要想求出a的值,我们必须先化简a=2a-3.采用零点分段讨论的方法.令a=0,2a-3=0得a=3.2①当a≥3时,由原式可得a=2a-3,求得a=3,在a≥3的范围内;22②当0≤a<3时,由原式可得a=3-2a,求得a=1,在0≤a<3的范围内;22③当a<0,由原式可得-a=-2a+3,求得a=3,不在a<0的范围内.综上可得a的值为3或1.x 解法二:依题意, a 的绝对值和 2a - 3 的绝对值相等,可以得出两者相等或互为相反数,即a = 2a - 3或a = -(2a - 3) 解得 a = 3 或 a = 1.【答案】 a = 3 或 a = 1例题7. 解方程 2 x - 1 = 3x + 1【解析】根据两数的绝对值相等,可以判断这两个数相等或者互为相反数,所以由原方程可以得到2x - 1 = 3x + 1 或 2x - 1 = -3x - 1 ,解得 x = -2, = 0 .【答案】 x = -2 或 x = 0例题8. 解方程 x - 1 + x - 3 = 4【解析】令 x - 1 = 0 , x - 3 = 0 得 x = 1 , x = 3 ,它们可以将数轴分成 3 段:①当 x < 1 时,原方程可化简为: -( x - 1) - ( x - 3) = 4 , x = 0 在 x < 1 的范围内是原方程的解;②当 1 ≤ x < 3 时,原方程可化简为: x - 1 - ( x - 3) = 4 ,此方程无解;③当 x ≥ 3 时,原方程可化简为: x - 1 + x - 3 = 4 , x = 4 在 x ≥ 3 的范围内是原方程的解;综上所述,原方程的解为: x = 0 或 x = 4 .【答案】 x = 0 或 x = 4例题9. 解方程 x - 1 + x - 5 = 4【解析】由绝对值的几何意义可知 1 ≤ x ≤ 5 .【答案】 1 ≤ x ≤ 5例题10. 解方程: 2 x + 1 - 2 - x = 3【解析】零点为: x = - 1 , x = 2 ,它们可将数轴分成三段:22 ①当 x < - 1 时,原方程变形为:-(2 x + 1) - (2 - x) =3 ,x = -6 在 x < - 1 的范围内,是方程的解;22②当 - 1 ≤ x < 2 时,原方程变形为: (2 x + 1) - (2 - x) = 3 , x = 4 在 - 1 ≤ x < 2 的范围内,是方程23 2的解;③当 x > 2 时,原方程变形为:(2 x - 1) - ( x - 2) = 3 ,x = 0 不在 x > 2 的范围内,不是方程的解.综上所述原方程的解为: x = -6 或 x = 4 .3【答案】 x = -6 或 x = 43例题11. 解方程:方程 x + 3 + 3 - x = 9 x + 52【解析】对 x 的值分 4 段讨论:①若 x < -3 ,则原方程化为 - x - 3 + 3 - x = - 9 x + 5 ,解得 x = 2 ,与 x < -3 矛盾;2②若 -3 ≤ x < 0 ,则原方程化为 x + 3 + 3 - x = - 9 x + 5 ,解得 x = - 2 ;29③若 0 ≤ x < 3 ,则原方程化为 x + 3 + 3 - x = 9 x + 5 ,解得 x = 2 ;29④若 x ≥ 3 ,则原方程化为 x + 3 + x - 3 = 9 x + 5 ,解得 x = -2 ,与 x ≥ 3 矛盾.2综上所述方程的解为 x = ± 2 .9【答案】 ± 29例题12. 解绝对值方程: x - 3x - 5- 1 = 62【解析】 x - 3x - 5 - 1 = 6 或 -6 ,即 3x - 5 = x - 7 或 3x - 5 = x + 522 2①当 x - 7 ≥ 0 时(即 x ≥ 7 ), 3x - 5 > 0 , 3x - 5 = x - 7 化为 3x - 5 = x - 7 ,解得 x = -9 ;22②当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 > 0 (即 x ≥ 5 ), 3x - 5 = x + 5 ,解得 x = 15 ;23 2③当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 < 0 (即 x < 5 ), 3x - 5 = - x - 5 ,解得 x = -1 .23 2再来检验这三个解 x = -9 (舍去)、 x = 15 、 x = -1 .【答案】 x = 15 或 x = -13x + 1 = 0,x = - ; x - 3x + 1 = 0 , x = - , - ,这 3 个零点将数轴分成 4 段,我们分段讨论 8例题13. 解方程: 3x - 5 + 4 = 8【解析】3x - 5 + 4 = 8 或 - (舍),即 3x - 5 = 4 ,所以 3x - 5 = 4 或 -4 ,即 3x = 9 或 3x = 1 ,故 x = 3 或 x = 1 .3【答案】 x = 3 或 x = 13例题14. 求方程 x - 3x + 1 = 4 的解.【解析】解法一:1 1 1 32 4研究可以得到结果为: x = 3 或 x = - 5 ,但其实这么做是没必要的.我们来看看解法二.24解法二:①当 x ≤ - 1 时,方程可化为: 4x + 1 = -4 , x = - 5 ,在 x ≤ - 1 范围内,是方程的解;34 3②当 x > - 1 时,方程可化为 -2 x - 1 = 4 :当 -2x - 1 = 4 时,得 x = - 5 , - 5 < - 1 , x = - 5 不是32 23 2解,舍去;当 -2x - 1 = -4 时,得 x = 3 ,∵ 3 > - 1 ,∴ x = 3 是方程的一个解.22 3 2综上可得,原方程的解为 x = 3 或 x = - 5 .24【答案】 x = 3 或 x = - 524例题15. 当 0 ≤ x ≤1 时,求方程 x - 1 - 1 - 1 = 0 的解【解析】根据 x 所在的范围,可得 x ≥ 0 , x - 1≤ 0 ,因此 x = x ,x - 1 = 1 - x ,按从内到外的顺序逐个去除方程中的绝对值符号,原方程可顺次化为: 1 - x - 1 - 1 = 0 ,即 1 - x = 0 ,所以 x = 1 .【答案】1。
绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.5绝对值【名师点睛】1.概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.3.绝对值的非负性:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.【典例剖析】【例1】化简下列各数:(1)﹣(﹣5)(2)﹣(+7)(3)﹣[﹣(+23)](4)﹣[﹣(﹣a)](5)|﹣(+7)|(6)﹣|﹣8|(7)|﹣|+4 7 ||(8)﹣|﹣a|(a<0)【分析】(1)根据相反数定义求出即可;(2)根据相反数定义求出即可;(3)根据相反数定义求出即可;(4)根据相反数定义求出即可;(5)根据绝对值定义求出即可;(6)根据绝对值定义求出即可;(7)根据绝对值定义求出即可;(8)根据绝对值定义求出即可.【解析】(1)﹣(﹣5)=5;(2)﹣(+7)=﹣7;(3)﹣[﹣(+23)]=23;(4)﹣[﹣(﹣a)]=﹣a;(5)|﹣(+7)|=7;(6)﹣|﹣8|=﹣8;(7)|﹣|+47||=47;(8)﹣|﹣a|(a<0)=﹣(﹣a)=a.【点评】本题考查了绝对值,相反数的应用,注意:一个负数的绝对值等于它的相反数,一个正数的绝对值等于它本身,0的绝对值是0.【变式】化简:(1)﹣(﹣3);(2)﹣|﹣3.2|;(3)+(﹣0.5);(4)﹣|+13 |.【分析】(1)根据相反数的定义解决此题.(2)根据绝对值以及相反数的定义解决此题.(3)根据去括号法则解决此题.(4)根据绝对值以及相反数的定义解决此题.【解析】(1)﹣(﹣3)=3.(2)﹣|﹣3.2|=﹣3.2.(3)+(﹣0.5)=﹣0.5.(4)―|+13|=―13.【点评】本题主要考查绝对值以及相反数的定义,熟练掌握相反数的定义是解决本题的关键.【例2】已知a为整数(1)|a|能取最 小 (填“大”或“小”)值是 0 .此时a= 0 .(2)|a|+2能取最 小 (填“大”或“小”)值是 2 .此时a= 0 .(3)2﹣|a﹣1|能取最 大 (填“大”或“小”)值是 2 .此时a= 1 .(4)|a﹣1|+|a+2|能取最 小 (填“大”或“小”)值是 3 .此时a= ﹣2≤a≤1 .【分析】(1)由绝对值的性质即可得出答案;(2)由绝对值的性质即可得出答案;(3)由绝对值的性质即可得出答案;(4)由绝对值的性质即可得出答案.【解析】(1)|a|能取最小值是0.此时a=0.故答案为:小,0,0;(2)|a|+2能取最小值是2.此时a=0.故答案为:小,2,0;(3)2﹣|a﹣1|能取最大值是2.此时a=1.故答案为:大,2,1;(4)|a﹣1|+|a+2|能取最小值是3.此时﹣2≤a≤1;故答案为:小,3,﹣2≤a≤1.【点评】本题考查了绝对值的非负性质;熟练掌握绝对值的非负性质是解题的关键.【变式】.(1)如果|x|=2,则x= ±2 ;(2)如果x=﹣x,则x= 0 ;(3)如果|x|=x,求x的取值范围;(4)如果|x|=﹣x,求x的取值范围.【分析】(1)利用绝对值的定求解即可,(2)利用相反数的定义求解,(3)利用绝对值的性质求解即可,(4)利用绝对值的性质求解即可.【解析】(1)如果|x|=2,则x=±2;故答案为:±2.(2)如果x=﹣x,则x=0;故答案为:0.(3)如果|x|=x,则x≥0;(4)如果|x|=﹣x,则x≤0.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.【满分训练】一.选择题(共10小题)1.(2022•通辽)﹣3的绝对值是( )A.―13B.3C.13D.﹣3【分析】应用绝对值的计算方法进行计算即可得出答案.【解析】|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解析【解析】∵|a|=5 4,∴a=±5 4.故选:D.【点评】本题考查了绝对值的意义,即在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.3.(2022•百色)﹣2023的绝对值等于( )A.﹣2023B.2023C.±2023D.2022【分析】利用绝对值的意义求解.【解析】因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:B.【点评】本题考查绝对值的含义.即:正数的绝对值是它本身,负数的绝对值是它的相反数.4.(2022•绥化)化简|―12|,下列结果中,正确的是( )A.12B.―12C.2D.﹣2【分析】利用绝对值的意义解析即可.【解析】|―12|的绝对值是12,故选:A.【点评】本题主要考查了绝对值的意义,正确利用绝对值的意义是解题的关键.5.(2022•南充)下列计算结果为5的是( )A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解析】A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.6.(2021秋•河东区期末)若ab≠0,那么|a|a+|b|b的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b >0;分别计算即可.【解析】∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,|| a +||b=1+1=2;②当a<0,b<0时,|| a +||b=―1﹣1=﹣2;③当a>0,b<0时,|| a +||b=1﹣1=0;④当a<0,b>0时,|| a +||b=―1+1=0;综上所述,||a+||b的值为:±2或0.故选:C.【点评】本题考查绝对值的定义,运用分类讨论思想和熟练掌握并正确运用绝对值的定义是正确解题的关键.7.(2021秋•泗洪县期末)在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是( )A.2023B.2021C.1011D.1【分析】先根据A、B的位置关系,判断出a、b的大小关系,化简|a﹣b;再根据a取最大值,求出a的值;最后求出b的值.【解析】∵点A在点B左侧,∴a﹣b<0,∴|a﹣b|=b﹣a=2022;a为负整数,取最大值时为﹣1,此时b﹣(﹣1)=2022,则b=2021;故选:B.【点评】考查绝对值的化简和数轴.解题的关键在于能够结合数轴判断a、b的大小关系,进而化简|a﹣b|.注意:最大的负整数是﹣1.8.(2021秋•霍邱县期中)若|a|=﹣a,则在下列选项中a不可能是( )A.﹣2B.―12C.0D.5【分析】根据||=―a,结合绝对值性质可知:a≤0,不可能是正数.【解析】∵||=―a,∴实数a是非正数,即a≤0,∴选项中的数a不可能是正数,故选:D.【点评】本题考查了绝对值定义和性质,熟练掌握并正确运用绝对值性质是解题关键.9.(2020秋•九龙坡区校级期末)已知﹣1≤x≤2,则化简代数式3|x﹣2|﹣|x+1|的结果是( )A.﹣4x+5B.4x+5C.4x﹣5D.﹣4x﹣5【分析】由于﹣1≤x≤2,根据不等式性质可得:x﹣2≤0,x+1≥0,再依据绝对值性质化简即可.【解析】∵﹣1≤x≤2,∴x﹣2≤0,x+1≥0,∴3|x﹣2|﹣|x+1|=3(2﹣x)﹣(x+1)=﹣4x+5;故选:A.【点评】本题考查了不等式性质,绝对值定义和性质,整数加减运算等,熟练掌握并运用绝对值性质化简是解题关键.10.(2020秋•长垣市月考)若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有( )A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解析】①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.二.填空题(共8小题)11.(2022•常德)|﹣6|= 6 .【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解析】﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.【点评】本题考查绝对值的化简求值,即|a|=a(a≥0)―a(a<0).12.(2022•泰州)若x=﹣3,则|x|的值为 3 .【分析】利用绝对值的代数意义计算即可求出值.【解析】∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.(2020秋•达孜区期末)绝对值不大于4的整数有 9 个.【分析】根据绝对值的性质解析即可.【解析】根据绝对值的概念可知,绝对值不大于4的整数有4,3,2,1,0,﹣1,﹣2,﹣3,﹣4,一共9个.【点评】解析此题的关键是熟知绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.14.(2020秋•吴江区期中)若|x|=﹣(﹣8),则x= ±8 .【分析】根据绝对值的性质解析可得.【解析】∵|x|=﹣(﹣8),∴x=±8.故答案为:±8.【点评】本题主要考查绝对值,掌握绝对值的性质是解题的关键.15.(2020秋•兴化市月考)当a= ﹣2 时,式子10﹣|a+2|取得最大值.【分析】根据任何数的偶次方是非负数,即可求解.【解析】∵|a+2|≥0,且当a+2=0,即a=﹣2时,|a+2|=0,∴当a=﹣2时,代数式10﹣|a+2|取得最大值是10.故答案是:﹣2.【点评】此题主要考查了非负数的性质,解题的关键是明确初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).16.(2022春•东台市期中)|x﹣2|+9有最小值为 9 .【分析】根据绝对值的非负性即可得出答案.【解析】∵|x﹣2|≥0,∴|x﹣2|+9≥9,∴|x﹣2|+9有最小值为9.故答案为:9.【点评】本题考查了绝对值的非负性,掌握|a|≥0是解题的关键.17.(2021秋•玄武区校级月考)如果|a+2|+|b﹣1|=0,那么(a+b)2021的值是 ﹣1 .【分析】根据绝对值的非负数的性质分别求出a、b,代入计算即可.【解析】∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2021秋•虎林市期末)|a+3|+|b﹣2|=0,则a+b= ﹣1 .【分析】根据绝对值非负数的性质列式求解即可得到a、b的值,然后再代入代数式进行计算即可求解.【解析】根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a+b=﹣3+2=﹣1.故答案为:﹣1.【点评】本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.三.解析题(共4小题)19.在有理数3,﹣1.5,﹣312,0,2.5,﹣4,﹣(+3.5),|―12|中,求出其中分数的相反数和绝对值.【分析】据只有符号不同的两个数互为相反数,可得一个数的相反数;根据绝对值实数轴上的点到原点的距离,可得一个数的绝对值;【解析】﹣1.5的相反数1.5,绝对值是1.5;﹣312的相反数是312,绝对值是312;2.5的相反数是﹣2.5,绝对值是2.5;﹣(+3.5)=﹣3.5相反数是3.5,绝对值是3.5;|―12|=12相反数是―12,绝对值是12.【点评】本题考查了绝对值,利用了绝对值得性质:正数的绝对等于它本身,负数的绝对值等于它的相反数.20.求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【分析】根据绝对值的含义和求法,求出每个数的绝对值各是多少即可.【解析】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解析此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.21.(2020秋•江阴市校级月考)阅读下面的例题:我们知道|x|=2,则x=±2请你那么运用“类比”的数学思想尝试着解决下面两个问题.(1)|x+3|=2,则x= ﹣5或﹣1 ;(2)5﹣|x﹣4|=2,则x= 1或7 .【分析】(1)根据绝对值解析即可;(2)根据绝对值的非负性解析即可.【解析】(1)因为)|x+3|=2,则x=﹣5或﹣1;(2)因为5﹣|x﹣4|=2,可得:|x﹣4|=3,解得:x=1或7;故答案为:(1)﹣5或﹣1(2)1或7【点评】此题考查绝对值,关键是根据绝对值的非负性和概念解析.22.(2019秋•睢宁县期中)【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b| ≥ |a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案.【解析】(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=9,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=9,则n=m﹣9,|m+m﹣9|=1,m=5或4;当m为负数,n为正数时,﹣m+n=9,则n=m+9,|m+m+9|=1,m=﹣4或﹣5;综上所述,m为±4或±5.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.。
七年级数学培优专题讲解绝对值培优一、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数二、 典型例题例1.已知a 、b 、c 在数轴上位置如图: 则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个例5.已知|ab -2|与|a -1|互为相互数,试求下式的值:()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________.说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。
(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___.(4) 满足341>+++x x 的x 的取值范围为 ______ .(5)若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围.例7.若24513a a a +-+-的值是一个定值,求a 的取值范围.例8.已知112x x ++-=,化简421x -+-.例9.若245134x x x +-+-+的值恒为常数,则x 应满足怎样的条件?此常数的值为多少?练习题 1.如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值. b -1 c 0 a 12.已知2x ≤,求32x x --+的最大值与最小值.3.若0abc <,求a b c a b c +-的值4.有理数a ,b ,c ,d 满足1abcdabcd =-,求abcda b c d+++的值.5.试求123...2005x x x x -+-+-++-的最小值6. 已知式子:431744+---+-x x x 的值恒为一个常数,求x 的取值范围。
人教版七年级上册数学绝对值专项训练一、绝对值的概念1. 定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。
2. 性质:-绝对值具有非负性,即|a|≥0。
-互为相反数的两个数的绝对值相等,即若a 与b 互为相反数,则|a| = |b|。
二、典型例题1. 求一个数的绝对值-例1:求|-5|的值。
解:|-5| = 5。
-例2:求|0|的值。
解:|0| = 0。
-例3:求|3.5|的值。
解:|3.5| = 3.5。
2. 已知一个数的绝对值求这个数-例4:已知|a| = 4,求a 的值。
解:因为|a| = 4,所以 a = 4 或 a = -4。
-例5:已知|b| = -2,求b 的值。
解:因为绝对值具有非负性,所以不存在一个数的绝对值为负数,此题无解。
3. 绝对值的化简-例6:化简|2 - 5|。
解:|2 - 5| = |-3| = 3。
-例7:化简|x - 3|(x<3)。
解:因为x<3,所以x - 3<0,那么|x - 3| = 3 - x。
4. 绝对值的运算-例8:计算|3| + |-2|。
解:|3| + |-2| = 3 + 2 = 5。
-例9:计算|5 - 3| - |2 - 4|。
解:|5 - 3| - |2 - 4| = |2| - |-2| = 2 - 2 = 0。
三、专项练习1. 填空题- |-8| = ____。
-若|x| = 6,则x = ____。
-绝对值等于3 的数是____。
- |0 - 5| = ____。
2. 选择题-下列说法正确的是()。
A. 绝对值等于它本身的数只有0B. 绝对值等于它本身的数是正数C. 绝对值等于它本身的数是非负数D. 绝对值等于它本身的数是负数-若|a| = -a,则a 一定是()。
A. 正数B. 负数C. 非正数D. 非负数3. 解答题-已知|a - 2| + |b + 3| = 0,求a、b 的值。
-化简|x - 1| + |x - 3|(1<x<3)。
绝对值与动点问题1. 如图,点A 、B 和线段CD 都在数轴上,点A 、C 、D 、B 起始位置所表示的数分别为-2、0、3、12;线段CD 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)当t =0秒时,AC 的长为______,当t =2秒时,AC 的长为______; (2)用含有t 的代数式表示AC 的长为______;(3)当t =______秒时AC -BD =5,当t =______秒时AC +BD =15;(4)若点A 与线段CD 同时出发沿数轴的正方向移动,点A 的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC =2BD ,若存在,请求出t 的值;若不存在,请说明理由.2. 阅读下列材料并解决有关问题:我们知道|x |={x ,(x >0)0,(x =0)−x ,(x <0),现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x +1|+|x -2|时,可令x +1=0和x -2=0,分别求得x =-1,x =2(称-1,2分别叫做|x +1|与|x -2|的零点值.)在有理数范围内,零点值x =-1和x =2可将全体有理数分成不重复且不遗漏的如下3种情况: (1)当x <-1时,原式=-(x +1)-(x -2)=-2x +1; (2)当-1≤x ≤2时,原式=x +1-(x -2)=3; (3)当x >2时,原式=x +1+x -2=2x -1.综上所述,原式={−2x +1,(x <−1)3,(−1≤x ≤2)2x −1,(x >2).通过以上阅读,请你解决以下问题:(1)分别求出|x +2|和|x -4|的零点值;(2)化简代数式|x +2|+|x -4|; (3)求方程:|x +2|+|x -4|=6的整数解;(4)|x +2|+|x -4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.3. (1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB |.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB |=|OB |=|b |=|a -b |; 当A 、B 两都不在原点时,①如图2,点A 、B 都在原点的右边|AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |;②如图3,点A 、B 都在原点的左边,|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |; ③如图4,点A 、B 在原点的两边,|AB |=|OB |+|OA |=|a |+|b |=a +(-b )=|a -b |;(2)回答下列问题:①数轴上表示2和5两点之间的距离是______ ,数轴上表示-2和-5的两点之间的距离是______ ,数轴上表示1和-3的两点之间的距离是______ ;②数轴上表示x和-1的两点A和B之间的距离是______ ,如果|AB|=2,那么x为______ ;③当代数式取|x+1|+|x-2|最小值时,相应的x的取值范围是______ ;)④求|x-1|+|x-2|+|x-3|+…+|x-2015|的最小值.(提示:1+2+3+…+n=n(n+1)24.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+5|+(b-1)2=0,规定A、B两点之间的距离记作|AB|=|a-b|.(1)求A、B两点之间的距离|AB|;(2)设点P在线段AB之间且在数轴上对应的数为x,当|PA|-|PB|=2时,求x的值;(3)若点P在线段AB之外,N、M分别是PA、PB的中点.对于①|PN|+|PM|的值,②||PN|-|PM||的值.探究①②中值的结果,判断哪个结果的值一定是一个常数,说明理由并求出这个常数.5.我们知道在数轴上表示两个数x,y的点之间的距离可以表示为|x-y|,比如表示3的点与-2的点之间的距离表示为|3-(-2)|=|3+2|=5;|x+2|+|x-1|可以表示数x的点与表示数1的点之间的距离与表示数x的点与表示数-2的点之间的距离的和,根据图示易知:当表示数x的点在点A和点B之间(包含点A和点B)时,表示数x的点与点A的距离与表示数x的点和点B的距离之和最小,且最小值为3,即|x+2|+|x-1|的最小值是3,且此时x的取值范围为-2≤x≤1,请根据以上材料,解答下列问题:(1)|x+2|+|x-2|的最小值是______;|x+1|+|x-2|=7,x的值为______.(2)|x+2|+|x|+|x-1|的最小值是______;此时x的值为______.(3)当|x+1|+|x|+|x-2|+|x-a|的最小值是4.5时,求出a的值及x的值或取值范围.6.若a、b互为相反数,b、c互为倒数,并且m的立方等于它本身.+ac值;(1)试求2a+2bm+2|,试求4(2a一S)+2(2a-S)-(2)若a>1,且m<0,S=|2a一3b|-2|b-m|-|b+12(2a-S)的值.(3)若m≠0,试讨论:x为有理数时,|x+m|-|x-m|是否存在最大值,若存在,求出这个最大值;若不存在,请说明理由.7.在数轴上表示a,0,1,b四个数的点如图所示,已知OA=OB,求|a+b|+|a|+|a+1|b 的值.8.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5-0|,即|5-0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5-3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a-b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是______;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是______.(2)点A、B、C在数轴上分别表示有理数x、-3、1,那么A到B的距离与A到C 的距离之和可表示为______(用含绝对值的式子表示);满足|x-3|+|x+2|=7的x的值为______.(3)试求|x-1|+|x-2|+|x-3|+…+|x-100|的最小值.9.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为______ ;(2)解不等式|x-3|+|x+4|≥9;(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离______.(2)数轴上表示-12和-6的两点之间的距离是______.(3)数轴上表示x和1的两点之间的距离表示为______.(4)若x表示一个有理数,且-4<x<2,则|x-2|+|x+4|=______.11.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求|a|a +|b|b+|c|c的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则|a|a +|b|b+|c|c=aa+bb+cc=1+1+1=3;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则|a|a +|b|b+|c|c=aa+−bb+−cc=1+(−1)+(−1)=−1.综上所述,|a|a +|b|b+|c|c值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求|a|a +|b|b+|c|c的值;(2)若a,b,c为三个不为0的有理数,且a|a|+b|b|+c|c|=−1,求abc|abc|的值.12.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x,使得|x+3|+|x-1|=4这样的整数是______.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-5|是否有最小值?如果有写出最小值如果没有说明理由.13.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b,A、B两点间的距离表示为AB.则AB=|a-b|.所以式子|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:(1)数轴上表示2和5两点之间的距离是_____,数轴上表示1和﹣3的两点之间的距离是_____.(2)数轴上表示x和﹣2的两点之间的距离表示为_________.(3)若|x-3|=|x+1|,则x=______;(4)若|x+4|+|x﹣2|=6,写出满足条件的所有整数x,并求这些整数的和.答案和解析1.【答案】解:(1)2;4;(2)t+2;(3)6;11;(4)假设存在,则点A表示的数为2t-2,C表示的数为t,D表示的数为t+3,B表示的数为12,∴AC=|2t-2-t|=|t-2|,BD=|t+3-12|=|t-9|,∵AC=2BD,∴|t-2|=2|t-9|,.解得t1=16,t2=203秒.故在运动的过程中使得AC=2BD,此时运动的时间为16秒和203【解析】【分析】本题考查了绝对值、数轴以及一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.(1)依据A、C两点间的距离求解即可;(2)t秒后点C运动的距离为t个单位长度,从而得到点C表示的数;根据A、C两点间的距离求解即可;(3)t秒后点C运动的距离为t个单位长度,点D运动的距离为t个单位长度,从而可得到点C、点D表示的数;根据两点间的距离表示出AC、BD,根据AC-BD=5和AC+BD=15得到关于t的含绝对值符号的一元一次方程,分别解方程即可得出结论;(4)假设存在,找出AC、BD,根据AC=2BD即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:(1)当t=0秒时,AC=|-2-0|=|-2|=2;当t=2秒时,移动后C表示的数为2,∴AC=|-2-2|=4.故答案为2;4;(2)点A表示的数为-2,点C表示的数为t;∴AC=|-2-t|=t+2.故答案为t+2;(3)∵t秒后点C运动的距离为t个单位长度,点D运动的距离为t个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12-(3+t)|,∵AC-BD=5,∴t+2-|12-(t+3)|=5.解得:t=6.∴当t=6秒时AC-BD=5;∵AC+BD=15,∴t+2+|12-(t+3)|=15,t=11;当t=11秒时AC+BD=15,故答案为6,11;(4)见答案.2.【答案】解:(1)∵|x+2|和|x-4|的零点值,可令x+2=0和x-4=0,解得x=-2和x=4,∴-2,4分别为|x+2|和|x-4|的零点值.(2)当x<-2时,|x+2|+|x-4|=-2x+2;当-2≤x<4时,|x+2|+|x-4|=6;当x≥4时,|x+2|+|x-4|=2x-2;(3)∵|x+2|+|x-4|=6,∴-2≤x≤4,∴整数解为:-2,-1,0,1,2,3,4.(4)|x+2|+|x-4|有最小值,∵当x=-2时,|x+2|+|x-4|=6,当x=4时,|x+2|+|x-4|=6,∴|x+2|+|x-4|的最小值是6.【解析】本题主要考查了绝对值,解题的关键是能根据材料所给信息,找到合适的方法解答.(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;(3)由|x+2|+|x-4|=6,得到-2≤x≤4,于是得到结果;(4)|x+2|+|x-4|有最小值,通过x的取值范围即可得到结果.3.【答案】(1)3;3;4;(2)|x+1|;-3或1;(3)-1≤x≤2; (4)1015056【解析】解:①数轴上表示2和5两点之间的距离是:|2-5|=3,数轴上表示-2和-5的两点之间的距离是:|-2+5|=3,数轴上表示1和-3的两点之间的距离是:|1+3|=4,②数轴上表示x和-1的两点A和B之间的距离是:|x+1|,当|AB|=2,即|x+1|=2,解得x=-3或1.③若|x+1|+|x-2|取最小值,那么表示x的点在-1和2之间的线段上,所以-1≤x≤2.=1008时,|x-1|+|x-2|+|x-3|+…+|x-2015|最小,④解:当x=1+20152最小值为1+2+3+…+1007+0+1+2+3+…+1007=(1+2+3+…+1007)×2×2=(1+1007)×10072=1015056.故答案为:3,3,4;|x+1|,-3或1;-1≤x≤2;1015056①根据两点间的距离公式即可求解;②根据两点间的距离公式可求数轴上表示x和-1的两点A和B之间的距离,再根据两点间的距离公式列出方程可求x;③求|x+1|+|x-2|的最小值,意思是x到-1的距离之和与到2的距离之和最小,那么x应在-1和2之间的线段上;④根据提示列出算式计算即可求解.本题考查了数轴,涉及的知识点为:数轴上两点间的距离=两个数之差的绝对值.绝对值是正数的数有2个.4.【答案】解:(1)∵|a+5|+(b-1)2=0,∴a=-5,b=1,|AB|=|a-b|=|-5-1|=6;(2)因为P在A、B之间|PA|=|x-(-5)|=x+5,|PB|=|x-1|=1-x∵||PN |-|PM ||, ∴x +5-(1-x )=2, ∴x =-1;(3)②||PN |-|PM ||的值是一个常数 当点P 在线段AB 的左侧时有|PN |-|PM |=12|PB |-12|PA |=12(|PB |-|PA |)=12|AB |=3; 当点P 在线段AB 的右侧时有|PN |-|PM |=12|PB |-12|PA |=12(|PB |-|PA |)=-12|AB |=-3; ∴点P 在线段AB 之外时总有||PN |-|PM ||=3,而|PN |+|PM |的结果与点P 位置有关,不为常数, ∴||PN |-|PM ||的值为常数,这个常数为3.【解析】(1)根据绝对值与平方的和0,可得绝对值、平方同时为0,根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,可得答案;(3)根据分类讨论,可得,||PN |-|PM ||的值,可得答案.题考查了绝对值,两点间的距离公式是解题关键,(3)要分类讨论,要不重不漏. 5.【答案】解:(1)4;-3或4; (2)3;0(3)由图可得,只有当a =1.5且0≤x ≤1.5或a =-1.5且-1≤x ≤0时,|x +1|+|x |+|x -2|+|x -a |的最小值是4.5,∴当|x +1|+|x |+|x -2|+|x -a |的最小值是4.5时,a =1.5且0≤x ≤1.5或a =-1.5且-1≤x ≤0.【解析】解:(1)根据绝对值的几何意义可得,当-2≤x ≤2时,|x +2|+|x -2|的最小值是4; 当x <-1时,-x -1-x +2=7,解得x =-3, 当-1≤x <2时,x +1+2-x =7,方程无解, 当x ≥2时,x +1+x -2=7,解得x =4, ∴x 的值为-3或4,故答案为:4;-3或4;(2)根据绝对值的几何意义可得,当x =0时,|x +2|+|x |+|x -1|的最小值是3, 故答案为:3;0; (3)见答案.(1)根据绝对值的几何意义,得出|x +2|+|x -2|的最小值; (2)根据绝对值的几何意义,得出|x +2|+|x |+|x -1|的最小值;(3)画出数轴,分两种情况进行讨论:当a =1.5且0≤x ≤1.5或a =-1.5且-1≤x ≤0时,|x +1|+|x |+|x -2|+|x -a |的最小值是4.5.本题主要考查了数轴以及绝对值的几何意义的运用,一个数x 的绝对值的几何意义是:在数轴上表示这个数x 的点离远点(表示数0)的距离,x 的绝对值表示为|x |.解题时注意分类思想的运用.6.【答案】解:(1)∵a +b =0,bc =1, ∴ac =-1 ∴2a+2b m+2+ac =0-1=-1∴b <-1,2a -3b >0,b +12<0 ∵m 的立方等于它本身,且m <0 ∴m =-1,b -m =b +1<0 ∴s =2a -3b +2b +2+b +12=2a +52 ∴2a -s =-524(2a -S )+2(2a -S )-(2a -S ) =5(2a -S ) =-252;(3)若m ≠0,此时m =±1 ①若m =1,则|x +m |-|x -m |=|x +1|-|x -1| 当x ≤-1时|x +1|-|x -1|=-x -1+x -1=-2 当-1<x ≤1时|x +1|-|x -1|=x +1+x -1=2x 当x >1时|x +1|-|x -1|=x +1-x +1=2∴当x 为有理数时,存在最大值为2; ②若m =-1同理可得:当x 为有理数时,存在最大值为2.综上所述,当m =±1,x 为有理数时,|x +m |-|x -m |存在最大值为2.【解析】(1)先根据a 、b 互为相反数,b 、c 互为倒数,得出a +b =0,bc =1,再代入所求代数式进行计算;(2)根据a >1及m 的立方等于它本身把S 进行化简,再代入所求代数式进行计算;(3)根据若m ≠0,可知m =±1,①当m =1时,代入|x +m |-|x -m |,再根据绝对值的性质去掉绝对值符号,求出代数式的值,②同理,当m =-1时代入所求代数式,再根据绝对值的性质去掉绝对值符号,求出代数式的值,即可.本题考查的是绝对值的性质,相反数及倒数的定义,代数式求值,熟知以上知识是解答此题的关键.7.【答案】解:由已知条件和数轴可知:b >1>0>-1>a , ∵OA =OB ,∴|a +b |+|ab |+|a +1|=0+1-a -1=-a . 故|a +b |+|a b |+|a +1|的值为:-a .【解析】由已知条件和数轴可知:b >1>0>-1>a ,再由这个确定所求绝对值中的正负值就可求出此题.此题主要考查了学生数轴和绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.数轴左边的为负数,右边的为正数. 8.【答案】(1)1 -1或5 |x +3|+|x -1|(3)|x-1|+|x-2|+|x-3|+…+|x-100|=(|x-1|+|x-100|)+(|x-2|+|x-99|)+…+(|x-50|+|x-51|)|x-1|+|x-100|表示数轴上数x的对应点到表示1、100两点的距离之和,当1≤x≤100时,|x-1|+|x-100|有最小值为|100-1|=99;|x-2|+|x-99|表示数轴上数x的对应点到表示2、99两点的距离之和,当2≤x≤99时,|x-2|+|x-99|有最小值为|99-2|=97;…|x-50|+|x-51|表示数轴上数x的对应点到表示50、51两点的距离之和,当50≤x≤51时,|x-50|+|x-51|有最小值为|51-50|=1.所以,当50≤x≤51时,|x-1|+|x-2|+|x-3|+…+|x-100|有最小值为:99+97+95+…+3+1=(99+1)+(97+3)+…+(51+49)=100×25=2500.【解析】解:(1)数轴上表示2和3的两点之间的距离是3-2=1;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是2-3=-1或2+3=5;(2)A到B的距离与A到C的距离之和可表示为|x+3|+|x-1|,∵|x-3|+|x+2|=7,当x<-2时,3-x-x-2=7,x=-3,当-2≤x≤3时,x不存在.当x>3时,x-3+x+2=7,x=4.故满足|x-3|+|x+2|=7的x的值为-3或4.(3)当绝对值的个数为奇数时,取得最小值x是其中间项,而当绝对值的个数为偶数时,则x取中间两项结果一样.从而得出对于|x-1|+|x-2|+|x-3|+…+|x-100|,当50≤x≤51时取得最小值.此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.9.【答案】1或-7【解析】解:(1)根据绝对值得意义,方程|x+3|=4表示求在数轴上与-3的距离为4的点对应的x的值为1或-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点3与-4的两侧.当x在3的右边时,如图,易知x≥4.当x在-4的左边时,如图,易知x≤-5.∴原不等式的解为x≥4或x≤-5(3)原问题转化为:a大于或等于|x-3|-|x+4|最大值.∵当x≥3时,|x-3|-|x+4|应该恒等于-7,当-4<x<3,|x-3|-|x+4|=-2x-1随x的增大而减小,∴-7<|x-3|-|x+4|<7,∵当x≤-4时,|x-3|-|x+4|=7,∴|x-3|-|x+4|的最大值为7.故a≥7.仔细阅读材料,根据绝对值的意义,画出图形,来解答.本题是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.由于信息量较大,同学们不要产生畏惧心理.10.【答案】(1)2(2) 6(3)|x-1|(4)6【解析】解:(1)数轴上表示1和3两点之间的距离为|3-1|=2;(2)数轴上表示-12和-6的两点之间的距离是|-6-(-12)|=6;(3)数轴上表示x和1的两点之间的距离表示为|x-1|;(4)∵-4<x<2,∴|x-2|+|x+4|=|-4-2|=6,故答案为:2,6,|x-1|,6.(1)依据在数轴上A、B两点之间的距离AB=|a-b|,即可得到结果.(2)依据在数轴上A、B两点之间的距离AB=|a-b|,即可得到结果.(3)依据在数轴上A、B两点之间的距离AB=|a-b|,即可得到结果.(4)依据-4<x<2,可得表示x的点在表示-4和2的两点之间,即可得到|x-2|+|x+4|的值即为|-4-2|的值.本题考查的是绝对值的几何意义,两点间的距离,理解绝对值的几何意义是解决问题的关键.11.【答案】解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则:|a|a +|b|b+|c|c=−aa+−bb+−cc=-1-1-1=-3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则|a|a +|b|b+|c|c=−aa+bb+cc=-1+1+1=1.(2)∵a,b,c为三个不为0的有理数,且a|a|+b|b|+c|c|=−1,∴a,b,c中负数有2个,正数有1个,∴abc>0,∴abc |abc|=abcabc=1.【解析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)根据已知等式,利用绝对值的代数意义判断出a,b,c中负数有2个,正数有1个,判断出abc的正负,原式利用绝对值的代数意义化简计算即可.本题主要考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键.12.【答案】7 -3,-2,-1,0,1【解析】解:(1)原式=|5+2|=7.故答案为:7;(2)令x+3=0或x-1=0时,则x=-3或x=1.当x<-3时,-(x+3)-(x-1)=4,-x-3-x+1=4,解得x=-3(范围内不成立);当-3≤x≤1时,(x+3)-(x-1)=4,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1,0,1;当x>1时,(x+3)+(x-1)=4,解得x=1(范围内不成立).综上所述,符合条件的整数x有:-3,-2,-1,0,1.故答案为-3,-2,-1,0,1;(3)由(2)的探索猜想,对于任何有理数x,|x-3|+|x-5|有最小值为2.(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+3=0或x-1=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.此题考查了整式的加减,去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对值的关键是确定绝对值里面的数的正负性.13.【答案】解:(1)3;4;(2)︱x+2︱;(3)1;(4)∵|x+4|+|x﹣2|=6,若x<-4,则原式可化为-(4+x)+(2-x)=6,x=-4;若-4≤x≤2,则x+4-(x-2)=6,x不存在;若x>2,则x+4+x-2=6,x=2;∴x=-4或2.符合条件的整数在-4和2之间,整数和为2+1+0+(-1)+(-2)+(-3)+(-4)=-7.【解析】【分析】本题考查的是绝对值的定义,解答此类问题时要用分类讨论的思想.(1)根据数轴可知,表示2和5两点之间的距离是两者差的绝对值为3,数轴上表示1和﹣3的两点之间的距离是两者差的绝对值为4;(2)数轴上表示x和﹣2的两点之间的距离表示为两者差的绝对值.(3)根据绝对值的意义,可知|x-3|是数轴上表示数x的点与表示数3的点之间的距离,|x+1|是数轴上表示数x的点与表示数-1的点之间的距离,若|x-3|=|x+1|,则此点必在-1与3之间,故x-3<0,x+1>0,由此可得到关于x的方程,求出x的值即可;(4)由于x-3及x-1的符号不能确定,故应分x>-4,-4≤x≤2,x<2三种情况解答.【解答】解:(1)|2-5|=3,|-3-1|=4,故答案为3;4;(2)数轴上表示x和﹣2的两点之间的距离表示为︱x+2︱;故答案为︱x+2︱;(3)根据绝对值的意义可知,此点必在-1与3之间,故x-3<0,x+1>0,∴原式可化为3-x=x+1,∴x=1;故答案为1;(4)见答案.。
初一七年级绝对值练习(含例题、基础、培优)例题部分一、根据题设条件例1 设化简的结果是()。
(A)(B)(C)(D)思路分析由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解∴应选(B).归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.二、借助数轴例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于().(A)(B)(C)(D)思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.解原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表示的数总大于左边点表示的数.3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.三、采用零点分段讨论法例3 化简思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解令得零点:;令得零点:,把数轴上的数分为三个部分(如图)①当时,∴原式②当时,,∴原式③当时,,∴原式∴归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.练习:请用文本例1介绍的方法解答l、2题1.已知a、b、c、d满足且,那么2.若,则有()。
(A)(B)(C)(D)请用本文例2介绍的方法解答3、4题3.有理数a、b、c在数轴上的位置如图所示,则式子化简结果为().(A)(B)(C)(D)4.有理数a、b在数轴上的对应点如图所示,那么下列四个式子,中负数的个数是().(A)0 (B)1 (C)2 (D)3请用本文例3介绍的方法解答5、6题5.化简6.设x是实数,下列四个结论中正确的是()。
(A)y没有最小值(B)有有限多个x使y取到最小值(C)只有一个x使y取得最小值(D)有无穷多个x使y取得最小值综合练习题一1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数 2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个 3、下列说法正确的是( ) A 、—|a|一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b|,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<415、( )A 、a>|b|B 、a<bC 、|a|>|b|D 、|a|<|b| 6、判断。
(1)若|a|=|b|,则a=b 。
(2)若a 为任意有理数,则|a|=a 。
(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( )(4)|31_|和31_互为相反数。
( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。
8、-4的倒数的相反数是______。
9、绝对值小于∏的整数有________。
10、若|-x|=2,则x=____;若|x -3|=0,则x=______;若|x -3|=1,则x=_______。
11、实数的大小关系是_______。
12、比较下列各组有理数的大小。
(1)-0.6○-60 (2)-3.8○-3.9(3)0○|-2| (4)43-○54-13、已知|a|+|b|=9,且|a|=2,求b 的值。
14、已知|a|=3,|b|=2,|c|=1,且a<b<c ,求a 、b 、c 的值。
绝对值综合练习题二一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( ) A.-n>m>-m>n B.m>n>-m>-n C.-n>m>n>-m D.n>m>-n>-m2、绝对值等于其相反数的数一定是…………………( ) A .负数 B .正数 C .负数或零 D .正数或零3、给出下列说法:①互为相反数的两个数绝对值相等; ②绝对值等于本身的数只有正数; ③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.其中正确的有…………………………………………( ) A .0个 B .1个 C .2个 D .3个 4、如果,则的取值范围是 ………………………( )A .>OB .≥OC .≤OD .<O5、绝对值不大于11.1的整数有………………………………( )A .11个B .12个C .22个D .23个 6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在 7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 8、下列各数中,互为相反数的是( )A 、│-32│和-32 B 、│-23│和-32C 、│-32│和23D 、│-32│和32 9、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数 10、│a │= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数 11、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
12、-│a │= -3.2,则a 是( )A 、3.2B 、-3.2C 、 3.2D 、以上都不对 二、填空题1、______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.2、有理数m ,n 在数轴上的位置如图,3、若|x-1| =0, 则x=__________,若|1-x |=1,则x=_______.4、在数轴上,绝对值为4,且在原点左边的点表示的有理数为_____5、当时,;当时,.7、,则;,则.8、如果,则,.9、绝对值等于它本身的有理数是,绝对值等于它的相反数的数是10、│x│=│-3│,则x= ,若│a│=5,则a=二、判断题(正确入“T”,错误入“F”)1、-|a|=|a|;()2、|-a|=|a|; ( )3、-|a|=|-a|; ( )4、若|a|=|b|,则a=b; ( )5、若a=b,则|a|=|b|; ( )6、若|a|>|b|,则a>b;( )7、若a>b,则|a|>|b|;( )8、若a>b,则|b-a|=a-b.( )9、如果一个数的相反数是它本身,那么这个数是0. ( )10、如果一个数的倒数是它本身,那么这个数是1和0. ( )11如果一个数的绝对值是它本身,那么这个数是0或1. ( )12如果说“一个数的绝对值是负数”,那么这句话是错的. ( )13如果一个数的绝对值是它的相反数,那么这个数是负数. ( )四、计算1、已知│x│=2003,│y│=2002,且x>0,y<0,求x+y的值。
2、已知│x+y+3│=0, 求│x+y│的值。
3、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=4、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。
5、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
6、某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?绝对值的提高练习一.知识点回顾1、 绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.2、 绝对值运算法则:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即:3、 绝对值性质:任何一个实数的绝对值是非负数. 二. 典型例题分析:例1、 a ,b 为实数,下列各式对吗?若不对,应附加什么条件?请写在题后的横线上。
(1)|a+b |=|a |+|b |; ; (2)|ab |=|a ||b |; ;(3)|a-b |=|b-a |; ; (4)若|a |=b ,则a=b ; ; (5)若|a |<|b |,则a <b ; ; (6)若a >b ,则|a |>|b |, 。
例2、 设有理数a ,b ,c 在数轴上的对应点如图1-1所示,化简|b-a |+|a+c |+|c-b |.例3、若3+-y x 与1999-+y x 互为相反数,求yx yx -+2的值。
三.巩固练习: (一).填空题:1.a >0时,|2a|=________;(2)当a >1时,|a-1|=________;2. 已知130a b ++-=,则__________a b3. 如果a>0,b<0,b a <,则a ,b ,—a ,—b 这4个数从小到大的顺序是__________(用大于号连接起来)4. 若00xy z ><,,那么xyz =______0.5.上山的速度为a 千米/时,下山的速度为b 千米/时,则此人上山下山的整个路程的平均速度是__________千米/时(二).选择题:6. 值大于3且小于5的所有整数的和是( )A. 7B. -7C. 0D. 57. 知字母a 、b 表示有理数,如果a +b =0,则下列说法正确的是( )A . a 、b 中一定有一个是负数 B. a 、b 都为0C. a 与b 不可能相等D. a 与b 的绝对值相等8.下列说法中不正确的是( )A.0既不是正数,也不是负数 B .0不是自然数 C .0的相反数是零D .0的绝对值是09. 下列说法中正确的是( )A 、a -是正数B 、—a 是负数C 、a -是负数D 、a -不是负数 10. x =3,y =2,且x>y ,则x+y 的值为( )A 、5B 、1C 、5或1D 、—5或—111. a<0时,化简a a等于( )A 、1B 、—1C 、0D 、1±12. 若ab ab =,则必有( )A 、a>0,b<0B 、a<0,b<0C 、ab>0D 、0≥ab13. 已知:x =3,y =2,且x>y ,则x+y 的值为( )A 、5B 、1C 、5或1D 、—5或—1(三).解答题:14. a +b <0,化简|a+b-1|-|3-a-b |.15..若y x -+3-y =0 ,求2x+y 的值.16. 当b 为何值时,5-12-b 有最大值,最大值是多少?17.已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0. 求式子4422++-+c a c ab 的值.18. 已知x <-3,化简:|3+|2-|1+x |||.19. 若|x |=3,|y |=2,且|x-y |=y-x ,求x+y 的值.20. 化简:|3x+1|+|2x-1|.18. 若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值.练习1.已知y=|2x+6|+|x-1|-4|x+1|,求y 的最大值.练习2.设a <b <c <d ,求|x-a |+|x-b |+|x-c |+|x-d |的最小值.练习3.若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.三、巩固练习1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.4.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,T的最小值是多少?5.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.。