推荐-燃气工业炉空气动力计算
- 格式:docx
- 大小:13.76 KB
- 文档页数:4
一、鍋爐單位耗用天然氣計算(以公用燃氣鍋爐為例):1、鍋爐生產的飽和蒸汽參數:壓力:0.6Mpa(g)飽和溫度165℃水顯熱167kcal/kg蒸發潛熱494kcal/kg蒸發總焓值=167+494=661kcal/kg鍋爐進水溫度約80℃(80℃的水比焓80kcal/kg)鍋爐熱效率92%1kg飽和蒸汽所需熱量=(661-80)/92%=632kcal/kg 2、天然氣用量計算:天然氣低位發熱量約8200kcal/Nm3天然氣單位耗用量=632*1000/8200=77Nm3/t3、折算當量標煤:生產1t蒸汽耗用天然氣折算當量標煤=天然氣單位耗用量*當量折標煤係數=77Nm3/t *1.17kgce/Nm3=90kgce/t注:天然氣當量折標煤係數=1.17kgce/Nm3二、空壓機單位電耗計算(以南廠空壓機為例):1、空壓機參數:排氣壓力:0.6Mpa(g)=600Kpa(g)馬達額定輸入功率=√3*額定電壓*額定電流*功率因數=1.732*3.3kv*122A*0.9=628kw進氣量=120m3/min(工況:35℃,99.3Kpa)2、標況氣量計算:a.進氣分壓計算:進氣壓力:99.3Kpa35℃饱和空气水蒸汽分压=3.16kpa(查表)若相對濕度為75%,則蒸汽分壓=3.16Kpa*75%=2.37Kpa空氣分壓=進氣壓力-蒸汽分壓=99.3Kpa-2.37Kpa=96.93Kpab.標況氣量計算:V0=V1*P1/P0*T0/T1101.756434=101.8Nm3/min注:V0:標況氣量(Nm3/min,at 0℃,101.325Kpa)V1:工況進氣量(m3/min,at 35℃,96.93Kpa)P1:工況進氣壓力(Kpa)—空氣分壓P0:標況壓力(Kpa)T0:標況溫度(K)T1:工況溫度(K)3、壓縮空氣單耗計算:標況氣量:101.8Nm3/min*60min=6108Nm3/h空壓機單位耗電量=628kwh/6108Nm3/h=0.1kwh/Nm3 4、折算當量標煤:生產1Nm3壓縮空氣折當量標煤=空壓機單位耗電*當量折標煤係數=0.1229kgce/kwh*0.1kwh/Nm3=0.01229kgce/Nm3注:電力當量折標煤係數=0.1229kgce/kwh。
锅炉设备空气动力计算引言锅炉是工业生产中常用的热能转换设备,通过燃烧燃料产生高温高压的蒸汽或热水,用于供热或发电。
在锅炉运行过程中,空气动力计算是非常重要的一环,它可以帮助我们确定锅炉所需的空气量和风机的运行参数,保证锅炉的正常运行和热能的高效利用。
一、空气需求量计算1. 燃料燃烧所需的理论空气量燃料的燃烧需要一定的氧气参与,理论上每种燃料在完全燃烧时所需的空气量是固定的。
常见燃料的理论空气量如下:- 煤:1kg煤需要7-8kg空气;- 油:1kg燃油需要12-14kg空气;- 天然气:1m³天然气需要9-10m³空气。
2. 燃料燃烧过程中的过剩空气量过剩空气量是指燃烧过程中实际供给的空气量与理论所需空气量之间的差值。
过剩空气量的大小直接影响锅炉的热效率和燃烧产物的排放。
一般情况下,煤炭锅炉的过剩空气量为20-30%,油燃锅炉为10-20%,天然气锅炉为5-10%。
3. 锅炉的额定蒸发量和额定热负荷额定蒸发量是指锅炉在规定的工况下所能产生的蒸汽或热水的质量。
额定热负荷是指锅炉在额定工况下所需的热能输入量。
根据锅炉的额定蒸发量和额定热负荷,可以计算出锅炉的额定空气量。
4. 高效锅炉的空气需求量对于高效锅炉,由于其燃烧过程更为充分,空气需求量相对较低。
一般来说,高效锅炉的过剩空气量可以控制在10%以下。
二、风机参数计算1. 风机的静压风机的静压是指风机在运行时所产生的压力差,用于克服锅炉系统的阻力和风道的阻力。
静压的大小与锅炉的设计参数和系统的阻力特性有关。
2. 风机的风量风机的风量是指风机在单位时间内所能输送的空气体积。
风量的大小与锅炉的额定空气量和过剩空气量有关。
3. 风机的功率风机的功率是指风机在运行时所消耗的电能或热能。
风机的功率与风机的静压和风量有关。
4. 风机的效率风机的效率是指风机在工作过程中能量转换的有效性。
风机的效率与风机的设计参数、运行条件和负载特性有关。
三、锅炉空气动力计算实例以某燃煤锅炉为例,该锅炉的额定蒸发量为10吨/小时,额定热负荷为7兆瓦。
h+(h=mc'w—用关内的饿平均流速和烟温。
h—p194.fig8mc''h,'h—进出口阻力系数。
k V ∂)lkτ∂∂℃。
/kg 。
∂—烟道中的漏风系数。
砖烟道 每∂=0.05 钢烟道 每 ∂=0.01 ∂=0.05 ∂=0.1—排烟(尾部受热面后的过量空气系数及温度℃)冷空气温度。
mc h ,w ﹤mc h 不计。
12~25 m/s 求截面不变和做mc h 场的一段,计算出烟道的局部阻力。
mc h →mc l h ⨯h ﹤0.1,在计算不多于h =mc h +jb h (出口)mc h =i 0.02~0.03jb h —h十,烟道的全压降。
seH ={1h ∑(1+μ2h ∑}×1.293yse H — 烟道修正后的总水力阻力。
1h ∑—炉膛出口→除尘器的总阻力。
2h ∑—除尘器以后的阻力。
—飞灰重量浓度㎏y H =l h +Sl H -ZS H ''l h —平衡通风时炉膛出口处的真空度(燃料、炉型、燃烧方式)h ﹦mc h +部阻力。
l ∂+ky ∂(273ky ∂—空气预热器的漏风系数,一般取0.05lk τ—冷空气温度,从锅炉房内吸取冷空气时mc h 的15w ﹤10m/s mc h mc h ﹦mc h ll ∂+ky ∂(273从锅炉房内收入冷空气时,取ky ∂空气预热器中空气漏入烟道中的漏风系数,一般取风道的阻力主要取决于局部阻力2.风道中w l ∂(273热空气温度,在热力计算中已定了。
h ﹦hh ∑se H ﹦kh b ∑101325——海拨高度高度超过h ∑﹥3000Pa 2h ,b —当地平均大气压力。
h ∑≤3000Pa 自生风力的计算:(ρ-ρ)H ﹦∑H =k Se H + k ZS H。
燃气锅炉耗气量计算公式燃气锅炉耗气量的计算可不是一件简单的事儿,它涉及到好多因素呢。
咱先来说说燃气锅炉耗气量的基本计算公式。
一般来讲,燃气锅炉每小时的耗气量可以用这个公式来算:耗气量 = 锅炉功率×时间÷燃料热值÷锅炉热效率。
比如说,一台 1 吨的燃气锅炉,它的功率大概是 0.7MW,如果热效率是 90%,燃料热值按 8600 千卡/立方米算,运行 1 小时的话,那它的耗气量大概就是700000×3600÷8600÷0.9 ≈ 318.6 立方米。
但实际情况可比这复杂多啦!就拿我之前遇到的一个事儿来说吧。
有一次,我去一家工厂帮忙检查他们的燃气锅炉运行情况。
这工厂的老板一直抱怨说燃气费用太高,觉得是不是锅炉出了问题。
我就开始仔细研究,先看了他们的锅炉型号和参数,发现没问题。
然后又观察了一段时间的运行数据,发现他们的操作人员在使用锅炉的时候,经常是一会儿开一会儿关,而且也没有根据实际的生产需求来合理调整锅炉的功率。
这就导致了锅炉在启动和关停的过程中,消耗了大量的燃气,而且整体的热效率也降低了不少。
所以说啊,影响燃气锅炉耗气量的因素可不只是锅炉本身的参数,还有使用的方法和习惯。
像环境温度也会有影响,如果是在特别寒冷的冬天,为了保持一定的室内温度,锅炉就得消耗更多的燃气来提供足够的热量。
另外,房屋的保温性能也很重要。
要是房子保温不好,热量散失得快,锅炉就得不停地工作来补充热量,这耗气量自然就上去了。
还有,燃气的质量也会有影响。
如果燃气的热值不稳定,那计算出来的耗气量也会有偏差。
总之,要准确计算燃气锅炉的耗气量,得综合考虑好多因素。
不能光看公式,还得结合实际情况来分析。
希望大家在使用燃气锅炉的时候,都能多留意这些细节,既能节能减排,又能节省费用,多好呀!。
燃气工业炉的热工过程及热力计算燃气工业炉通常是一种用于生产工业产品或炼化原料的设备。
不同于电力工业中使用的燃煤炉,燃气炉使用的是天然气或其他燃气类型。
在生产和运营过程中,燃气工业炉需要进行热力计算以确保工作效率、生产质量和能源使用情况得到最大程度的优化。
燃气工业炉的热工过程燃气工业炉的热工过程可以分为两个阶段:进料加热和反应反弹。
在进料加热过程中,先将原材料投入燃气工业炉中,燃气通过加热器进入炉膛,使材料升温到预定的温度。
在反应反弹阶段,材料开始反应并放出能量,同时产生一些废气或其它废物。
废气通过烟道排放到大气中。
燃气工业炉的热工过程可以用以下公式表示:Q = m * c * (T2 - T1)其中,Q代表净热量(kJ),m代表物体质量(kg),c代表物质的比热容(kJ/kg K),T1和T2分别代表原材料的初始温度和加热后的最终温度。
燃气工业炉的热力计算热力计算通常是用来确定燃气工业炉中加热过程的能量损失和能源利用效率。
一般来说,热力计算包括以下关键参数:1.初始条件:这包括原材料和天然气的质量和温度等信息。
2.进料加热:在燃气工业炉中加热原料是通过将天然气通过预热器加热并引入炉腔中实现的。
3.反应过程:在加热过程中,原材料达到一定的温度,就会发生与燃气的反应。
这个过程需要计算能量释放及任何质量损失。
4.烟气处理:废气或其它废物通过烟道排放到大气中,需要计算排放废气的热质量和允许排放的最大限度。
以上参数都可以通过现场的测试、测量和分析计算来得出。
最终,热力计算的结果能够用于优化燃气工业炉的生产过程,提高能源使用效率和生产质量。
结论燃气工业炉的热工过程及热力计算是燃气工业生产中非常重要的环节。
通过合理的热力计算,工厂能够确定合适的燃气使用量、加热温度及排放标准。
这将非常有助于提升燃气工业炉的生产效率、降低能源成本、保证最终产品的质量和保护环境。
(1500字)。
锅炉设备空气动力计算锅炉是一种常见的热能转换设备,广泛应用于工业生产和民用生活中。
在锅炉的运行过程中,空气动力计算是一个重要的环节。
本文将对锅炉设备空气动力计算进行详细介绍。
我们需要了解什么是空气动力计算。
空气动力学是研究空气在物体表面和空气中的运动规律的科学,而空气动力计算则是通过计算空气对物体的作用力和运动状态来确定物体的空气动力学性能。
在锅炉设备中,空气动力计算主要涉及两个方面:空气流动和燃烧过程。
首先,我们来看空气流动方面的计算。
空气流动计算主要包括空气流速、压力和流量的计算。
在锅炉中,空气是通过风机引入炉膛的,因此需要计算风机的风量和风压。
风机的风量是指单位时间内通过风机的空气体积,常用单位是立方米/秒。
风机的风压是指风机产生的静压力,常用单位是帕斯卡(Pa)。
对于锅炉设备来说,空气流量的计算非常重要。
空气流量的大小直接影响到锅炉的燃烧效率和热效率。
一般来说,锅炉的空气流量应根据燃料类型、燃烧室结构和燃烧方式来确定。
空气流量的计算可以根据锅炉的设计参数和实际运行情况进行估算。
我们来看燃烧过程方面的计算。
燃烧是锅炉中最重要的过程之一,也是锅炉产生热能的基础。
燃烧过程中空气的供给和混合对燃烧效果和热能利用率有着重要影响。
空气动力计算可以帮助我们确定合理的空气供给和混合方式。
在燃烧过程中,空气需与燃料充分混合才能发生完全燃烧。
完全燃烧的条件是燃料和空气的化学计量比例达到最佳状态。
通过空气动力计算,可以确定合适的空气燃料比例,以确保燃烧效果的最优化。
空气动力计算还可以帮助我们确定炉膛中的气流分布和燃烧温度分布。
合理的气流和温度分布对于锅炉的稳定运行和热能利用率的提高至关重要。
通过空气动力计算,可以优化锅炉燃烧系统的设计和运行参数,以达到更好的燃烧效果和热能利用效率。
锅炉设备空气动力计算是锅炉运行过程中的重要环节。
通过计算空气流动和燃烧过程,可以确定合理的空气供给和混合方式,优化燃烧效果和热能利用率。
燃气锅炉用气量计算摘要:一、燃气锅炉用气量计算的重要性二、燃气锅炉用气量的计算方法1.热能需求计算2.燃气锅炉热效率计算3.燃气锅炉用气量计算公式三、实例分析四、注意事项五、结论正文:燃气锅炉作为工业生产和民用的热能设备,其用气量的计算是一项关键任务。
准确的用气量计算有助于确保燃气锅炉的运行效率和安全性。
本文将详细介绍燃气锅炉用气量的计算方法,并通过实例进行分析,以帮助读者更好地理解和掌握这一技巧。
一、燃气锅炉用气量计算的重要性燃气锅炉用气量计算的重要性体现在以下几个方面:1.确保燃气锅炉运行的稳定性。
准确的用气量计算可以保证锅炉在运行过程中燃料供应的平衡,避免因供气不足或过量导致的设备损坏或能源浪费。
2.优化锅炉运行效率。
合理的用气量计算有助于提高锅炉的热效率,降低能源消耗,减少运行成本。
3.保障安全生产。
准确的用气量计算有助于评估锅炉设备的安全生产性能,预防潜在的安全隐患。
二、燃气锅炉用气量的计算方法1.热能需求计算首先,需要计算锅炉房的热能需求。
根据锅炉房的实际需求,确定燃气锅炉的容量。
热能需求计算公式为:热能需求(kW)= 锅炉房热负荷(kW)/ 锅炉热效率(%)2.燃气锅炉热效率计算燃气锅炉的热效率是指锅炉产生的蒸汽热量与燃料热量之间的比例。
常见的燃气锅炉热效率有80%、85%、90%等。
可以根据锅炉的类型、燃烧器技术等因素来确定热效率。
3.燃气锅炉用气量计算公式燃气锅炉用气量(Nm/h)= 热能需求(kW)/(燃气低位发热量(kJ/Nm)× 热效率(%]))燃气低位发热量是指单位体积燃气完全燃烧所释放的热量。
常见的燃气低位发热量有20-25kJ/Nm。
三、实例分析以一台容量为1000kg/h的燃气锅炉为例,热负荷为700kW,热效率为85%。
1.热能需求计算:热能需求(kW)= 700kW / 85% = 824kW2.燃气锅炉用气量计算:燃气低位发热量取25kJ/Nm,则燃气锅炉用气量(Nm/h)= 824kW / (25kJ/Nm × 85%) ≈ 461 Nm/h四、注意事项1.在进行燃气锅炉用气量计算时,应确保所使用的数据准确可靠。
燃烧理论与技术》课程教学大纲课程编号:08211011课程类别:专业基础课程授课对象:能源与动力工程、热能工程、工程热物理、建筑环境等专业开课学期:第6学期学分:3学分主讲教师:王俊琪等指定教材:同济大学、重庆建筑大学等编,《燃气燃烧与应用(第三版)》,中国建筑工业出版社,2005年教学目的:通过对该课程的学习,使学生掌握有关燃气燃烧的基本知识,学会相应的燃气燃烧的计算方法,能够利用化学反应动力学原理解释相关的燃烧现象及燃烧的速度,理解不同气流的混合原理和燃气燃烧火焰的传播机理及传播速度的测定方法,深刻认识燃气各种燃烧的方法,并能利用流体力学、化学反应动力学原理分析各种燃烧方法的机理。
在此基础上,进一步掌握各种不同种类的燃烧器原理、构造及其设计原理与方法,深入理解有关民用燃气用具、燃气工业炉窑的类型、结构,并能进行有关设计计算和热力计算。
第一章燃气的燃烧计算课时:1周,共3课时教学内容第一节燃气的热值一、燃烧及燃烧反应计量方程式燃烧的定义与条件;不同燃烧反应的计量方程式。
二、燃气热值的确定燃气低热值和高热值的定义及其计算方法;混合气体热值的计算。
第二节燃烧所需空气量一、理论空气需要量理论空气量的概念;理论空气量的精确计算方法和近似计算方法。
二、实际空气需要量实际空气量和过剩空气系数的概念;常用设备的过剩空气系数。
第三节完全燃烧产物的计算一、烟气量烟气的主要成分;按烟气组分计算的理论及实际烟气量;根据燃气的热值近似计算不同燃气的烟气量。
二、烟气的密度烟气密度的计算。
第四节运行时烟气中的CO含量和过剩空气系数一、烟气中CO含量的确定烟气中CO含量确定的方法及公式;燃气是否完全燃烧的判别式;工业中常用的RO2的计算方法。
二、过剩空气系数的确定完全燃烧和不完全燃烧时过剩空气系数的确定方法。
第五节燃气燃烧温度及焓温图一、燃烧温度的确定热量计温度和理论燃烧温度的概念及计算公式;影响理论燃烧温度的具体因素分析。
燃气工业炉的气动计算一、燃气工业炉内气体流动特性(一)燃气工业炉的空气动力学和空气动力学计算为了使燃气工业炉能正常地工作,需要不断供给燃烧所用的燃气和空气,同时,燃烧产生的烟气应连续排出炉子或熔炉的腔室。
所谓燃气工业炉的通风过程,正是指保证工业炉正常运行的连续供风和排烟的过程。
气体工业炉空气动力学是运用流体力学的基本原理研究炉内气体流动和平衡规律,以解决工业炉通风过程中的实际问题。
其目的为正确组织工业炉内的气体流动,保证炉料加热的质量,最终使工业炉生产达到良好的技术指标。
同时,按照流体力学的基本原理。
进行气体工业炉的空气动力学计算,求得送风、排烟系统内各区段的阻力、浮力,确定通风系统的压力分布,并求得总压降,为烟囱设计或送风机、引风机的选择,为工业炉生产操作、控制及安全运行等提供可靠依据。
(二)燃气工业炉内气体流动特性及实用流体方程图3—9—15这是工业炉自然通风时炉子或熔炉的腔室和烟道系统的压力分布图。
横坐标对应上图示意的通风系统各处;纵坐标为各处的相对压力(Pa)。
图中,1为空气、燃气进口;2为燃烧室或火道,燃气和空气在此混合、燃烧;3为燃气工业炉炉子或熔炉的腔室,2—3由于浮力作用,系统压力增加至正压,满足了炉子或熔炉的腔室为正压的要求;4—5—6为烟道,烟气流动过程中,4—5克服阻力,消耗能量,系统压力降低,5—6由于浮力作用,系统压力又有所增加;6—7为热交换器,烟气流经时,阻力消耗大,系统压力下降;7—8—9也是烟道,7—8烟气流经烟道闸门,克服局部阻力,消耗较大能量;8—9烟气消耗能量,克服烟道阻力;9—10为烟囱,因为高大烟囱的浮力远大于阻力,使系统压力增大,到烟囱出口接近零压。
在燃气工业炉内,被加热物料一般都放在炉底,因此,控制炉子或熔炉的腔室压力的主要任务是确保炉子或熔炉的腔室底部的相对压力为零或略为正(通常10~20Pa)。
这时炉门缝隙稍有火苗冒出,而没有冷空气吸入,以保持炉内气氛,并使炉内不会有太多的过剩空气,不至降低炉温和恶化传热过程。
工业炉耗气量如何计算公式工业炉是工业生产中常见的一种设备,用于加热、熔化、焙烧、干燥等工艺。
燃气是工业炉的常用燃料之一,因此工业炉的耗气量是一个重要的参数。
了解工业炉的耗气量可以帮助企业合理安排生产计划、控制成本,提高生产效率。
工业炉耗气量的计算公式是根据炉的热效率、燃气的热值、炉的热负荷等参数来确定的。
下面将详细介绍工业炉耗气量的计算公式及相关参数。
1. 工业炉热效率。
工业炉的热效率是指炉子利用燃气产生热能的效率,通常用百分比表示。
热效率的计算公式为:热效率 = (炉子产生的热量 / 燃气的热值) × 100%。
其中,炉子产生的热量可以通过测量炉子的燃烧产生的热量来确定,燃气的热值是指每立方米或每千克燃气所含的热量。
2. 燃气的热值。
燃气的热值是指单位体积或单位质量的燃气所含的热量,通常以千焦或千卡为单位。
燃气的热值是由燃气的成分和燃烧产生的热量决定的。
在实际应用中,可以通过燃气供应商提供的数据或实验室测试来确定燃气的热值。
3. 炉的热负荷。
炉的热负荷是指炉子在工作状态下需要消耗的热量,通常以千焦或千卡为单位。
炉的热负荷可以通过测量炉子的工作状态下的热量来确定,也可以通过炉子的设计参数和工艺参数来计算。
根据以上参数,工业炉的耗气量计算公式为:耗气量 = 炉的热负荷 / (燃气的热值×热效率)。
通过这个公式,我们可以计算出工业炉在特定工作状态下的耗气量。
这个公式可以帮助企业合理安排燃气的使用,控制成本,提高生产效率。
除了以上的计算公式,还需要注意以下几点:1. 炉的热效率是影响耗气量的关键因素之一,提高炉的热效率可以降低耗气量,节约能源。
2. 燃气的热值可能会随着供应商或燃气的成分发生变化,因此需要定期检查和更新燃气的热值数据。
3. 炉的热负荷是由工艺参数和生产计划决定的,不同的工艺和生产计划会导致不同的热负荷,需要根据实际情况进行调整。
4. 在实际应用中,可能会有其他因素影响耗气量,如炉子的维护状况、燃气的供应压力等,需要综合考虑。
燃气工业炉的热工过程及热力计算热工过程是工业炉内一个重要的物理、化学过程。
燃气工业炉的热工过程是指炉内燃气燃烧、气体流动及热交换过程的总和。
显然,它是直接影响工业炉生产的产品数量、质量及经济指标的关键。
燃气工业炉的热工过程的好坏,炉膛部位是核心。
因为物料的加热、熔炼及干燥等都主要是在炉膛内完成的,而炉膛热工过程又受炉子砌体各部位热工特性影响。
一、炉体的热工特性工业炉炉子砌体的结构与材料,决定砌体的基本热工特性,进而对于工业炉热工状态造成重大影响。
(一)不同炉子砌体的热工特性工业炉的炉墙、炉顶、炉底由不同材质的多层材料砌筑而成,而各层材料的导热系数与厚度都不一样,因而温度变化也各有差异。
图3—9—6所示炉墙,从内到外分别为粘土砖、绝热层和普通红砖。
炉膛内高温焰气的热量通过辐射与对流向炉墙内表面传递;内表面再通过传导,把热量传到外表面;而外表面再通过辐射、对流向周围空间散热。
图3-9-6炉墙厚度上的温度分布1-普通红砖层;2-绝热层;3-粘土砖层;4-炉膛空间;tin-内壁温度;tout-外壁温度一般砌体的作用是保证炉子空间达到工作温度,炉衬不被破坏,而加绝热层是为了减小损失。
从加热经济观点看,砌体蓄热能力差,炉子开停温度升降快,但是炉子砌体墙壁太薄,将导致外表面散热损失增加。
因此,应在对炉子进行严格的热工分析后,确定砌体的厚度与材质。
一般说,长期运行的大型工业炉,砌休可选厚些,反之选薄些。
为了节约能源,越来越多的工业炉采用轻质、热导率小的材料作为砌体的绝热层。
表3—9—3给出了采用不同轻质绝热材料及组合时的节能效果。
对连续式和间歇式加热炉,不同砌体组合的节能效果均为Ⅲ>Ⅱ>Ⅰ。
表3—9—3采用轻质耐火材料对砌体散热及蓄热的影响炉子工作特点砌筑类型筑炉材料名称厚度/mm热损失散热量/kJ·(m-2·h-1)蓄热量/kJ·m-2连续式炉Ⅰ粘土砖轻质粘土砖116Ⅱ粘土砖轻质粘土砖232Ⅲ耐火纤维毡753720粘土砖232轻质粘土砖232间歇式炉Ⅰ粘土砖81101轻质粘土砖116Ⅱ粘土砖47698硅藻土砖116Ⅲ耐火纤维毡768矿渣纤维100(二)不同砌体对炉子热工状态的影响图3—9—7表示炉子供热量不同对炉内热状态的影响。
燃气工业炉空气动力计算
一、燃气工业炉气体流动的特点
(一)燃气工业炉空气动力学及空气动力计算
为了使燃气工业炉能正常地工作,需要不断供给燃烧所用的燃气和空气,同时又要不断地把燃烧产生的烟气排出炉外。
所谓燃气工业炉的通风过程,正是指保证工业炉正常运行的连续供风和排烟的过程。
燃气工业炉空气动力学就是用流体力学的基本原理来研究炉中气体流动和平衡的规律,以解决工业炉通风过程中的实际问题。
其目的为正确组织工业炉内的气体流动,保证炉料加热的质量,最终使工业炉生产达到良好的技术指标。
同时,按照流体力学的基本原理。
进行燃气工业炉的空气动力计算,求得送风、排烟系统内各区段的阻力、浮力,确定通风系统的压力分布,并求得总压降,为烟囱设计或送风机、引风机的选择,为工业炉生产操作、控制及安全运行等提供可靠依据。
(二)燃气工业炉气体流动的特点及实用流体方程
图3—9—15为工业炉自然通风时炉膛及烟道系统压力分布图。
横坐标对应上图示意的通风系统各处;纵坐标为各处的相对压力(Pa)。
图3-9-15燃气工业炉通风系统
图中,1为空气、燃气进口;2为燃烧室或火道,燃气和空气在此混合、燃烧;3为燃气工业炉炉膛,2—3由于浮力作用,系统压力增加至正压,满足了炉膛为
正压的要求;4—5—6为烟道,烟气流动过程中,4—5克服阻力,消耗能量,系统压力降低,5—6由于浮力作用,系统压力又有所增加;6—7为热交换器,烟气流经时,阻力消耗大,系统压力下降;7—8—9也是烟道,7—8烟气流经烟道闸门,克服局部阻力,消耗较大能量;8—9烟气消耗能量,克服烟道阻力;9—10为烟囱,由于高大烟囱的浮力远大于阻力,使系统压力增大,到烟囱出口接近零压。
在燃气工业炉内,被加热物料一般都放在炉底,因此控制炉内压力的首要任务是保证炉底相对压力为零或微小正压(通常10~20Pa)。
这时炉门缝隙稍有火苗冒出,而没有冷空气吸入,以保持炉内气氛,并使炉内不会有太多的过剩空气,不至降低炉温和恶化传热过程。
燃气工业炉整个送风、排烟系统的压力都接近于大气压,各处相对压力的数值都很小,而且变化甚微,如图3—9—15仅为-lOOPa~0Pa变化。
即使在压力变化最大的空气、燃气预热器或余热锅炉中,变化也常常只有几千帕,因此,可忽略压力变化对气体可压缩性的影响。
同时,在各种情况下,整个送风、排烟系统的气流速度都不大,约每秒数米,气体马赫数(气流速度与当地音速之比值)远小于0.3,完全可以忽略流速变化对气体可压缩性的影响。
显然,在燃气工业炉通风过程中,影响气体可压缩性的压力、流速,温度三因素中,只有温度变化最剧烈,是不可忽略的。
所以,必须分区段来确定气体的温度及密度,在温度变化范围较小的区段,可取算术平均密度;在温度变化剧烈的区段,则应取算术平均温度下的调和平均密度。
这样处理之后,在燃气工业炉空气动力计算中,就可以把通风系统内的气体都当成是不可压缩的流体了。
根据以上讨论,燃气工业炉空气动力计算的实用流体方程,就是实际流体的伯努利方程式,如式(2—23)所描述。
二、气体的阻力计算
燃气工业炉空气动力计算中,气体流动阻力包括摩擦阻力利局部阻力。
其计算基本公式见式(2—27)、式(2—29),在进行局部阻力计算时,其局部阻力系数K由通道或管路的结构而定。
当气流横向冲刷管束时,无论有无热交换,其流动阻力均属局部阻力,局部阻力系数K与管束的结构形式、管子排数及Re数有关。
可以区别顺列管束、错列管束按计算公式或线算图来确定。
空气、燃气或烟气流经管束时,由于截面收缩和扩大所引起的阻力损失已计入K中,不再另外计算。
计算时,气流速度按烟道有效截面确定。
烟气流动阻力计算简介如下。
计算烟气流动阻力的原始数据为烟气量、各区段烟气的平均流速和温度、烟道的有效截面积及其它结构特性。
这些数据在燃气燃烧计算和热力计算中已经提及。
由于阻力计算时所使用的各种线算图都是对于空气绘制的。
因此,为了方便起见,可以利用线算图求得相应于空气密度的烟道各部分阻力;然后再根据烟气的密度进行阻力换算。
计算烟气流动阻力的顺序是从炉膛开始,沿烟气流动方向,依次汁算空气(燃气)预热器、余热锅炉、烟道等各部分的阻力。
各部分阻力之和即为烟道的全压降。
1.炉膛
炉膛的摩擦阻力损失按式(2-27)计算,式中ω0、t为炉膛内烟气平均流速和温度。
实际上由于工件在炉底排列并不整齐,故炉膛内压力损失比汁算结果要大。
可以粗略地取为计算值的两倍。
2.空气(燃气)预热器
其结构形式有管式、片状和辐射式。
(1)管式空气预热器
这种换热器的基本构件是钢管。
通常管内走空气,管外走烟气。
一般机械排风时,可采用烟气在管内流动,此时烟气阻力由管内的摩擦阻力和管子进出口的局部阻力所组成。
这两项阻力均按平均烟气流速和温度计算。
管式空气预热器的摩擦阻力和局部阻力也可按公式和线算图确定。
当空气在管内流动时,一般流速为4~8m/s;烟气则以1~2m/s的速度从管间流过。
空气和烟气流速之比应不小于1.5~3.0,以防管子烧坏。
预热器内的空气阻力为300~3000Pa;烟气阻力为20~300Pa。