Fy
2
m2g
dpx dt
Fx
,
dpy dt
Fy
m1g m2 g
Fx MO
Fx m2e2 sint, Fy (m1 m2)g m2e2 cost
动约束力
静约束力 动约束力
Ch.11. 动量定理
例11-2 图11—3表示水流流经变 截面弯管的示意图。设流体是不可 压缩的,流动是稳定的。求管壁的 附加动约束力。
分力。
解:设附加水平动约束力如图,有
v2
F
qV
[
1 2
(v2
v2
)
v1 ]
Fx
v1
Fx qV [v2 cos (v1)], Fy 0
v2 v2 v2
因此,水柱对涡轮固定叶片作用力的水平分力为
Fx Fx qV (v2 cos v1) N
Ch.11. 动量定理
小结
1. 动量定理 质点的动量定理:
解:取物块和小球为研究对象
A v
Fx(e) 0
px p0x 0
vB v vBA, vBA l l 0 sin t
px mAvAx mBvBx mAv mB (v vBA cos)
vr
B
px (mA mB )v mBl 0 sin t cos(0 cost) 0 v mBl 0 sin t cos(0 cost) /(mA mB )
mv mv0
Fdt I
0
2. 质点系的动量定理
第k个质点:
d (mk vk
)
(F
(e) k
Fk(i) )dt
Fk( e ) dt
Fk( i ) dt
外力 内力
n
n
n