(整理)pkpm一些参数设置及pkpm钢筋输出文件简图.
- 格式:doc
- 大小:94.50 KB
- 文档页数:10
PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。
2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。
3、梁柱混凝土保护层厚度,【混规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。
4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)5、抗震构造措施的抗震等级,【抗规3.3.2】建筑场地为1类时,对甲乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。
(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。
6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。
一、总信息1、水平力与整体坐标夹角:该参数为地震力、风荷载作用方向与结构整体坐标的夹角。
抗规》5.1.1 条和《高规》4.3.2 条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算”.如果地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为“最不利地震作用方向”。
这个角度与结构的刚度与质量及其位置有关,对结构可能会造成最不利的影响,在这个方向地震作用下,结构的变形及部分结构构件内力可能会达到最大. SATWE 可以自动计算出这个最不利方向角,并在WZQ。
OUT 文件中输出。
如果该角度绝对值大于15 度,建议用户按此方向角重新计算地震力,以体现最不利地震作用方向的影响。
一般并不建议用户修改该参数,原因有三:①考虑该角度后,输出结果的整个图形会旋转一个角度,会给识图带来不便;②构件的配筋应按“考虑该角度"和“不考虑该角度”两次的计算结果做包络设计;③旋转后的方向并不一定是用户所希望的风荷载作用方向.综上所述,建议用户将“最不利地震作用方向角"填到“斜交抗侧力构件夹角”栏,这样程序可以自动按最不利工况进行包络设计。
水平力与整体坐标夹角与地震信息栏中斜交抗侧力构件附加地震角度的区别是:水平力不仅改变地震力而且同时改变风荷载的作用方向;而斜交抗侧力仅改变地震力方向(增加一组或多组地震组合),是按《抗规》5.1.1 条2 款执行的。
对于计算结果,水平力需用户根据输入的角度不同分两个计算工程目录,人为比较两次计算结果,取不利情况进行配筋包络设计等;而{斜交抗侧力}程序可自动考虑每一方向地震作用下构件内力的组合,可直接用于配筋设计,不需要人为判断。
只有在风荷载起控制作用时,现有的坐标下风荷载不能起到控制结构的最大受力状态,此时填写一个角度(逆时针为正,顺时针为负),让坐标系发生变化,使风荷载在新的坐标系下(如何计算出风荷载产生的内力最大值的角度值?),能起控制作用(控制结构的最大受力状态),改变参数后,地震作用和风荷载的方向(说明两者方向是一致)将同时改变,但地震作用方向已经不是最不利的方向了,故需要在附加地震作用方向上输入一个相反的角度,使地震作用方向应按原坐标系计算,使地震力最大;如不需要改变风荷载的方向,只需考虑其它角度的地震作用时,则无需改变“水平力与整体坐标的夹角”,只增加附加地震作用方向即可。
结构设计信息输出文件(WMASSoUT )运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关 信息,并将其存放在 WMASS ∙ OUT 文件中,在整个结构整体分析计算中,各步所需要的 时间亦写在该文件的最后,以便设计人员核对分析。
WMASS ∙ OUT 文件包括六部分内容,其输出格式如下: 第一部分为结构总信息这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出, 目的是为了便于用户存档。
第二部分为各层质量质心信息,其格式如下:Floor Tower X-Cen ter Y-Ce nter Dead-MaSS LiVe-MaSS MaSS Mome nt 其中: FloorTowerDead-MaSS ---- 该楼层恒载产生的质量,其中包括结构自重和外加恒载 (单位t )LiVe-MaSS ------ 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位 t )MaSS-MOment ------ 该楼层的质量矩(t*m ) 接后输出Total MaSS of Dead Load Wd Total MaSS of LiVe Load WlTotal MaSS of the StrUCtUre Wt ------- 结构的总质量第三部分为各层构件数量、构件材料和层高等信息,输出格式如下:Floor Tower BeamS ColUmnS Walls Height Total-Height 其中: Floor -------- 层号 Tower ------ 塔号BeamS (ICb ) --- 该层该塔的梁数,括号内的数字为梁砼标号 Columns (ICC ) - 该层该塔的柱数,括号内的数字为柱砼标号 Walls (ICW ) —— 该层该塔墙元数,括号内的数字为墙砼标号 Height----- 该层该塔的层高(单位m ),Total-Height ―― 到该层为止的累计高度。
高层结构抗震控制与中震设计分析一.超限控制[10]4.其它超限建筑4.1 高度超过28m的单跨框架结构;4.2 抗震规范、混凝土和钢结构高层规程暂未列入的高层建筑结构;特殊形式的大型公共建筑及超长悬挑连筑;特大跨度的连体结构;4.3超限大跨度空间结构:跨度>120m、悬挑长度>40m、单向长度>300m的屋盖;非常用空间结构的大型场馆、一级客运站、大型候机楼、特大型机库。
5.关于超限计算问题5.1 计算程序问题1.SATWE的计算结果,大部分指标介于ETABS和MIDAS之间,结果偏安全.2.目前国内外结构分析软件,在单元模型及解题方法上没有太大区别,但在图形处理上国内外还有差距,国内图形处理速度和精度较差;3.总体分析的整体指标规律国内外软件一致,无大差别;细部由于单元接触边界的处理方法不同,其弹性计算的局部应力有较大差别;4.EPDA/EPSA采用弹塑性纤维束单元模型,理论上比弹塑性铰一维杆件模型先进;5.检查国外软件是否采用中国规范?查软件介面菜单是否能人工指定某一构件的抗震等级.1.验算目标是什么?应力、内力?2.工况?正应力、剪应力?平均应力、最大应力?应控制的是压应力还是拉应力?3.应满足的要求指标?应力云图能说明什么?4.弹性应力集中使问题复杂化.5.可行的办法是计算楼板传力控制断面的抗剪承载力>楼板传递的剪力.即在内力层面进行控制. 假定:层剪力按本层竖向构件剪切刚度分配,则控制断面传递的剪力为ΔV x ,∑∑-⨯=∆nmjx inmji x x Q K kV V ,,;式中:Q x,j ----第j 根竖向构件的下端剪力;F-------控制断面的截面积.V x,i -----第i 层在水平荷载作用下的层(X 或Y 向)总剪力∑nmjk-----分离体板块(n-m+1)根竖向构件的剪切刚度之和;i K -----i 层总剪切刚度;按材料力学公式,[]ττ≤∆=F Vx5.1max ;二.“广东省实施《高规》补充规定”的理解和应用1. 总则1.0.2 高层定义:10层或以上;6层以上且高度>28m 。
2010版SATWE计算参数选用一、2010版计算参数的选用(PKPM及SATWE):免责声明:炒饭个人总结,仅用作参考。
以下内容需与PKPM2010版satwe说明书结合使用.参数在PKPM中如何实现需参考satwe说明书。
1、总信息:A、“水平力与整体坐标夹角”,此参数一般不做修改。
而是将周期计算结果中输出的“地震作用最大的方向角"填到“斜交抗侧力构件方向附加地震数,相应角度".B、PM里的“混凝土容重”框架取26,剪力墙取27。
(现在版本软件PM与SATWE 的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚",恒载输入数值为“人工计算板自重+装修荷载重”。
C、“钢材容重”暂时默认78,未研究。
D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM 总是将裙房以上一层作为加强区判定的一个条件。
框架结构均可输入0,其他结构未研究.此参数包含地下室层数。
(如3层地下室,4层裙房,此参数应输入7.) E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。
F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1"。
G、“地下室层数”按实际输入。
H、“墙元细分最大控制长度"取“1”。
影响计算精度,对含剪力墙的结构有影响。
I、“对所有楼层强制采用刚性楼板假定" 仅在计算位移比和周期比时勾选,其他不勾选。
J、“地下室强制采用刚性楼板假定"勾选。
K、“墙梁跨中节点作为刚性楼板从节点" 此参数本人尚不能合理选择,只把网上比较后的结果贴出来.勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。
L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选.对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。
结构设计信息输出文件(WMASS ·OUT)运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析。
WMASS ·OUT 文件包括六部分容,其输出格式如下:第一部分为结构总信息这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。
第二部分为各层质量质心信息,其格式如下:Floor Tower X-Center Y-Center Dead-Mass Live-Mass Mass Moment其中:Floor —— 层号Tower —— 塔号⎭⎬⎫--center y center x —— 楼层质心座标(m) Dead-Mass —— 该楼层恒载产生的质量,其中包括结构自重和外加恒载(单位t)Live-Mass —— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t)Mass-Moment —— 该楼层的质量矩(t*m 2)接后输出Total Mass of Dead Load Wd —— 恒载产生的质量Total Mass of Live Load Wl —— 活荷产生的质量Total Mass of the Structure Wt —— 结构的总质量第三部分为各层构件数量、构件材料和层高等信息,输出格式如下:Floor Tower Beams Columns Walls Height Total-Height其中:Floor —— 层号Tower —— 塔号Beams (Icb ) —— 该层该塔的梁数,括号的数字为梁砼标号Columns (Icc )—— 该层该塔的柱数,括号的数字为柱砼标号Walls (Icw ) —— 该层该塔墙元数,括号的数字为墙砼标号Height —— 该层该塔的层高(单位m),Total-Height —— 到该层为止的累计高度。
P K P M结果输出文件说明精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-结构设计信息输出文件(WMASS ·OUT)运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析。
WMASS ·OUT 文件包括六部分内容,其输出格式如下:第一部分为结构总信息这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。
第二部分为各层质量质心信息,其格式如下:Floor Tower X-Center Y-Center Dead-Mass Live-Mass Mass Moment 其中:Floor —— 层号Tower —— 塔号⎭⎬⎫--center y center x —— 楼层质心座标(m) Dead-Mass —— 该楼层恒载产生的质量,其中包括结构自重和外加恒载(单位t)Live-Mass —— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t) Mass-Moment —— 该楼层的质量矩(t*m 2)接后输出Total Mass of Dead Load Wd ——恒载产生的质量Total Mass of Live Load Wl ——活荷产生的质量Total Mass of the Structure Wt ——结构的总质量第三部分为各层构件数量、构件材料和层高等信息,输出格式如下:Floor Tower Beams Columns Walls Height Total-Height 其中:Floor ——层号Tower ——塔号Beams(Icb)——该层该塔的梁数,括号内的数字为梁砼标号Columns(Icc)——该层该塔的柱数,括号内的数字为柱砼标号Walls(Icw)——该层该塔墙元数,括号内的数字为墙砼标号Height ——该层该塔的层高(单位m),Total-Height ——到该层为止的累计高度。
PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。
2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。
3、梁柱混凝土保护层厚度,【混规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。
4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)5、抗震构造措施的抗震等级,【抗规3.3.2】建筑场地为1类时,对甲乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。
(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。
6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。
文本文件输出和图形文件输出内容说明1、WMASS.OUT文件SATWE后处理—文本文件输出,第1项:结构设计信息WMASS.OUT在该文件中可以查看楼层刚度比(1.11.1)、刚重比(1.11.3)、楼层受剪承载力(1.11.5)/////////////////////////////////////////////////////////////////////////// | 公司名称: | | | | 建筑结构的总信息| | SATWE 中文版| | 2011年10月12日10时53分| | 文件名: WMASS.OUT | | | |工程名称: 设计人: | |工程代号: 校核人: 日期:2013/ 4/23 | /////////////////////////////////////////////////////////////////////////// 1.1 总信息总信息 ..............................................结构材料信息: 钢砼结构混凝土容重(kN/m3): Gc = 25.00钢材容重(kN/m3): Gs = 78.00水平力的夹角(Rad): ARF = 0.00地下室层数: MBASE= 0竖向荷载计算信息: 按模拟施工3加荷计算风荷载计算信息: 计算X,Y两个方向的风荷载地震力计算信息: 计算X,Y两个方向的地震力“规定水平力”计算方法: 楼层剪力差方法(规范方法)特殊荷载计算信息: 不计算结构类别: 框架结构裙房层数: MANNEX= 0转换层所在层号: MCHANGE= 0嵌固端所在层号:MQIANGU= 1墙元细分最大控制长度(m) DMAX= 1.00墙元网格: 侧向出口结点是否对全楼强制采用刚性楼板假定是强制刚性楼板假定是否保留板面外刚度是墙梁跨中节点作为刚性楼板的从节点是采用的楼层刚度算法层间剪力比层间位移算法结构所在地区全国1.2风荷载信息风荷载信息 ..........................................修正后的基本风压(kN/m2): WO = 0.77风荷载作用下舒适度验算风压: WOC= 0.77地面粗糙程度: B 类结构X向基本周期(秒): T1 = 1.70结构Y向基本周期(秒): T2 = 1.80是否考虑风振: 是风荷载作用下结构的阻尼比(%): WDAMP= 5.00风荷载作用下舒适度验算阻尼比(%): WDAMPC= 2.00构件承载力设计时考虑横风向风振影响: 否承载力设计时风荷载效应放大系数: WENL= 1.00体形变化分段数: MPART= 1各段最高层号: NSTi = 12各段体形系数: USi = 1.301.3地震信息地震信息 ............................................振型组合方法(CQC耦联;SRSS非耦联) CQC计算振型数: NMODE= 15地震烈度: NAF = 7.00场地类别: KD =II设计地震分组: 一组特征周期TG = 0.35地震影响系数最大值Rmax1 = 0.08用于12层以下规则砼框架结构薄弱层验算的地震影响系数最大值Rmax2 = 0.50框架的抗震等级: NF = 2剪力墙的抗震等级: NW = 3钢框架的抗震等级: NS = 3抗震构造措施的抗震等级: NGZDJ =不改变活荷重力荷载代表值组合系数: RMC = 0.50周期折减系数: TC = 0.70结构的阻尼比(%): DAMP = 5.00中震(或大震)设计: MID =不考虑是否考虑偶然偏心: 是是否考虑双向地震扭转效应: 否斜交抗侧力构件方向的附加地震数= 01.4活荷载信息活荷载信息 ..........................................考虑活荷不利布置的层数从第 1 到12层柱、墙活荷载是否折减折算传到基础的活荷载是否折减折算考虑结构使用年限的活荷载调整系数 1.00------------柱,墙,基础活荷载折减系数-------------计算截面以上的层数---------------折减系数1 1.002---3 0.854---5 0.706---8 0.659---20 0.60> 20 0.551.5调整信息调整信息 ........................................梁刚度放大系数是否按2010规范取值:是梁端弯矩调幅系数:BT = 0.85梁活荷载内力增大系数:BM = 1.00连梁刚度折减系数:BLZ = 0.60梁扭矩折减系数:TB = 0.40全楼地震力放大系数:RSF = 1.000.2V o 调整分段数:VSEG = 0 0.2V o 调整上限:KQ_L = 2.00框支柱调整上限:KZZ_L = 5.00顶塔楼内力放大起算层号:NTL = 0顶塔楼内力放大:RTL = 1.00框支剪力墙结构底部加强区剪力墙抗震等级自动提高一级:是实配钢筋超配系数CPCOEF91 = 1.15是否按抗震规范5.2.5调整楼层地震力IAUTO525 = 1 弱轴方向的动位移比例因子XI1 = 0.00强轴方向的动位移比例因子XI2 = 0.00是否调整与框支柱相连的梁内力 IREGU_KZZB = 0 强制指定的薄弱层个数NWEAK = 0 薄弱层地震内力放大系数WEAKCOEF = 1.25 强制指定的加强层个数NSTREN = 01.6 配筋信息配筋信息 ........................................梁箍筋强度(N/mm2): JB = 210柱箍筋强度(N/mm2): JC = 210墙分布筋强度(N/mm2): JWH = 210边缘构件箍筋强度(N/mm2): JWB = 210梁箍筋最大间距(mm): SB = 100.00柱箍筋最大间距(mm): SC = 100.00墙水平分布筋最大间距(mm): SWH = 200.00墙竖向分布筋配筋率(%): RWV = 0.30结构底部单独指定墙竖向分布筋配筋率的层数: NSW = 0结构底部NSW层的墙竖向分布配筋率: RWV1 = 0.601.7设计信息设计信息 ........................................结构重要性系数: RWO = 1.00柱计算长度计算原则: 有侧移梁柱重叠部分简化: 不作为刚域是否考虑 P-Delt 效应:否柱配筋计算原则: 按单偏压计算按高规或高钢规进行构件设计: 是钢构件截面净毛面积比: RN = 0.85梁保护层厚度(mm): BCB = 20.00柱保护层厚度(mm): ACA = 20.00剪力墙构造边缘构件的设计执行高规7.2.16-4: 是框架梁端配筋考虑受压钢筋: 是结构中的框架部分轴压比限值按纯框架结构的规定采用:否当边缘构件轴压比小于抗规6.4.5条规定的限值时一律设置构造边缘构件: 是是否按混凝土规范B.0.4考虑柱二阶效应: 否1.8荷载组合信息荷载组合信息 ........................................恒载分项系数: CDEAD= 1.20活载分项系数: CLIVE= 1.40风荷载分项系数: CWIND= 1.40水平地震力分项系数: CEA_H= 1.30竖向地震力分项系数: CEA_V= 0.50特殊荷载分项系数: CSPY = 0.00活荷载的组合值系数: CD_L = 0.70风荷载的组合值系数: CD_W = 0.60活荷载的重力荷载代表值系数: CEA_L = 0.501.9其他项目11.9.1剪力墙底部加强区的层和塔信息剪力墙底部加强区的层和塔信息.......................层号塔号1 12 11.9.2用户指定薄弱层的层和塔信息用户指定薄弱层的层和塔信息.........................层号塔号1.9.3用户指定加强层的层和塔信息用户指定加强层的层和塔信息.........................层号塔号1.9.4约束边缘构件与过渡层的层和塔信息约束边缘构件与过渡层的层和塔信息...................层号塔号类别1 1 约束边缘构件层2 1 约束边缘构件层3 1 约束边缘构件层1.10 其他项目21.10.1各层的质量、质心坐标信息********************************************************** 各层的质量、质心坐标信息**********************************************************层号塔号质心 X 质心 Y 质心Z 恒载质量活载质量附加质量质量比(m) (m) (m) (t) (t)12 1 18.167 6.161 47.500 1311.3 160.7 0.0 1.0011 1 18.167 6.161 44.000 1311.3 160.7 0.0 1.0010 1 18.167 6.161 40.500 1311.3 160.7 0.0 1.009 1 18.167 6.161 37.000 1311.3 160.7 0.0 0.978 1 18.167 6.161 33.500 1360.9 160.7 0.0 1.007 1 18.167 6.161 30.000 1360.9 160.7 0.0 0.976 1 18.167 6.161 26.500 1400.1 160.7 0.0 1.005 1 18.167 6.161 23.000 1400.1 160.7 0.0 1.004 1 18.167 6.161 19.500 1400.1 160.7 0.0 0.793 1 18.167 6.161 16.000 1688.4 281.2 0.0 1.002 1 18.167 6.161 11.000 1688.4 281.20.0 0.971 1 18.167 6.161 6.000 1751.6 281.20.0 1.00活载产生的总质量(t): 2289.405恒载产生的总质量(t): 17295.934附加总质量(t): 0.000结构的总质量 (t):19585.340恒载产生的总质量包括结构自重和外加恒载结构的总质量包括恒载产生的质量和活载产生的质量和附加质量活载产生的总质量和结构的总质量是活载折减后的结果 (1t = 1000kg)1.10.2各层构件数量、构件材料和层高********************************************************** 各层构件数量、构件材料和层高**********************************************************层号(标准层号) 塔号梁元数柱元数墙元数层高累计高度(混凝土/主筋) (混凝土/主筋) (混凝土/主筋) (m)(m)1(1) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 6.0006.0002(2) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 5.00011.0003(3) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 5.00016.0004(4) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.50019.5005(4) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.50023.0006(4) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.50026.5007(5) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.50030.0008(5) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.50033.5009(6) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.50037.00010(6) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.50040.50011(6) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.500 44.00012(6) 1 135(30/ 300) 28(30/ 300) 0(30/ 300) 3.500 47.5001.10.3风荷载信息********************************************************** 风荷载信息**********************************************************层号塔号风荷载X 剪力X 倾覆弯矩X 风荷载Y 剪力Y 倾覆弯矩Y12 1 245.77 245.8 860.2 459.76 459.8 1609.111 1 235.54 481.3 2544.8 440.98 900.7 4761.710 1 225.40 706.7 5018.3 422.34 1323.1 9392.59 1 215.27 922.0 8245.2 403.68 1726.8 15436.28 1 205.05 1127.0 12189.9 384.83 2111.6 22826.87 1 194.64 1321.7 16815.7 365.60 2477.2 31496.96 1 183.93 1505.6 22085.4 345.77 2823.0 41377.25 1 172.77 1678.4 27959.8 325.07 3148.0 52395.34 1 160.97 1839.4 34397.5 303.14 3451.2 64474.43 1 211.77 2051.1 44653.1 399.20 3850.4 83726.22 1 182.14 2233.3 55819.4 343.91 4194.3 104697.61 1 199.29 2432.6 70414.7 377.60 4571.9 132128.81.10.4各楼层偶然偏心信息====================================================================== 各楼层偶然偏心信息======================================================================层号塔号X向偏心Y向偏心1 1 0.05 0.052 1 0.05 0.053 1 0.05 0.054 1 0.05 0.055 1 0.05 0.056 1 0.05 0.057 1 0.05 0.058 1 0.05 0.059 1 0.05 0.0510 1 0.05 0.0511 1 0.05 0.0512 1 0.05 0.051.10.5各楼层等效尺寸====================================================================== 各楼层等效尺寸(单位:m,m**2)======================================================================层号塔号面积形心X 形心Y 等效宽B 等效高H 最大宽BMAX 最小宽BMIN1 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.002 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.003 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.004 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.005 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.006 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.007 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.008 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.009 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.0010 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.0011 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.0012 1 1606.60 18.17 6.16 55.40 29.00 55.40 29.001.10.6各楼层的单位面积质量分布====================================================================== 各楼层的单位面积质量分布(单位:kg/m**2)======================================================================层号塔号单位面积质量g[i] 质量比 max(g[i]/g[i-1],g[i]/g[i+1])1 1 1265.22 1.032 1 1225.90 1.003 1 1225.90 1.264 1 971.50 1.005 1 971.50 1.006 1 971.50 1.037 1 947.10 1.008 1 947.10 1.039 1 916.22 1.0010 1 916.22 1.0011 1 916.22 1.0012 1 916.22 1.001.11计算信息====================================================================== =====计算信息====================================================================== =====计算日期: 2013. 4.23开始时间: 14:43:26可用内存: 571.00MB第一步: 数据预处理第二步: 计算每层刚度中心、自由度、质量等信息第三步: 地震作用分析第四步: 风及竖向荷载分析第五步: 计算杆件内力结束日期 : 2013. 4.23时间: 14:45:17总用时: 0: 1:511.11.1各层刚心、偏心率、相邻层侧移刚度比等计算信息====================================================================== =====各层刚心、偏心率、相邻层侧移刚度比等计算信息Floor No : 层号Tower No : 塔号Xstif,Ystif : 刚心的X,Y 坐标值Alf : 层刚性主轴的方向Xmass,Ymass : 质心的X,Y 坐标值Gmass : 总质量Eex,Eey : X,Y 方向的偏心率Ratx,Raty : X,Y 方向本层塔侧移刚度与下一层相应塔侧移刚度的比值(剪切刚度) Ratx1,Raty1 : X,Y 方向本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值中之较小者RJX1,RJY1,RJZ1: 结构总体坐标系中塔的侧移刚度和扭转刚度(剪切刚度)RJX3,RJY3,RJZ3: 结构总体坐标系中塔的侧移刚度和扭转刚度(地震剪力与地震层间位移的比)====================================================================== =====Floor No. 1 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 2313.8608( 2032.7057)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.0000 Raty = 1.0000Ratx1= 1.3804 Raty1= 1.3668薄弱层地震剪力放大系数= 1.00RJX1 = 6.0648E+06(kN/m) RJY1 = 6.0648E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 1.3418E+06(kN/m) RJY3 = 1.3696E+06(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------Floor No. 2 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 2250.6853( 1969.5302)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.2000 Raty = 1.2000Ratx1= 1.0111 Raty1= 1.0108薄弱层地震剪力放大系数= 1.00RJX1 = 7.2778E+06(kN/m) RJY1 = 7.2778E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 1.0816E+06(kN/m) RJY3 = 1.1147E+06(kN/m) RJZ3 = 0.0000E+00(kN/m)Floor No. 3 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 2250.6853( 1969.5302)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.0000 Raty = 1.0000Ratx1= 0.8973 Raty1= 0.8984薄弱层地震剪力放大系数= 1.25RJX1 = 7.2778E+06(kN/m) RJY1 = 7.2778E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 1.0487E+06(kN/m) RJY3 = 1.0807E+06(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------Floor No. 4 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1721.4628( 1560.8027)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.1436 Raty = 1.1436Ratx1= 1.3687 Raty1= 1.3781薄弱层地震剪力放大系数= 1.00RJX1 = 8.3232E+06(kN/m) RJY1 = 8.3232E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 1.5146E+06(kN/m) RJY3 = 1.5623E+06(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------Floor No. 5 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1721.4628( 1560.8027)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.0000 Raty = 1.0000Ratx1= 1.3684 Raty1= 1.3869薄弱层地震剪力放大系数= 1.00RJX1 = 8.3232E+06(kN/m) RJY1 = 8.3232E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 1.4483E+06(kN/m) RJY3 = 1.4924E+06(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------Floor No. 6 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1721.4628( 1560.8027)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.0000 Raty = 1.0000Ratx1= 1.5165 Raty1= 1.5436薄弱层地震剪力放大系数= 1.00RJX1 = 8.3232E+06(kN/m) RJY1 = 8.3232E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 1.4197E+06(kN/m) RJY3 = 1.4561E+06(kN/m) RJZ3 = 0.0000E+00(kN/m)Floor No. 7 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1682.2623( 1521.6023)(t)Eex = 0.0000 Eey = 0.0000Ratx = 0.7785 Raty = 0.7785Ratx1= 1.4453 Raty1= 1.4578薄弱层地震剪力放大系数= 1.00RJX1 = 6.4800E+06(kN/m) RJY1 = 6.4800E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 1.2820E+06(kN/m) RJY3 = 1.3028E+06(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------Floor No. 8 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1682.2623( 1521.6023)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.0000 Raty = 1.0000Ratx1= 1.6521 Raty1= 1.6923薄弱层地震剪力放大系数= 1.00RJX1 = 6.4800E+06(kN/m) RJY1 = 6.4800E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 1.2671E+06(kN/m) RJY3 = 1.2766E+06(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------Floor No. 9 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1632.6501( 1471.9901)(t)Eex = 0.0000 Eey = 0.0000Ratx = 0.6400 Raty = 0.6400Ratx1= 1.2779 Raty1= 1.3235薄弱层地震剪力放大系数= 1.00RJX1 = 4.1472E+06(kN/m) RJY1 = 4.1472E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 9.6151E+05(kN/m) RJY3 = 9.5804E+05(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------Floor No. 10 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1632.6501( 1471.9901)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.0000 Raty = 1.0000Ratx1= 1.4334 Raty1= 1.4561薄弱层地震剪力放大系数= 1.00RJX1 = 4.1472E+06(kN/m) RJY1 = 4.1472E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 9.5897E+05(kN/m) RJY3 = 9.4437E+05(kN/m) RJZ3 = 0.0000E+00(kN/m)Floor No. 11 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1632.6501( 1471.9901)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.0000 Raty = 1.0000Ratx1= 1.5055 Raty1= 1.5691薄弱层地震剪力放大系数= 1.00RJX1 = 4.1472E+06(kN/m) RJY1 = 4.1472E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 9.5573E+05(kN/m) RJY3 = 9.2653E+05(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------Floor No. 12 Tower No. 1Xstif= 18.1667(m) Ystif= 6.1605(m) Alf = 45.0000(Degree)Xmass= 18.1667(m) Ymass= 6.1605(m) Gmass(活荷折减)= 1632.6501( 1471.9901)(t)Eex = 0.0000 Eey = 0.0000Ratx = 1.0000 Raty = 1.0000Ratx1= 1.0000 Raty1= 1.0000薄弱层地震剪力放大系数= 1.00RJX1 = 4.1472E+06(kN/m) RJY1 = 4.1472E+06(kN/m) RJZ1 = 0.0000E+00(kN/m)RJX3 = 9.0688E+05(kN/m) RJY3 = 8.4358E+05(kN/m) RJZ3 = 0.0000E+00(kN/m)---------------------------------------------------------------------------X方向最小刚度比: 0.8973(第3层第1塔)Y方向最小刚度比: 0.8984(第3层第1塔)1.11.2结构整体抗倾覆验算结果====================================================================== ======结构整体抗倾覆验算结果====================================================================== ======抗倾覆力矩Mr 倾覆力矩Mov 比值Mr/Mov 零应力区(%)X风荷载5678806.0 77030.8 73.72 0.00Y风荷载 2972654.8 144775.7 20.53 0.00X 地震5425139.5 139343.0 38.93 0.00Y 地震2839869.0 140577.7 20.20 0.001.11.3结构舒适性验算结果====================================================================== ======结构舒适性验算结果====================================================================== ======X向顺风向顶点最大加速度(m/s2) = 0.075X向横风向顶点最大加速度(m/s2) = 0.110Y向顺风向顶点最大加速度(m/s2) = 0.134Y向横风向顶点最大加速度(m/s2) = 0.1021.11.4结构整体稳定验算结果====================================================================== ======结构整体稳定验算结果====================================================================== ======层号X向刚度Y向刚度层高上部重量X刚重比Y刚重比1 0.134E+07 0.137E+07 6.00 271655. 29.64 30.252 0.108E+07 0.111E+07 5.00 242764. 22.28 22.963 0.105E+07 0.108E+07 5.00 214631. 24.43 25.184 0.151E+07 0.156E+07 3.50 186498. 28.42 29.325 0.145E+07 0.149E+07 3.50 165198. 30.68 31.626 0.142E+07 0.146E+07 3.50 143898. 34.53 35.427 0.128E+07 0.130E+07 3.50 122597. 36.60 37.198 0.127E+07 0.128E+07 3.50 101768. 43.58 43.919 0.962E+06 0.958E+06 3.50 80938. 41.58 41.4310 0.959E+06 0.944E+06 3.50 60703. 55.29 54.4511 0.956E+06 0.927E+06 3.50 40469. 82.66 80.1312 0.907E+06 0.844E+06 3.50 20234. 156.86 145.92该结构刚重比Di*Hi/Gi大于10,能够通过高规(5.4.4)的整体稳定验算该结构刚重比Di*Hi/Gi大于20,可以不考虑重力二阶效应1.11.5楼层抗剪承载力、及承载力比值********************************************************************** * 楼层抗剪承载力、及承载力比值*********************************************************************** Ratio_Bu: 表示本层与上一层的承载力之比----------------------------------------------------------------------层号塔号X向承载力Y向承载力 Ratio_Bu:X,Y----------------------------------------------------------------------12 1 0.7164E+04 0.7164E+04 1.00 1.0011 1 0.9683E+04 0.9683E+04 1.35 1.3510 1 0.1169E+05 0.1169E+05 1.21 1.219 1 0.1336E+05 0.1336E+05 1.14 1.148 1 0.2328E+05 0.2328E+05 1.74 1.747 1 0.2541E+05 0.2541E+05 1.09 1.096 1 0.3506E+05 0.3506E+05 1.38 1.385 1 0.3738E+05 0.3738E+05 1.07 1.074 1 0.3939E+05 0.3939E+05 1.05 1.053 1 0.3529E+05 0.3529E+05 0.90 0.902 1 0.3707E+05 0.3707E+05 1.05 1.051 1 0.3120E+05 0.3120E+05 0.84 0.84X方向最小楼层抗剪承载力之比: 0.84 层号: 1 塔号: 1Y方向最小楼层抗剪承载力之比: 0.84 层号: 1 塔号: 12、WZQ.OUT文件SATWE后处理—文本文件输出,第2项:周期振型地震力 WZQ.OUT在该文件中可以查看周期比(2.1)、剪重比(2.4X向地震作用下的剪重比和2.7Y 向地震作用下的剪重比)====================================================================== 周期、地震力与振型输出文件(VSS求解器)======================================================================2.1考虑扭转耦联时的振动周期(秒)、X,Y 方向的平动系数、扭转系数考虑扭转耦联时的振动周期(秒)、X,Y 方向的平动系数、扭转系数振型号周期转角平动系数 (X+Y) 扭转系数1 1.7597 0.00 1.00 ( 1.00+0.00 ) 0.002 1.7421 90.00 1.00 ( 0.00+1.00 ) 0.003 1.6652 26.26 0.00 ( 0.00+0.00 ) 1.004 0.6239 0.00 1.00 ( 1.00+0.00 ) 0.005 0.6180 90.00 1.00 ( 0.00+1.00 ) 0.006 0.5945 21.32 0.00 ( 0.00+0.00 ) 1.007 0.3521 0.00 1.00 ( 1.00+0.00 ) 0.008 0.3461 90.00 1.00 ( 0.00+1.00 ) 0.009 0.3353 25.98 0.00 ( 0.00+0.00 ) 1.0010 0.2386 180.00 1.00 ( 1.00+0.00 ) 0.0011 0.2352 90.00 1.00 ( 0.00+1.00 ) 0.0012 0.2283 23.25 0.00 ( 0.00+0.00 ) 1.0013 0.1821 180.00 1.00 ( 1.00+0.00 ) 0.0014 0.1800 90.00 1.00 ( 0.00+1.00 ) 0.0015 0.1751 21.61 0.00 ( 0.00+0.00 ) 1.00地震作用最大的方向 = 0.001 (度)============================================================ 2.2仅考虑 X 向地震作用时的地震力仅考虑 X 向地震作用时的地震力Floor : 层号Tower : 塔号F-x-x : X 方向的耦联地震力在 X 方向的分量F-x-y : X 方向的耦联地震力在 Y 方向的分量F-x-t : X 方向的耦联地震力的扭矩振型 1 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 504.37 0.00 0.1111 1 492.87 0.00 0.1010 1 472.33 0.00 0.109 1 442.80 0.00 0.098 1 418.33 0.00 0.097 1 382.10 0.00 0.086 1 349.35 0.00 0.075 1 306.08 0.00 0.064 1 259.57 0.00 0.053 1 267.15 0.00 0.062 1 173.53 0.00 0.041 1 80.98 0.00 0.02振型 2 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.0011 1 0.00 0.00 0.0010 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型 3 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 -0.1111 1 0.00 0.00 -0.1110 1 0.00 0.00 -0.109 1 0.00 0.00 -0.108 1 0.00 0.00 -0.097 1 0.00 0.00 -0.086 1 0.00 0.00 -0.085 1 0.00 0.00 -0.074 1 0.00 0.00 -0.063 1 0.00 0.00 -0.062 1 0.00 0.00 -0.041 1 0.00 0.00 -0.02振型 4 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 -469.14 0.00 -0.1211 1 -393.37 0.00 -0.1010 1 -262.07 0.00 -0.069 1 -92.54 0.00 -0.028 1 91.61 0.00 0.027 1 220.94 0.00 0.056 1 330.97 0.00 0.084 1 409.86 0.00 0.103 1 486.95 0.00 0.122 1 359.37 0.00 0.091 1 181.66 0.00 0.05振型 5 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.0011 1 0.00 0.00 0.0010 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型 6 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.1211 1 0.00 0.00 0.1010 1 0.00 0.00 0.079 1 0.00 0.00 0.028 1 0.00 0.00 -0.027 1 0.00 0.00 -0.066 1 0.00 0.00 -0.095 1 0.00 0.00 -0.104 1 0.00 0.00 -0.103 1 0.00 0.00 -0.122 1 0.00 0.00 -0.091 1 0.00 0.00 -0.05振型7 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)11 1 167.36 0.00 0.0410 1 -42.40 0.00 -0.019 1 -232.50 0.00 -0.068 1 -326.04 0.00 -0.087 1 -280.51 0.00 -0.076 1 -151.26 0.00 -0.045 1 13.73 0.00 0.004 1 169.59 0.00 0.043 1 336.20 0.00 0.082 1 348.58 0.00 0.091 1 210.01 0.00 0.05振型8 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.0011 1 0.00 0.00 0.0010 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型9 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 -0.0711 1 0.00 0.00 -0.0410 1 0.00 0.00 0.019 1 0.00 0.00 0.068 1 0.00 0.00 0.087 1 0.00 0.00 0.076 1 0.00 0.00 0.045 1 0.00 0.00 0.004 1 0.00 0.00 -0.043 1 0.00 0.00 -0.082 1 0.00 0.00 -0.081 1 0.00 0.00 -0.05振型 10 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 -228.14 0.00 -0.0611 1 -21.37 0.00 -0.0110 1 197.14 0.00 0.059 1 243.97 0.00 0.078 1 82.35 0.00 0.027 1 -93.03 0.00 -0.036 1 -206.08 0.00 -0.065 1 -187.94 0.00 -0.054 1 -71.80 0.00 -0.023 1 93.24 0.00 0.022 1 263.07 0.00 0.071 1 213.22 0.00 0.06振型11 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.0011 1 0.00 0.00 0.0010 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型 12 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.0611 1 0.00 0.00 0.0110 1 0.00 0.00 -0.059 1 0.00 0.00 -0.078 1 0.00 0.00 -0.027 1 0.00 0.00 0.036 1 0.00 0.00 0.065 1 0.00 0.00 0.054 1 0.00 0.00 0.023 1 0.00 0.00 -0.022 1 0.00 0.00 -0.071 1 0.00 0.00 -0.06振型 13 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 170.38 0.00 0.0511 1 -68.00 0.00 -0.0210 1 -207.39 0.00 -0.069 1 -67.79 0.00 -0.028 1 160.39 0.00 0.057 1 167.88 0.00 0.056 1 21.04 0.00 0.015 1 -128.13 0.00 -0.044 1 -169.33 0.00 -0.053 1 -91.27 0.00 -0.032 1 189.54 0.00 0.061 1 234.29 0.00 0.07振型 14 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.0011 1 0.00 0.00 0.0010 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型 15 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN) (kN) (kN-m)12 1 0.00 0.00 -0.0511 1 0.00 0.00 0.0210 1 0.00 0.00 0.069 1 0.00 0.00 0.028 1 0.00 0.00 -0.057 1 0.00 0.00 -0.056 1 0.00 0.00 -0.015 1 0.00 0.00 0.044 1 0.00 0.00 0.053 1 0.00 0.00 0.032 1 0.00 0.00 -0.061 1 0.00 0.00 -0.072.3各振型作用下 X 方向的基底剪力各振型作用下 X 方向的基底剪力-------------------------------------------------------振型号剪力(kN)1 4149.472 0.003 0.004 1254.505 0.006 0.007 521.728 0.009 0.0010 284.6411 0.0012 0.0013 211.6014 0.0015 0.002.4各层 X 方向的作用力(CQC)各层 X 方向的作用力(CQC)Floor : 层号Tower : 塔号Fx : X 向地震作用下结构的地震反应力Vx : X 向地震作用下结构的楼层剪力Mx : X 向地震作用下结构的弯矩Static Fx: 静力法 X 向的地震力------------------------------------------------------------------------------------------Floor Tower Fx Vx (分塔剪重比) (整层剪重比) MxStatic Fx(kN) (kN) (kN-m)(kN)(注意:下面分塔输出的剪重比不适合于上连多塔结构)12 1 791.01 791.01( 5.37%) ( 5.37%) 2768.53 1680.3611 1 651.46 1410.32( 4.79%) ( 4.79%) 7672.09762.3810 1 602.90 1891.13( 4.28%) ( 4.28%) 14141.74701.749 1 559.20 2278.84( 3.87%) ( 3.87%) 21833.43 641.108 1 564.54 2597.81( 3.51%) ( 3.51%) 30500.29 600.027 1 552.42 2893.15( 3.24%) ( 3.24%) 40033.53 537.336 1 545.30 3166.61( 3.02%) ( 3.02%) 50360.23 486.875 1 550.78 3423.20( 2.84%) ( 2.84%) 61422.11 422.564 1 550.02 3669.71( 2.70%) ( 2.70%) 73178.91 358.263 1 671.43 3975.65( 2.55%) ( 2.55%) 91205.75 370.942 1 649.66 4230.72( 2.41%) ( 2.41%) 110447.62255.021 1 454.78 4400.31( 2.25%) ( 2.25%) 134758.78 143.56抗震规范(5.2.5)条要求的X向楼层最小剪重比 = 1.60%X 方向的有效质量系数: 98.45%============================================================2.5仅考虑 Y 向地震时的地震力仅考虑 Y 向地震时的地震力Floor : 层号Tower : 塔号F-y-x : Y 方向的耦联地震力在 X 方向的分量F-y-y : Y 方向的耦联地震力在 Y 方向的分量F-y-t : Y 方向的耦联地震力的扭矩振型 1 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.0011 1 0.00 0.00 0.0010 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型 2 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN) (kN) (kN-m)12 1 0.00 513.17 0.0511 1 0.00 499.65 0.0510 1 0.00 477.12 0.059 1 0.00 445.69 0.058 1 0.00 419.64 0.047 1 0.00 382.44 0.046 1 0.00 349.09 0.045 1 0.00 305.70 0.034 1 0.00 259.32 0.032 1 0.00 173.72 0.021 1 0.00 81.47 0.01振型 3 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN) (kN) (kN-m)12 1 0.00 0.00 -0.0611 1 0.00 0.00 -0.0510 1 0.00 0.00 -0.059 1 0.00 0.00 -0.058 1 0.00 0.00 -0.057 1 0.00 0.00 -0.046 1 0.00 0.00 -0.045 1 0.00 0.00 -0.034 1 0.00 0.00 -0.033 1 0.00 0.00 -0.032 1 0.00 0.00 -0.021 1 0.00 0.00 -0.01振型 4 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN) (kN) (kN-m)12 1 0.00 0.00 0.0011 1 0.00 0.00 0.0010 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型 5 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN) (kN) (kN-m)12 1 0.00 -483.46 -0.0511 1 0.00 -401.66 -0.04。
JCCAD参数设置说明第一版2006年3月3日地质资料地质资料是基础设计计算的重要依据,可以用人机交互方式或填写数据文件方式输入地质资料有两类,一种是供有桩基础使用的,另一种是供无桩基础(弹性地基筏板)使用。
两者的格式相同,不同仅在于有桩基础对每层土要求压缩模量、重度、状态参数、内摩擦角、内聚力五个参数,而无桩基础只要求压缩模量一个参数。
建立*.dz文件主要内容包括以下几点:(1) 每个勘探孔柱状图的土层分布及各土层的物理力学参数,物理力学参数包括土的重Gv(用于沉降计算)、相应压力状态下的压缩模量Es(用于沉降计算)、摩擦角φ(用于沉降及支护结构计算)、内聚力c(用于支护结构计算)及计算桩基承载力的状态参数(对于各种土有不同的含义)。
(2) 所有孔点在任意坐标系下的位置坐标,在桩基设计时可通过平移与旋转将勘探孔平面坐标转成建筑底层平面的坐标。
(3) 以勘探孔点作为节点顺序编号,将节点连线划分成多个不相重叠的三角形单元,并将三角形单元编号。
程序将以这种三角形单元为控制网格,利用形函数插值的方法得到控制网格内部和附近的地质土层分布。
土层参数压缩模量、重度、摩擦角、粘聚力、状态参数、状态参数含义桩基础设计应该使用Ez(自重压力~……),天然浅基础应使用Es0.1-Es0.2。
土层布置土名称、厚度、极限侧摩、极限桩端、压缩模量、重度、摩擦角、粘聚力、状态参数、状态参数含义,标高及图幅(坐标系:相对坐标系,单位米。
标高与结构标高相同)孔点输入输入孔位:打开坐标,将孔点的大体形状输入即可修改参数:按照勘查报告中的相关数据输入即可网格修改点柱状图选中可以进行桩基承载力与沉降验算。
土剖面图画等高线基础人机交互输入本菜单根据使用者提供的上部结构数据、荷载数据和有关的地基基础的数据,进行柱下独立基础、墙下条形基础和承台设计,桩长计算以及布置基础梁、筏基、桩基等基础。
程序可对平板式基础进行柱对筏板的从冲切计算以及柱对独基、桩承台、基础梁和桩对承台的局部承压计算。
PKPM设置参数(一)前处理注意事项1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。
2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。
PMCAD的数据检查要通过。
SATWE数据报告提示的问题要消除。
3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。
范例外的自重需用户输入。
4、板―柱结构输入:柱网需输入截面为100X100的虚梁。
5、厚板转换层输入:柱网需输入截面为100X100的虚梁。
层高以板厚的1/2划分。
6、错层结构输入:A、框架错层:在PM中调整梁端高,含斜梁。
B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。
C、多塔层高不同:把形成的塔虚层中楼板去掉。
关于整理SATWE设计参数便览的说明设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。
SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。
论坛里也有许多帖子,但总觉得系统性、实用性有些不足。
SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。
由于水平有限在整理中肯定会出现不足和错误,欢迎斧正。
更欢迎参与。
SATWE参数便览之总信息1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算值重算。
2、混凝土容重:隐含值25。
构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。
3、钢材容重:隐含值78。
可行。
4、裙房层数:指地上的周边都有的群房。
当主体一面或多面无裙房时,风荷载需个案处理。
5、转换层所在层号:按自然层号填输,含地下室的层数。
6、地下室层数:按地下层数填输,当一面或多面临空时,填土侧压力需个案处理。
7、墙元细分控制最大控制长度:墙元长度太大则计算精度无法保证,可采用隐含值。
(整理)pkpm⼀些参数设置及pkpm钢筋输出⽂件简图. 1、⼀般情况下模拟施⼯加载取模拟施⼯加载3⽐较符合逐层施⼯的实际情况。
模拟施⼯加载2则可以更合理的给基础传递荷载。
复杂结构设计⼈员可以指定施⼯次序。
模拟施⼯加载的选择1.⼀次性加载模型,计算时只形成⼀次整体刚度矩阵,⽤于多层2.模拟施⼯加载1.是整体刚度分层加载模型,本层加载对上部结构没有影响,总刚矩阵由构件单刚形成,程序默认算法。
⽤于多⾼层3..模拟施⼯加载2,逐层加载模型,n层会有n个总刚矩阵形成,计算量⼤。
与⼿算接近。
⽤于多⾼层,较少采⽤。
4.模拟施⼯加载3,新版有。
分层刚度分层加载模型,更符合⼯程实际,⾼层⾸选。
5.对有吊车的结构必须⽤⼀次性加载,因为吊车对上部结构有影响,也就是对有上传荷载的结构要⽤⼀次性加载。
6.要知道由于模拟施⼯加载计⼊了施⼯引起的变形,在计算结果输出中各节点在竖荷载作⽤下的节点⼒矩是不平衡的。
只有⼀次性加载下才是平衡的2、修正后的基本风压⼀般就是荷载规范规定的基本风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放⼤10%~20%,门刚中则规定按放⼤5%采⽤。
3、对于⾼度⼤于150M的⾼层混凝⼟建筑才要验算风振舒适度。
结构阻尼⽐取0.01~0.02,程序缺省0.02。
4、侧刚计算⽅法:⼀种简化计算法,计算速度快,但应⽤范围有限,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的⼯业⼚房、体育馆等)⽤此法会有⼀定误差;总刚计算⽅法:精度⾼,适⽤范围⼴,计算量⼤。
对于没有定义弹性楼板且没有不与楼板相连构件的⼯程,两种⽅法结果⼀样。
(以下转贴)“刚性楼板”的适⽤范围:绝⼤多数结构只要楼板没有特别的削弱、不连续,均可采⽤这个假定。
相关注意:由于“刚性楼板假定”没有考虑板⾯外的刚度,所以可以通过“梁刚度放⼤系数”来提⾼梁⾯外弯曲刚度,以弥补⾯外刚度的不⾜。
同样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。
结构设计信息输出文件(WMASS ·OUT )运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析.WMASS ·OUT 文件包括六部分内容,其输出格式如下:第一部分为结构总信息这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。
第二部分为各层质量质心信息,其格式如下:Floor Tower X —Center Y —Center Dead-Mass Live-Mass Mass Moment 其中:Floor -— 层号Tower -— 塔号⎭⎬⎫--center y center x —- 楼层质心座标(m ) Dead —Mass —— 该楼层恒载产生的质量,其中包括结构自重和外加恒载(单位t ) Live —Mass -— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t ) Mass —Moment -- 该楼层的质量矩(t*m 2)接后输出Total Mass of Dead Load Wd —— 恒载产生的质量Total Mass of Live Load Wl —- 活荷产生的质量Total Mass of the Structure Wt —— 结构的总质量第三部分为各层构件数量、构件材料和层高等信息,输出格式如下:Floor Tower Beams Columns Walls Height Total —Height其中:Floor —— 层号Tower -— 塔号Beams (Icb ) -— 该层该塔的梁数,括号内的数字为梁砼标号Columns(Icc )-— 该层该塔的柱数,括号内的数字为柱砼标号Walls(Icw ) —- 该层该塔墙元数,括号内的数字为墙砼标号Height -- 该层该塔的层高(单位m),Total —Height -— 到该层为止的累计高度。
功能说明这项菜单主要以图形方式显示各构件设计及验算结果,可以直接输出DWG 图形文件。
图8.6.4 构件计算配筋简图各构件设计及验算结果功能说明简图上各构件的配筋结果表达方式如下:(1)钢筋混凝土梁和型钢混凝土梁(RC-Beam、SRC-Beam)图中:Asul-Asum-Asur:为梁上部左端、跨中、右端配筋面积(cm2);Asdl-Asdm-Asdr:为梁下部左端、跨中、右端配筋面积(cm2);GAsv:为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);GAsvm:为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);VTAst :为梁受扭纵筋面积(cm2);VTAst1 :为梁抗扭箍筋的单肢箍面积(cm2);G、VT :为箍筋及剪扭配筋标志。
注意事項(1)梁配筋简图如下:图8.6.4.1-1 梁配筋示意图(2)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,当输入的箍筋间距为加密区间距时,梁端箍筋加密区的计算结果可直接使用;如果非加密区与加密区的箍筋间距不同时,需要对非加密区的箍筋面积按非加密区的间距进行换算后再使用。
当梁受扭时,配置的箍筋单肢面积不应小于VTAst1。
(3)输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。
(4)输出的纵筋及箍筋面积都满足规范要求的最小配筋率要求,如果计算出的配筋面积小于最小配筋率时,按最小配筋面积来输出。
(5)VTAst和VTAst1都为零时,该行不输出。
功能说明(2)矩形钢筋混凝土柱和型钢混凝土柱(RC-Column、SRC-Column)图中:Asc :为柱1根角筋的总面积(cm2);Asy、Asz:分别为柱B边和H边的单边面积,包括两根角筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv :为柱加密区抗剪箍筋面积(cm2);GAsvm :为柱非加密区抗剪箍筋面积(cm2);Uc :为非地震作用效应荷载组合下柱的轴压比;Ucs :为地震作用效应荷载组合下柱的轴压比;G :为箍筋配筋标志。
1、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。
模拟施工加载2则可以更合理的给基础传递荷载。
复杂结构设计人员可以指定施工次序。
模拟施工加载的选择1.一次性加载模型,计算时只形成一次整体刚度矩阵,用于多层2.模拟施工加载1.是整体刚度分层加载模型,本层加载对上部结构没有影响,总刚矩阵由构件单刚形成,程序默认算法。
用于多高层3..模拟施工加载2,逐层加载模型,n层会有n个总刚矩阵形成,计算量大。
与手算接近。
用于多高层,较少采用。
4.模拟施工加载3,新版有。
分层刚度分层加载模型,更符合工程实际,高层首选。
5.对有吊车的结构必须用一次性加载,因为吊车对上部结构有影响,也就是对有上传荷载的结构要用一次性加载。
6.要知道由于模拟施工加载计入了施工引起的变形,在计算结果输出中各节点在竖荷载作用下的节点力矩是不平衡的。
只有一次性加载下才是平衡的2、修正后的基本风压一般就是荷载规范规定的基本风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。
3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。
结构阻尼比取0.01~0.02,程序缺省0.02。
4、侧刚计算方法:一种简化计算法,计算速度快,但应用范围有限,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有一定误差;总刚计算方法:精度高,适用范围广,计算量大。
对于没有定义弹性楼板且没有不与楼板相连构件的工程,两种方法结果一样。
(以下转贴)“刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的削弱、不连续,均可采用这个假定。
相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。
同样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。
“弹性板6 ”的适用范围:所有的工程均可采用。
相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。
板的面外刚度将承担一部分梁柱的面外弯矩,而使梁柱配筋减少。
此时结构分析时间大大增加。
“弹性板3 ”的适用范围:需要保证楼板平面内刚度非常大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。
“如厚板转换层中的厚板,板厚达到1m以上。
而面外刚度则需要按实际考虑。
相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差异产生的传力问题。
“弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。
设计时可以进行梁的刚度放大和扭矩折减。
(弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁共同承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.此外计算工作量大.因此该模型仅适用于板柱结构;弹性楼板3:考虑楼板的面内刚度无限大,并考虑楼板的面外刚度.适用于厚板转换层;弹性膜:考虑面内刚度,面外刚度为零.采用膜剪切单元.弹性板由用户人工指定,但对于斜屋面,如果没有指定,程序会缺省为弹性膜,用户可以指定为弹性板6或者弹性膜,不允许定义为刚性板或者弹性板3)5、根据高规(JGJ 3-2010)第3.7.3条注,抗震设计时SATWE计算结果中楼层层间最大位移与层高之比的限值可不考虑偶然偏心的影响。
6、对于质量和刚度分布明显不对称的结构应选择双向地震作用;《高规》规定计算单向地震作用时应考虑偶然偏心的影响;SATWE程序允许同时考虑双向地震作用和偶然偏心,此时仅对无偏心的地震作用效应进行双向地震计算,而偏心地震作用并不考虑双向地震,另外考虑双向地震并不改变内力组合数。
7、振型个数选择原则:《抗规》GB 50011-2010中5.2.2条的条文说明规定:振型个数一般可以取振型参与质量达到总质量的90%所需要的振型数。
(并非取的越多越好)一般情况振型数至少为3个,且为3的整数倍(3N,N≤层数);当考虑扭转耦联计算时应不少于9个,对于多塔结构应大于12个。
《高规》JGJ 3-2010中5.1.13条规定:抗震设计时,B级高度的高层结构、混合结构和本规程第10章规定的复杂高层建筑结构宜考虑平扭耦联计算结构的扭转效应,振型数不应小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且振型个数应使各振型参与质量达到总质量的90%。
8、周期折减系数:《高规》JGJ 3-2010中4.3.17条规定:当非承重墙体为砌体墙(粘土砖或其他类似的有较大约束力的材料),周期折减系数:框架结构可取0.6~0.7;框架-----剪力墙结构可取0.7~0.8;框架------核心筒结构可取0.8~0.9;剪力墙结构可取0.8~1.0;如果采用柔性连接或刚度很小的轻质砌体填充墙可以适当调整。
SATWE说明书中:填充墙较多的框架结构可取0.6~0.7;填充墙较少的框架结构可取0.7~0.8;框架-----剪力墙结构可取0.8~0.9;纯剪力墙结构周期可不折减;9、按中震(或大震)设计。
此条为结构抗震性能设计的内容,详细内容可见《高规》JGJ 3-2010中3.11节。
第1性能水准结构应满足弹性设计的要求;第2性能水准结构除耗能构件的受剪承载力外都按第1性能水准结构考虑;第3、4、5性能水准结构均应按弹塑性计算分析。
10、《高规》JGJ 3-2010中4.3.2条规定:高层建筑中的大跨度、长悬臂结构,7度(0.15g)、8度抗震设计时应计入竖向地震作用;9度抗震设计时应计入竖向地震作用。
大跨度:跨度大于24M的楼盖结构、跨度大于8M的转换结构;长悬臂结构:悬挑长度大于2M的悬挑结构。
大跨度、长悬臂结构应验算自身及其支撑部位结构的竖向地震效应。
竖向地震作用系数底线值即为《高规》JGJ 3-2010中表4.3.15规定的竖向地震作用系数。
11、在SATWE中设定的传给基础的活荷载折减选项在接JCCAD时SATWE传递的内力为没有折减的标准内力,由用户在JCCAD中另行指定折减信息。
12、考虑结构使用年限的活荷载调整系数:设计使用年限为50年时取1.0;100年时取1.1。
13、梁活荷载内力放大系数:用于考虑活荷载不利布置对梁内力的影响。
一般工程建议取1.1~1.2,如果在活荷信息中已考虑了不利布置则应填1.0。
14、梁扭矩折减系数:0.4~1.0。
考虑楼板对梁抗扭的有利影响。
15、连梁刚度折减系数:一般不宜小于0.5。
考虑多、高层结构设计中允许连梁开裂,开裂后连梁刚度会有所降低,另外可以在特殊构件补充定义处单独定义单构件折减系数。
程序在计算时只在集成地震计算刚度阵时折减,竖向荷载和风荷载计算时不折减。
16、中梁刚度放大系数:1.0~2.0。
考虑楼板作为翼缘对梁刚度和承载力的影响(对于现浇和装配整体式楼盖),可以在特殊构件补充定义处对单构件进行修改。
SATWE中也可勾选按2010规范取值,此时程序根据《砼规》(GB 50010-2010)中第5.2.4条表5.2.4自动计算,此后可以在特殊构件补充定义中查看计算结果并可以单独修改。
17、托墙梁刚度放大系数:该系数是为了使托墙梁与所托剪力墙协同工作。
该系数可以缓解转换层附近的超筋情况,但设计的余量也相应减少了。
剪力墙开洞时,开洞处的梁段不作刚度放大。
18、按《抗规》(GB 50011-2010)第5.2.5条调整各楼层地震内力:即任一楼层的水平地震的剪重比不应小于《抗规》表5.2.5给出的最小地震剪力系数,竖向不规则结构的薄弱层表中数值应乘以1.15的增大系数。
弱轴、强轴方向动位移比例:当为0时为加速度段调整;当为0.5时为速度段调整;当为1.0时为位移段调整;弱轴方向为结构第一平动周期方向;强轴方向为结构第二平动周期方向;对于有经验的设计人员也未必拘泥于这三个参数。
对于多塔结构应按单塔计算或自行指定调整系数。
此项一般用于基本周期大于3.5S的长周期结构。
(疑问)19、实配钢筋超配系数:只对一级框架结构或9度区框架起作用,程序内定1.15,对于非一级框架结构或9度区框架,程序可以自动识别,不需要修改。
但严格按规范要求,用一个实配钢筋超配系数不全面,所以对这类结构的抗震设计还应专门研究。
20、框架梁端配筋考虑受压钢筋:用户选择该项参数,原来只对地震作用组合进行该项控制,10版《砼规》(GB 50010-2010)对所有组合下的框架梁支座进行相对受压区高度验算,一级抗震 x小于等于0.25h0,其他都是x小于等于0.35h0,不满足时会按此限值重新计算受拉及受压钢筋。
针对高规6.3.3条,梁端支座抗震设计时,如果受压钢筋配筋率不小于受拉钢筋的一半时,梁端最大配筋率可以放宽到2.75%(原来为2.5%),当选择该项时,同时执行这一条,否则还是按最大配筋率2.5%来控制。
计算模型比较:勾选该项后框架梁端负筋较不勾选小,对框架梁中正弯距钢筋及非框架梁配筋无影响;SATWE计算梁配筋是根据内力包络图各自配筋,所以对框架梁中正弯距钢筋无影响。
21、薄弱层地震内力放大系数:《抗规》(GB 50011-2010)第3.4.4条薄弱层地震剪力放大系数不小于1.15;《高规》JGJ 3-2010中3.5.8条规定薄弱层地震剪力放大系数为1.25,程序缺省为1.25。
22、指定的薄弱层个数及相应的各薄弱层层号:SATWE自动按刚度比判断薄弱层并进行地震内力放大,但对竖向构件不规则、或承载力不满足要求的楼层不能自动判断,需要指定,以逗号或空格隔开,多塔结构可以在“多塔结构补充定义”中分塔指定。
程序不能自动判断的情况两种:a、竖向抗侧力构件不连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由水平转换构件(梁、珩架等)向下传递;b、楼层承载力突变:抗侧力结构的层间受剪承载力小于相邻上一楼层的80%。
(计算结果总信息中可以查)23、指定的加强层个数及相应的各加强层号:由设计人员指定。
自动实现如下功能:a、加强层及相邻层柱、墙抗震等级提高一级;b、加强层及相邻层轴压比限值减小0.05;c、加强层及相邻层设置约束边缘构件。
24、全楼地震作用放大系数:1.0~1.5。
25、0.2V0分段调整:此条一般在框架-----剪力墙结构中使用。
如果不分段则分段数填1.0,如不调整则分段数填0。
如果框架柱数量由下至上分段有规律变化的可以分段调整,如变化情况复杂的应专门研究。
调整系数上限值可对程序调整时作出限制,程序缺省的0.2V0调整上限为2.0;框支柱调整上限为5.0,设计人员可自行修改。
26、顶塔楼地震作用放大起算层号及放大系数:不放填0。
仅放大顶塔楼的地震内力,不改变位移【PKPM】混凝土构件配筋及钢构件验算简图1.混凝土梁和型钢混凝土梁:Asu1、Asu2、Asu3----为梁上部左端、跨中、右端配筋面积(cm2)Asd1、Asd2、Asd3----为梁下部左端、跨中、右端配筋面积(cm2)Asv----为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2)Asv0----为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2)Ast、Ast1----为梁受扭纵筋面积和抗扭箍筋沿周边布置的单肢箍的面积,若Ast和Ast1均为0则不输出这一行(cm2)G、VT----为箍筋和剪扭配筋标志梁配筋计算说明:(1)若计算的ξ值小于ξb,软件按单筋方式计算受拉钢筋面积;若计算的ξ>ξb,程序自动按双筋方式计算配筋,即考虑压筋的作用;(2)单排筋计算时,截面有效高度h0=h-保护层厚度-12.5mm(假定梁钢筋直径为25mm);对于配筋率大于1%的截面,程序自动按双排计算,此时,截面有效高度h0=h-保护层厚度-37.5mm;(3)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。