1.3.3算法案例-进位制
- 格式:pptx
- 大小:568.00 KB
- 文档页数:37
1.3.3 算法案例---进位制教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化.教学难点:除k 取余法的理解以及各进位制之间转换的程序框图及其程序的设计. 教学过程:一、复习准备:1. 试用秦九韶算法求多项式52()42f x x x =-+当3x =时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢?二、讲授新课:1. 教学进位制的概念:① 进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制 . 同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139==② 一般地,任意一个k 进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即110110()110110...(0,0,...,,)nn n n k n n n n a a a a a k a a a k a k a ka k a k----<<≤<=⨯+⨯+⨯+⨯ . 如:把(2)110011化为十进制数,(110011=1⨯25+1⨯24+0⨯23+0⨯22+1⨯21+1⨯20=32+16+2+1=51.把八进制数(8)7348化为十进制数,321(8)7348783848883816=⨯+⨯+⨯+⨯=. 2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数.(学生板书→教师点评→师生共同总结将非十进制转为十进制数的方法) 分析此过程的算法过程,编写过程的程序语言. 见P34 ②练习:将(5)2341、(3)121转化成十进制数.③例2、把89化为二进制数.分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)上述方法也可以推广为把十进制化为k 进制数的算法,这种算法成为除k 取余法. ④练习:用除k 取余法将89化为四进制数、六进制数. ⑤例3、把二进制数(2)11011.101化为十进制数. 解:4(2)11011.101121202121212021227.625---=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=.(小数也可利用上述方法化进行不同进位制之间的互化. ) 变式:化为八进制→方法:进制互化3. 小结:进位制的定义;进位制之间的互化. 三、巩固练习:1、练习:教材P35第3题四、作业:教材P38第3题。
重庆市高中数学第一章算法初步1.3.3 进位制教案新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市高中数学第一章算法初步1.3.3 进位制教案新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市高中数学第一章算法初步1.3.3 进位制教案新人教A版必修3的全部内容。
1。
3。
3 进位制一、三维目标(a)知识与技能了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。
(b)过程与方法学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律.(c)情态与价值观领悟十进制,二进制的特点,了解计算机的电路与二进制的联系,进一步认识到计算机与数学的联系.二、教学重难点重点:各进位制表示数的方法及各进位制之间的转换难点:除k去余法的理解以及各进位制之间转换的程序框图的设计三、学法与教学用具学法:在学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k去余法.教学用具:电脑,计算器,图形计算器四、教学设计(一)创设情景,揭示课题我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的。
比如时间和角度的单位用六十进位制,电子计算机用的是二进制。
那么什么是进位制?不同的进位制之间又又什么联系呢?(二)研探新知进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。
可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。
新课程人教A版数学必修(Ⅲ)教案1.3 算法案例——进位制一、教学目标:1.了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。
2.学习各种进位制转换成十进制的计算方法,,研究十进制转换为各种进位制的除k去余法,掌握不同进位制之间的互化,并理解其中的数学规律。
3.能写出进位制之间的互化程序,理解数学算法与计算机算法的区别。
二、教学重点:各进位制表示数的形式(方法)及各进位制之间的转换。
三、教学难点:除k取余法的理解以及各进位制之间转换的程序框图及其程序的设计。
学法:学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k取余法。
四、教学过程1、【问题引入】我们常见的数字都是十进制的,比如一般的数值计算,但是并不是生活中的每一种数字都是十进制的。
比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的称是十六进制的,计算一打数值时是12进制的......阅读课本P32--33,思考以下问题:(1)、什么是进位制?(2)、最常见的进位制是什么?除此之外还有哪些常见的进位制?请举例说明.(3)、不同的进位制之间又又什么联系呢?2、【知识讲解】(1)进位制:进位制是人们为了计数和运算方便而约定的记数系统,它用有限的数字在不同的位置表示不同的数值。
约定满二进一,就是二进制;满六十进一,就是六十进制;也就是说“满k进一”,就是k进制;可使用数字符号的个数称为基数,基数为k,即可称k进位制,简称k进制。
k进制需要使用k个数字。
比如现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数。
如:23450123105104103102⨯+⨯+⨯+⨯=。
对于任何一个数,我们可以用不同的进位制来表示。
比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。