焊接机器人的分类【大全】
- 格式:docx
- 大小:19.99 KB
- 文档页数:4
工业机器人的类别一、搬运类机器人搬运类机器人是工业机器人中最常见的一类。
它们主要用于在工业生产线上搬运、装配、堆垛等任务。
这类机器人通常具有高度灵活性和精确性,能够根据预设的程序自动完成各种搬运动作。
搬运类机器人不仅可以提高生产效率,还可以降低生产过程中的人力成本和人为错误。
二、焊接类机器人焊接类机器人是工业机器人中应用最广泛的一类。
它们主要用于进行焊接操作,能够完成各种焊接任务,如点焊、弧焊、激光焊等。
焊接类机器人具有高度的精准度和稳定性,能够在高温环境下完成焊接工作,且能够适应不同材料的焊接需求。
这类机器人的应用可以提高焊接质量和效率,减少人工焊接过程中的风险和劳动强度。
三、喷涂类机器人喷涂类机器人主要用于进行各种表面涂装工作,如汽车喷漆、家具喷涂等。
这类机器人具有高度的精准度和均匀性,能够根据预设的程序自动完成喷涂动作,同时还能够根据不同的工作需求进行喷涂模式和喷涂角度的调整。
喷涂类机器人的应用可以提高喷涂质量和效率,减少涂装过程中的浪费和环境污染。
四、装配类机器人装配类机器人主要用于完成各种零部件的装配工作,如汽车零部件的装配、电子产品的组装等。
这类机器人具有高度的灵活性和精确度,能够根据预设的程序自动完成各种装配动作,同时还能够根据不同的装配需求进行动态调整和优化。
装配类机器人的应用可以提高装配质量和效率,减少人工装配过程中的错误和疲劳。
五、检测类机器人检测类机器人主要用于进行产品质量的检测和测试工作,如外观检测、尺寸测量、缺陷检测等。
这类机器人具有高度的精确度和稳定性,能够根据预设的程序自动完成各种检测动作,同时还能够根据不同的检测要求进行参数的调整和优化。
检测类机器人的应用可以提高产品质量和检测效率,减少人工检测过程中的主观误判和漏检。
六、包装类机器人包装类机器人主要用于产品的包装和封装工作,如食品包装、药品包装等。
这类机器人具有高度的灵活性和效率,能够根据预设的程序自动完成各种包装动作,同时还能够根据不同的包装要求进行包装方式和包装材料的调整。
焊接机器人知识点总结1. 焊接机器人的概念焊接机器人是一种用于进行自动焊接工作的机器人设备,它可以按照预先设定的程序和路径对工件进行焊接操作。
通过配备不同的焊接设备和工具,可以实现不同种类和材料的焊接工作。
2. 焊接机器人的分类根据不同的工作原理和结构特点,焊接机器人可以分为多种不同类型,例如:电弧焊机器人、激光焊机器人、等离子焊机器人等。
此外,还可以根据不同的工作方式和使用环境对焊接机器人进行分类,比如手持式焊接机器人、固定式焊接机器人、移动式焊接机器人等。
3. 焊接机器人的工作原理焊接机器人的工作原理是基于数控技术和自动化控制技术,通过预先编制的焊接程序和路径进行动作的控制,以实现对工件的精准焊接。
焊接机器人主要包括机械系统、电气控制系统、焊接系统和控制软件等部分,它们共同协作完成焊接操作。
4. 焊接机器人的工作流程焊接机器人工作流程主要包括任务规划、路径规划、姿态控制、焊接操作等多个环节。
在任务规划中,首先确定焊接工件的位置和方式;在路径规划中,确定焊接路径和轨迹;在姿态控制中,确保焊接姿态的正确;在焊接操作中,进行焊接熔化和填充传统,最终完成焊接操作。
5. 焊接机器人的主要构成焊接机器人的主要构成包括机械臂、焊接设备、传感器、控制系统、动力系统等部分。
其中,机械臂是焊接机器人的核心部件,它可以根据需要实现不同的自由度和运动范围,以适应不同的焊接工件。
6. 焊接机器人的应用领域焊接机器人广泛应用于汽车制造、航空航天、电力设备、铁路运输、消费品制造等多个领域。
由于焊接机器人具有高效、精准、稳定的特点,可以提高焊接质量和生产效率,因此在工业生产中得到广泛应用。
7. 焊接机器人的优势与传统手工焊接相比,焊接机器人具有高效、精准、稳定、可靠、安全等多个优势。
它可以提高焊接质量和生产效率,减少人工劳动,降低生产成本,提高企业竞争力,受到广泛关注和认可。
8. 焊接机器人的发展趋势随着科技的进步和自动化技术的发展,焊接机器人将会朝着智能化、柔性化、集成化、网络化的方向不断发展。
工业机器人分类及应用工业工业机器人是一种具有自主感知、决策和执行能力的机器人系统,在工业自动化领域具有广泛的应用。
根据其功能和应用领域的不同,工业机器人可以分为以下几类:1. 拾取和搬运机器人:拾取和搬运机器人是工业生产线上最常见的机器人之一。
它们通常用于将物品从一个位置搬运到另一个位置,从而减少人工操作并提高生产效率。
这类机器人通常以臂式机器人形式存在,具有高精度和高负载能力。
2. 组装机器人:组装机器人用于在生产过程中将多个部件组装成最终产品。
它们可以执行多种操作,如螺栓拧紧、焊接和粘合等。
组装机器人通常具有高度灵活性和精准度,能够适应各种不同的产品要求。
3. 焊接机器人:焊接机器人是自动执行焊接操作的机器人。
它们通常用于汽车制造、航空航天和金属加工等行业。
焊接机器人具有高度灵活性和精准度,能够实现复杂的焊接操作,提高焊接质量和生产效率。
4. 喷涂和涂装机器人:喷涂和涂装机器人用于在产品表面进行喷涂和涂装操作。
它们通常用于汽车制造、电子产品制造和家具制造等行业。
这类机器人能够在短时间内完成高质量的喷涂和涂装工作,减少不必要的废料和环境污染。
5. 研磨和抛光机器人:研磨和抛光机器人用于对产品表面进行研磨和抛光操作,以提高产品的质量和外观。
它们通常用于金属加工和家具制造等行业。
这类机器人具有高度精确的控制能力,能够在不同形状的产品上进行研磨和抛光。
6. 检测和质量控制机器人:检测和质量控制机器人用于检测产品的质量和执行质量控制操作。
它们通常使用传感器和视觉系统来检测产品的尺寸、外观和功能等特征。
这些机器人能够快速准确地检测产品,并及时采取控制措施,以提高产品的质量和生产效率。
除了上述常见的工业机器人外,还有一些特殊用途的工业机器人,比如水下机器人、太空机器人和医疗机器人等,它们具有特定的功能和应用领域。
工业机器人的应用几乎涵盖了各个制造行业,包括汽车制造、电子产品制造、家具制造、食品加工和制药等。
焊接机器人研究报告随着现代工业的发展,越来越多的企业都开始使用机器人来完成一些重复且精确的任务。
传统的机械手和机器人都被广泛应用在电子、汽车、航空航天行业等。
目前,机器人已经成为自动生产系统的主要组成部分,快速、精确、稳定、可靠的焊接机器人能帮助企业提高效率,改善环境,节约能源,并获得更多效益。
二.研究内容本报告针对现有焊接机器人的性能进行评估,以了解其发展趋势、性能、维修等各方面的情况,以及如何有效地改进机器人的性能。
(1)现有焊接机器人的分类目前,焊接机器人可以分为有源焊接机器人、被动焊接机器人和自动焊接机器人三种类型。
有源焊接机器人(AWR)采用电流-激励控制,能够实现高精度的焊接任务;被动焊接机器人(PWRY)通过跟踪焊接材料的变形或温度进行控制,用于低精度的焊接任务;自动焊接机器人(ARW)既采用了电流-激励控制也采用了被动的跟踪控制,用于高精度的焊接任务。
(2)焊接机器人的发展趋势焊接机器人的发展将会是多样化的,可以从以下几个方面来看。
首先,机器人将会得到更多智能化系统的支持,例如改进智能控制、智能传感器技术和模式识别等;其次,焊接机器人的多功能性也将得到增强,使其能够解决更复杂的焊接任务;最后,机器人的无人工作也将得到提升,从而降低生产成本和提高生产效率。
(3)性能评估本报告对现有焊接机器人在准确度、速度、稳定性、可维护性和能耗等方面进行了性能评估,所有数据都被评级为高、中、低三个等级。
(4)研究结论利用现有技术,焊接机器人可以进一步改进性能,适应复杂的焊接任务。
而且,人工智能技术的普及也有助于提高机器人的无人工作和智能化水平,有助于提升生产效率和降低生产成本。
三.研究建议(1)提高机器人的准确度和可维护性企业应该加大对焊接机器人准确度、稳定性、可维护性等性能的投入,建立一个有效的维修体系,在必要的时候进行维护和检修;(2)应用最新技术焊接机器人也可以利用最新技术,比如人工智能技术,有助于提升机器人性能,使其能够解决复杂的焊接任务。
焊接机器人工艺分类
焊接机器人根据其使用的焊接工艺,可以分为以下几类:
1.点焊机器人:主要用于汽车制造中的焊接作业,能够实现高精度、高效率的点焊焊接。
2.弧焊机器人:通过电弧熔化焊丝和工件来进行焊接,主要用于管材、筒体等结构的焊接。
3.激光焊接机器人:利用激光束的高能量密度和高精度,可以实现高效率、高精度的焊接,主要用于薄板、精密零件等的焊接。
4.搅拌摩擦焊机器人:通过搅拌摩擦产生热量,使工件熔化并连接在一起,主要用于铝合金、镁合金等轻金属的焊接。
5.等离子弧焊机器人:利用等离子弧的高温高压和高能量密度,可以实现高效率、高质量的焊接,主要用于厚板、大结构件的焊接。
以上是焊接机器人的主要工艺分类,不同的工艺适用于不同的材料和场合,需要根据实际需求进行选择。
焊接机器人的类型2.1 激光焊接机器人而激光焊接,则是一种将激光技术与机械技术结合在了一块的高科技,可以进行表面加工,打孔,焊接,修理。
和传统的焊接技术相比,雷射焊接技术可以让两种金属之间发生原子化,简单的说,焊接后的金属就相当于一块钢板,从而增加了车身的坚硬程度,同时还可以大幅度提升车身的焊接精度。
当然,在实践中,它的应用还远远不止于此。
通常来说,车辆在道路上行驶时,从地面上的减震将转化为一天几千次的弯道测试,如果与车身的精确配合密切;力量不够、站立时经常出现异常声响;噪音很大,严重时会使车辆的主要部件如变速器、前桥等受到严重损坏,甚至损坏车身。
由于被焊的对象尺寸变化不大,几乎不存在接头间隙,且具有很高的深度/宽度比例,因此其焊缝质量优于常规方法。
通过电脑进行加工,可以实现各种焊接跟踪,缺陷检测,焊接质量检测,并通过反馈控制实现焊接过程的自动焊接。
因此,激光焊接是一项非常高端的技术,随着时代的发展,对于质量的需求越来越大,零件的制作也越来越精细,而激光焊接机器人的出现,无疑是一个很好的选择2.2氩弧焊接机器人由于电弧焊接技术早已在很多行业得到了广泛的运用,所以在一般的机器上采用了弧焊机器人技术;在许多行业中,如金属框的制造已得到广泛的使用。
因为弧焊机器人是一种集全部电弧焊接和辅助装置为一体的全柔性作业体系,它不再是单一的以一定速度和姿态来承载枪身运动的单一机械,因此对它的安全具有特殊的需求。
电弧焊接过程中,枪械要随着焊接过程中的金属零件的移动,使焊接过程更加顺畅。
所以,速度的可靠度和轨迹精确度是两大技术指标。
由于射击姿态会对焊接质量产生一定的影响,因此通常需要在保持射击姿态的情况下,使射击姿态的调整范围尽可能大。
每个部件的主要特征需求是: a)额定探测状态(电流;压力,转速等) b)移动功能 c)斜面厌充功能;d)焊接专用功能试验;e)焊缝传感器的界面特性(起始焊缝测量,焊接轨迹跟踪)。
2.3点焊工艺自动化机器人和弧焊机器人长久以来,人们对不锈钢产品的需求已经达到了一个很高的水平,从而推动了其迅猛的发展。
弧焊机器人与点焊机器人1、弧焊机器人(arc welding robot)(1)弧焊机器人的应用范围弧焊机器人的应用范围很广,除汽车行业之外,在通用机械、金属结构等许多行业中都有应用。
弧焊机器人应是包括各种焊接附属装置在内的焊接系统,而不只是一台以规划的速度和姿态携带焊枪移动的单机。
(2)弧焊机器人的性能要求在弧焊作业中,要求焊枪跟踪工件的焊道运动,并不断填充金属形成焊缝。
因此,运动过程中速度的稳定性和轨迹精度是两项重要的指标。
一般情况下,焊接速度约取5一50mm/s,轨迹精度约为±(0.2一0.5)mm。
由于焊枪的姿态对焊缝质量也有一定的影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大。
(3)弧焊机器人的分类从机构形式看,既有直角坐标型的弧焊机器人,也有关节型的弧焊机器人。
对于小型、简单的焊接作业,机器人有四五轴即可以胜任了;对于复杂工件的焊接,采用六轴机器人对调整焊枪的姿态比较方便;对于特大型工件焊接作业,为加大工作空间,有时把关节型机器人悬挂起来,或者安装在移动平台上使用。
还可配变位机以适应复杂工件的焊接。
为了便于安装以及扩大机器人的焊接范围,2010年日本MOTOMAN推出了一款7关节机器人,该机器人在L和U关节之间增加了一个关节,使得腰部的活动更加灵活。
(4)弧焊机器人系统组成一个典型的弧焊机器人系统主要包括三大部分:机器人、机器人控制器和焊接系统。
2、点焊机器人( spot welding robot)(1)点焊机器人的应用范围汽车工业是点焊机器人一个典型的应用领域。
一般装配每辆汽车车体大约需要完成3000-4000个焊点,而其中的60%是由机器人完成的。
在生产企业使用机器人的效益:a.改善多品种混流生产的柔性;b.提高焊接质量及提高生产率;c.把工人从恶劣的作业环境中解放出来。
目前,机器人已经成为汽车生产行业的支柱装备。
(2)点焊机器人的性能要求a.安装面积小,工作空间大;b.节距的多点定位(例如每0.3一0.4S移动30一50mm节距后定位);c.定位精度高(+0.25mm),以确保焊接质量;d.持重大(60一150kgf),以便携带内装变压器的焊钳;f.示教简单,节省工时;g.安全可靠性好。
焊接机器人的分类
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.
焊接机器人是一个机电一体化的设备,可以按用途、结受控运动方式、驱动方法等观点对其进行分类。
按用途来分,焊接机器人可分为以下两类:
1)弧焊机器人
由于弧焊工艺早己在诸多行业中得到普及,弧焊机器人在通用机械、金属结构等许多行业中得到广泛运用。
弧焊机器人是包括各种电弧焊附属装置在内的柔性焊接系统,而不只是一台以规划的速度和姿态携带焊枪移动的单机因而对其性能有着特殊的要求。
在弧焊作业中,焊枪应跟踪工件的焊道运动.并不断填充金属形成焊缝。
因此运动过程中速度的稳定性和轨迹精度是两项重要指标。
一般情况下,焊接速度约取5~5“/轨迹精度约为±(0.2一0巧)mm。
由于焊枪的姿态对焊缝质量也有一定影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大。
其它一些基本性能要求如下所示:
a)设定焊接条件(电流、电压、速度等):
b)摆动功能
c)坡口煩充功能;
d)焊接异常功能检测;
e)焊接传感器(起始焊点检测、焊道跟踪)的接口功能。
2)点焊机器人
汽车工业是点焊机器人系统一个典型的应用领域,在装配每台汽车车体时,大约60%的焊点是由机器人完成。
最初点焊机器人只用于增强焊作业(往己拼接好的工件上增加焊点),后来为了保证拼接精度,又让机器
人完成定位焊作业。
这样,点焊机器人逐渐被要求有更全的作业性能,具体来说有:
a)安装面积小,工作空间大:
b)快速完成小节距的多点定位(例如每0·3~0.4s移动30一50灬节距后定位);
c)定位精度高(士0·25灬)以确保焊接质量
d)持重大(50、1佣),以便携带内装变压器的焊钳;
e)内存容量达,示教简单,节省工时;
f)点焊速度与生产线速度相匹配,同时安全可靠性好。
按结构坐标系特点来分,焊接机器人又可分为以下几类:
1)直角坐标型
这类机器太的结构和控制方案与机床类似,其到达空间位置的三个运动(z)是由直线运动构成,运动方向互相垂直.其末端操作器的姿态调节由附加的旋转机构实现,如图2-1所示。
这种形式的机器人优点是运动学模型简单,各轴线位移分辨率在操作容积内任一点上均为恒定,控制精度容易提高《缺点是机构较庞大,工作空间小,操作灵活性较差。
简易和专用焊接机器人常采用这种形式。
2)圆柱坐标型
这类机器人在基座水斗转台上装有立柱,水平臂可沿立柱作上下运动并可在水平方向伸缩。
这种结构方案的优点是末端操作器可获得较高速度,缺点是末端操作器外伸离开立柱轴心愈远,其线位移分辨精度愈低。
3)球坐标型
与圆柱坐标结构相比较,这种结构形式更为灵活。
但采用同一分辨率的码盘检测角位移时,伸缩关节的线位移分辨率恒定,但转动关节反映在末端操作器上的线位移分辨率则是个变量,增加了控制系统的复杂性.
4)全关节型
全关节型,机器人的结构类似人的腰部和手部,其位置和姿态全部由旋转运动实现,如图2、4所示,其优点是机构紧凑,灵活性好,占地面积小,工作空间大,可获得较高的末端操作器线速度;其缺点是运动学模
型复杂,高精度控制难度大,空间线位移分辨率取决于机器人手臂的位姿。
目前焊接机器人大多采用全关节型的结构形式。
根据受控运动方式,焊接机器人可分为以下几类:
1)D点位控制(PTP)型
机器人受控运动方式为自一个点位目标移向另一个点位目标,只在目标点上完成操作。
要求机器人在目标点上有足够的定位精度,相邻目标点间的运动方式之一是各关节驱动机以最快的速度趋近终点,各关节视其转角大小不同而到达终点有先有后:另一种运动方式是各关节同时趋近,由于各关节运动时间相同,所以角位移大的运动速度较高·点位控制型机器人主要用于点焊作业。
2)连续轨迹控制(CP)型
机器人各关节同时作受控运动,使机器人终端按预期的轨迹和速度运动,为此各关节控制系统需要实时获取驱动机的角位移和角速度信号。
连续控制主要用于弧焊机器人。
按驱动方式分,焊接机器人各分为以下几类:
1)气压驱动
使用压力通常在0.4一0.6E最高可达lMPa.气压驱动的主要优点是气源方便(一般工厂都由压缩空气站供应压缩空气),驱动系统具有缓冲作用,结构简单,成本低,易于保养:主要缺点是功率质量比小,装置体积人,定位精度不高。
气压驱动机器人适用于易燃、易爆和灰尘大的场合。
2)液压驱动
液压驱动系统的功率质量比大,驱动平稳,且系统的固有效率高、快速性好,同时液压驱动调速比较简单,能在很大范围内实现无级调速其主要缺点是易漏油,这不仅影响工作稳定性与定位精度,而且污染环境,液压系统需配备压力源及复杂的管路系统,因而成本也较高。
液压驱动多用于要求输出力较大、运动速度
较低的场合。
3)电气驱动
电气驱动是利用各种电动机产生的力或转距,直接或经过减速机构去驱动负载,以获得要求的机器人运动。
由于具有易于控制,运动精度高,使用方便,成本低廉,驱动效率高,不污染环境的诸多优点,电气驱动是最普遍、应用最多的驱动方式。
电气驱动又可细分为步进电机驱动、直流电机驱动、无刷直流电机驱动和交流伺服电机驱动等多种方式。
后者有着最大的转矩质量比,由于没有电刷,其可靠性极高,儿乎不需任何维护。
年代后生产的机器人大多采用这种驱动方式。
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.。