计算流体力学的发展及应用
- 格式:doc
- 大小:28.00 KB
- 文档页数:6
计算流体力学在工业制造中的应用随着科技的发展和现代化程度的提升,各行各业都在进行技术创新和改进,追求更加高效的运营方式以及更优秀的生产质量。
在这个过程中,计算流体力学(CFD)的应用逐渐被应用在各个领域,其中,工业制造是计算流体力学应用的重要方向。
一、计算流体力学的概念计算流体力学是指一种应用数值计算方法,对流体力学问题进行数值求解并得出数值解的方法。
利用计算机技术、物理学、数学等多种学科知识,可以对涉及流体力学现象的问题进行数值仿真,预测流体力学现象的行为以及物体与流体的相互作用。
计算流体力学可以通过求解Navier-Stokes方程组得到流体的运动状态,也可以通过求解欧拉方程组得到低速不可压缩流体的运动状态。
常见的计算流体力学软件有FLUENT、STAR-CCM+、ANSYS等。
二、1. 空气动力学分析工业制品的设计过程中需要考虑流场的影响,通过计算流体力学模拟可以预测飞机、汽车、火车等交通工具的气动性能,提高汽车或飞机的空气动力学效率,优化设计结构,减少阻力降低飞行噪声,提高经济性和性能。
2. 化学工业化学工业中会涉及气体或液体的流动和传输,通过计算流体力学模拟可以优化设备内部的流场,提高反应器的效率以及反应产物的质量。
例如,炼油厂中的蒸馏塔、催化剂反应器等都可以应用计算流体力学技术进行优化设计。
3. 能源工业在能源工业中,应用计算流体力学可以对电力、核电、燃气等能源设备进行仿真分析,设计得到更节能、更经济的发电设备。
例如,在风电领域,电力机械化系动态仿真模拟在风机叶片的设计、结构、强度分析、材料选用等方面具有重要应用价值。
4. 食品工业多相流问题在食品工业中具有重要地位,利用计算流体力学技术可以模拟流体的流动和混合,仿真作用效果,提高产品质量,在糖果、奶制品、啤酒等行业有广泛应用。
5. 环保工业环保工业中涉及到诸如废水处理、废气处理等问题,计算流体力学可以对处理设施内部的流场情况进行仿真分析,优化处理设备的结构,以实现更好的处理效果。
计算流体力学的发展过程计算流体力学是一种利用计算机解决流体力学问题的方法,可以模拟各种流体动力学现象,如流体的流动、湍流等。
它在现代工业、航空航天、环境保护等领域有着广泛的应用,是现代科技取得的重要成果之一。
本文将从历史和技术两个方面,探讨计算流体力学的发展过程。
一、历史1.早期研究计算流体力学的起源可以追溯到20世纪40年代,当时美国哈佛大学的约翰·冯·诺伊曼等人开始使用电子计算机来解决气体动力学问题。
他们开发出了一种名为“脉动方程”的方法,可以解决流体运动的基本方程。
这标志着计算流体力学的诞生。
2.有限差分方法20世纪50年代至60年代,人们开始使用有限差分方法来解决流体力学问题。
有限差分方法将连续的时间和空间离散化,将偏微分方程转化为代数方程,然后使用计算机求解。
有限差分方法的优点是简单易懂,计算速度快,但它也存在精度较低、稳定性差等问题。
3.有限体积方法20世纪70年代后期至80年代初,有限体积方法逐渐成为主流。
有限体积方法使用小区域的平均值代替整个区域的实际值,从而保证了守恒定律的严格符合。
此外,有限体积方法还能很好地处理边界条件和复杂流动情况,因此得到了广泛应用。
4.计算能力的提高20世纪90年代至今,随着计算机计算能力的提高,计算流体力学的应用范围越来越广泛。
基于计算流体力学的仿真技术已经应用于汽车、航空航天、电子、环保等行业和领域。
人们正在不断发掘计算流体力学在这些领域的潜力。
二、技术1.数值格式计算流体力学的数值格式是计算流体力学算法的核心。
主要分为欧拉方程和纳维-斯托克斯方程两种类型。
欧拉方程适用于高速稀薄气体流动,而纳维-斯托克斯方程适用于低速流动和液体流动。
在实际运用中,人们还可以根据具体需求制定相应的数值格式。
2.求解器计算流体力学的求解器是模拟流体力学问题并求解数学模型的软件程序。
求解器的性能直接影响到计算的精度和速度。
目前求解器的种类已经非常丰富,包括商业求解器和开源求解器,如ANSYS、FLUENT、OpenFOAM等。
计算流体力学在航空航天中的应用计算流体力学是一种模拟和分析流体力学中流动和传热问题的工具。
在航空航天领域中, 计算流体力学的应用越来越广泛。
本文将探讨计算流体力学在航空航天中的应用和意义。
航空学中的计算流体力学在航空学中, 计算流体力学广泛应用于飞机的气动设计和优化。
飞机的外形决定了它在空气中的性能。
计算流体力学通过数值计算和仿真求解了飞机在不同速度、高度和气动条件下的空气动力学性能, 为飞机形状的调整提供了宝贵的设计参考和支持。
除了外形设计之外, 计算流体力学还可以对飞机和发动机内部流动进行模拟和优化。
在飞机内部, 气流的压力和速度分布对机舱的温度、空气质量和噪声水平等方面都有很大的影响。
通过计算流体力学, 可以模拟空气在飞机内部的流动情况, 并通过不同的设计来优化气流的流动。
此外, 飞行过程中, 飞机的飞行姿态和风险状态都会影响其气动性能。
通过计算流体力学, 可以对飞机在不同姿态下的飞行性能进行仿真, 并预测飞行过程中的风险。
航天学中的计算流体力学在航天学中, 计算流体力学的应用范围也非常广泛。
在火箭发动机的燃烧室中, 高温高压下的燃气流动对火箭发射的能量转换过程起着至关重要的作用。
计算流体力学可以对燃料和氧化剂混合, 燃烧过程和燃气流动进行模拟和优化, 帮助设计出更为高效和稳定的火箭发动机。
在航天器入轨过程中, 曲率半径、速度和姿态等因素对航天器的发射、飞行和着陆都有很大的影响。
通过计算流体力学, 可以模拟飞行器的气动性能, 并预测曲率半径、速度和姿态对航天器的影响, 以保证航天器的正常运行。
同时, 在航天器重新进入大气层的过程中, 大气阻力造成的高温高压也是一个重要的问题。
计算流体力学可以对航天器在大气层中的细节流场进行模拟, 并对航天器表面的热防护材料进行优化设计, 以确保航天器安全着陆。
结语总的来说, 计算流体力学在航空航天中的应用是十分广泛的, 从飞机的设计到火箭发动机的优化, 从飞机内部气流的流动到航天器的入轨与着陆, 都需要计算流体力学的支持。
计算流体力学模拟方法应用前景计算流体力学(CFD)是一种通过数值方法对流体力学问题进行建模和求解的技术。
通过使用CFD,工程师可以预测流体流动、传热和传质等过程,并优化设计,提高性能。
CFD模拟方法已经在许多领域得到广泛应用,包括航空航天、汽车工程、能源系统和环境保护等。
在未来,CFD模拟方法的应用前景将继续扩大,催生出更多的创新和发展。
航空航天工程是CFD模拟方法最早得到应用的领域之一。
借助CFD模拟,航空航天工程师可以评估飞行器在不同飞行条件下的空气动力学性能,包括升力、阻力和稳定性等。
CFD模拟还可以帮助设计和改进飞行器的外形,减少气动阻力,提高燃油效率。
未来,随着新材料和技术的发展,飞行器的设计将越来越多地依赖CFD模拟方法,以实现更高的性能和安全性。
汽车工程是另一个广泛应用CFD模拟方法的领域。
汽车工程师可以利用CFD模拟来优化车辆的空气动力学性能,降低风阻和气动噪音。
此外,CFD模拟还可以预测发动机的燃烧过程和冷却效果,优化汽车的燃料效率和排放性能。
随着电动汽车的兴起,CFD模拟还可以帮助设计高效的电动汽车充电系统,提高充电效率,延长电池寿命。
未来,随着智能汽车和自动驾驶技术的发展,CFD模拟在汽车工程中的应用前景将更加广阔。
能源系统是另一个重要的CFD模拟应用领域。
CFD模拟可以帮助工程师优化发电厂的燃烧过程,提高燃烧效率和环保性能。
此外,CFD模拟还可以应用于风力发电和太阳能发电等可再生能源的设备设计和性能评估。
未来,随着可再生能源的普及和能源转型的加速推进,CFD模拟方法将发挥更大的作用,在实现清洁能源和可持续发展方面发挥重要作用。
环境保护也是CFD模拟方法的重要应用领域之一。
利用CFD模拟,可以评估排放源的空气污染扩散情况,预测污染物的浓度分布,帮助制定更有效的环境保护政策。
此外,CFD模拟还可以模拟自然界中的气候和天气现象,提高气象预报的准确性。
未来,随着人们对环境问题的重视程度不断提高,CFD模拟方法在环境保护领域的应用将得到进一步拓展。
计算流体力学(cfd)发展简述1 发展历程计算流体力学(CFD)是指利用计算机来模拟流体的运动以及流体和固体之间相互作用的一种数值分析方法。
CFD的发展始于20世纪50年代,随着计算机技术的发展,CFD得到了快速的发展。
2 发展阶段CFD的发展可以分为以下几个阶段:2.1 基础阶段基础阶段主要是1960年代,当时计算机刚刚起步,计算能力很弱,CFD的应用范围十分有限。
研究重点主要是二维流动、气体动力学和边界层理论。
2.2 成长阶段成长阶段是1970年代到1980年代,这一时期计算机性能提高很快,CFD的应用范围逐渐扩大,开始涉及三维流动和非定常流动。
研究重点主要是湍流模拟和自适应网格技术。
2.3 成熟阶段成熟阶段是1990年代到今天,这一时期计算机硬件和软件技术不断发展,CFD的应用范围更加广泛,涉及多物理场耦合、多相流、化学反应等新领域。
研究重点主要是基于高性能计算和云计算的CFD技术研发。
3 技术进展CFD的进展主要体现在以下几个方面:3.1 模拟精度提高随着计算能力的提高和数值算法的改进,CFD模拟精度不断提高。
现在CFD能够预测流场的细节特征,如湍流结构、尾迹等。
3.2 多物理场耦合现代CFD技术已经可以模拟多物理场问题,如流动和传热、流动和组分分离、流动和化学反应等。
这使得CFD能够解决更多的实际工程问题。
3.3 多相流模拟多相流是指由两个或两个以上物质组成的流体,如气固、气液、液固等。
CFD技术已经可以模拟多种多相流,如液滴的运动、气固两相流的流动特性等。
3.4 并行计算随着计算机硬件和软件技术的不断发展,CFD已经可以实现大规模并行计算,大大提高了计算效率和模拟精度。
4 应用领域CFD已经成为现代工程设计的必备工具之一,主要应用于以下几个领域:4.1 航空航天工程CFD技术已经成为航空航天工程的重要设计工具,可以用于飞行器外形优化、发动机设计、气动加热等。
4.2 汽车工程CFD技术在汽车工程中的应用十分广泛,可以用于车身外观优化、发动机设计、制动系统设计等。
阎超计算流体力学方法及应用(一)阎超计算流体力学方法及什么是计算流体力学方法?计算流体力学方法是一种数值模拟技术,用于研究和解决流体力学问题。
它基于数学模型和计算方法,利用计算机对流体的流动进行数值模拟分析。
计算流体力学方法广泛应用于多个领域,包括航空航天、汽车工程、气象学等。
计算流体力学方法的应用领域计算流体力学方法广泛应用于以下领域:1. 航空航天工程计算流体力学方法在航空航天工程中的应用非常重要。
它可以用来模拟飞行器的气动力学特性,如升力、阻力和侧向力等。
通过模拟气动流场,可以对飞行器的设计进行优化,提高气动效能。
2. 汽车工程计算流体力学方法在汽车工程中的应用也非常广泛。
通过对汽车流场的模拟,可以研究汽车在行驶时的空气动力学特性,如气流阻力和湍流。
这对于改善汽车的燃油经济性和稳定性非常重要。
3. 气象学计算流体力学方法在气象学中的应用可以帮助科学家更好地理解大气环流和天气现象。
通过对大气流场的模拟,可以预测和研究气候变化、风暴和气象灾害等重要气候现象。
4. 医学工程计算流体力学方法在医学工程中的应用也日益重要。
它可以用来模拟人体内的血流动力学特性,对心脏瓣膜和血管的功能进行评估和优化。
这对于研究心脏病的发病机制和设计更好的治疗方法非常有帮助。
5. 土木工程计算流体力学方法在土木工程中的应用可以帮助工程师更好地设计和优化建筑物、桥梁和隧道等结构的气流和水流特性。
这对提高建筑物的抗风、排水和抗液压冲刷能力具有重要意义。
结论计算流体力学方法是一种重要的数值模拟技术,在多个领域都有广泛应用。
它可以帮助科学家和工程师更好地理解和优化流体力学问题。
随着计算机技术的进一步发展,计算流体力学方法将在更多领域中发挥更大作用。
计算流体力学在农业工程中的应用现状与发展趋势近年来,随着计算流体力学(CFD)技术的不断发展和应用,其在农业工程领域的应用也日益广泛。
计算流体力学是一种通过数值方法解决流体流动和传热问题的工程技术,它的应用不仅可以帮助农业工程领域解决实际问题,还能够提高生产效率和资源利用率。
本文将以此为主题,结合当前的实际情况和未来的发展趋势,全面评估计算流体力学在农业工程中的应用现状,并探讨其发展趋势。
1. 计算流体力学在农业灌溉系统中的应用在农业生产中,灌溉是至关重要的一环。
利用计算流体力学技术,可以对灌溉系统进行模拟和优化,从而提高灌溉效率和节约水资源。
通过仿真计算,可以确定最佳的灌溉方案、管道布局和水流速度,从而降低灌溉系统的能耗和成本,提高土地的利用率和作物的产量。
2. 农业设施的空气流动模拟与优化除了灌溉系统,计算流体力学还广泛应用于农业设施的空气流动模拟与优化。
温室内的空气流动对作物的生长和产量有着直接影响。
通过CFD技术,可以对温室内的气流模式进行模拟,从而优化通风系统和空气循环,提高作物的生长环境和质量。
3. 农田水土流失和污染物运移模拟农田水土流失和污染物运移是当前农业生产中面临的重要问题之一。
利用计算流体力学技术,可以对降雨过程中的水土流动、土壤侵蚀和污染物传输进行精确模拟,为保护农田水土资源和环境提供科学依据和技术支持。
在未来,随着农业工程技术的不断革新和CFD技术的深入应用,计算流体力学在农业工程中的发展趋势也将更加多元化和立体化。
随着智能农业和数字农业的兴起,计算流体力学技术将与遥感技术、物联网技术等相结合,为农业生产提供更精准和可持续的解决方案。
CFD技术在智能农业设备的设计与优化、精准农业管理和智能农田环境监测等方面也将发挥更加重要的作用。
结语计算流体力学在农业工程中的应用现状已经非常广泛,并且在未来具有巨大的发展潜力。
通过对CFD技术的深入研究和应用,我们可以不断提高农业生产的效率和可持续发展能力,为农业产业的升级和转型提供技术支持和保障。
计算流体力学技术在工业制造中的应用随着计算机技术的不断进步,计算流体力学技术(CFD)已经成为现代工业制造过程中不可缺少的一部分。
简单来说,CFD就是利用计算机模拟数值方法来研究流体运动的一种技术。
它具有高效、可靠、经济等优点,在许多领域中都有广泛的应用。
本文将着眼于CFD技术在工业制造中的应用,从几个方面进行探讨。
1. 流体力学分析工业制造过程中,涉及到的流体问题不可避免。
CFD技术可以通过对流体运动的建模和分析,有效地预测流体行为和性能,帮助制造商优化并改进设计,提高产品的质量与效率。
比如,汽车制造厂商可以通过CFD技术模拟汽车外形的气动特性,预测风阻和升力等参数,进而提高汽车的运行效率和稳定性;铸造厂可以通过CFD技术模拟流体在铸造模具内部的流动和凝固过程,优化铸造工艺,减少缺陷的出现。
工业制造中涉及的流体问题非常复杂,因此,相应的模拟分析需要建立精确的模型和计算方法,对CFD技术的要求也很高。
CFD技术需要针对不同的问题,采用适合的数值方法、网格划分和计算模型,来保证模拟结果的精度和可靠性。
这让CFD技术的应用变得更加强大和广泛。
2. 工艺优化工业制造过程中,常常需要优化各种制造工艺,以提高产品的质量和生产效率。
CFD技术可以帮助制造商进行分析和优化,提高工艺的可行性和经济性。
例如,通过CFD对金属喷涂等工艺的流动分析,可以优化每一喷嘴的喷涂角度和喷涂距离,从而获得更好的涂层质量和产品结构;通过CFD技术分析注塑过程的流动行为,可以有效地加快冷却速度和减少不良品率。
在优化制造工艺的过程中,CFD技术通常需要结合实际试验进行验证和修正。
为了减少误差并提高精度,CFD技术师需要对模拟结果进行多维度的分析和比较,与实验结果进行比对和验证。
3. 设备设计和优化对于许多工业制造企业而言,设备的设计与制造是其最核心的竞争力。
CFD技术可以被用来预测和分析设备的性能和工作过程。
例如,对于一个反应釜的设计,通过CFD技术可以对其搅拌过程、气固流动、热传递等关键参数进行分析和优化,从而优化反应体系,提高反应速率和选择性;对于一个带有高性能散热器的电脑主板,通过CFD技术可以预测和分析散热效果,确定合理的散热位置和结构,提高电脑的稳定性和寿命。
流体力学的发展现状流体力学是研究流体运动和力学性质的学科,涉及到各种物质的流动行为,包括气体、液体和等离子体等。
它在多个领域中具有广泛的应用,如航空航天、海洋工程、能源研究等。
本文将详细介绍流体力学的发展现状,包括其研究领域、应用领域和最新的研究进展。
1. 流体力学的研究领域流体力学的研究领域非常广泛,包括以下几个方面:1.1 流体动力学:研究流体的运动规律和动力学性质,包括流体的速度、压力、密度等参数的变化规律。
1.2 流体静力学:研究静止流体的力学性质,包括流体的静压力和静力平衡等。
1.3 流体传热学:研究流体中传热的规律和机制,包括对流传热、辐射传热和传导传热等。
1.4 流体力学数值模拟:利用计算机模拟方法,对流体力学问题进行数值计算和模拟,以求解复杂的流体力学问题。
2. 流体力学的应用领域流体力学在许多领域中都有广泛的应用,下面列举了一些主要的应用领域:2.1 航空航天工程:流体力学在飞行器设计和空气动力学研究中起着重要作用,能够帮助优化飞行器的气动外形和提高飞行性能。
2.2 汽车工程:流体力学可以用于汽车空气动力学研究,优化汽车外形以减小空气阻力,提高燃油经济性。
2.3 海洋工程:流体力学在海洋平台、船舶和海洋结构物的设计中起着重要作用,能够帮助优化结构的稳定性和抗风浪性能。
2.4 能源研究:流体力学在能源领域中有广泛应用,如风力发电机的设计和水力发电站的优化等。
2.5 生物医学工程:流体力学在生物医学领域中有着重要的应用,如血液流动的研究和人体器官的模拟等。
3. 流体力学的最新研究进展流体力学领域一直在不断发展和创新,下面介绍一些最新的研究进展:3.1 计算流体力学方法的发展:随着计算机技术的不断进步,计算流体力学方法得到了广泛应用,能够更准确地模拟和预测流体力学问题。
3.2 多相流体力学的研究:多相流体力学研究涉及到多种不同相的流体的相互作用和运动规律,对于研究气液两相流、液固两相流等具有重要意义。
计算流体力学在农业工程中的应用现状与发展趋势计算流体力学(Computational Fluid Dynamics,简称CFD)是一种模拟流体力学问题的数值计算方法,借助计算机技术,通过连续介质力学、运动学和热力学等原理,对涉及流体流动、传热、传质等问题进行数值模拟和计算。
计算流体力学在农业工程中的应用,可以有效地优化农业生产系统,提高农作物的产量和品质,降低农业生产过程中的能耗和环境污染。
一、计算流体力学在温室大棚设计中的应用温室大棚作为现代农业生产的重要手段之一,对温室内的气候环境进行合理调控,是提高农业产量和质量的关键。
使用计算流体力学模拟温室大棚内的空气流动、温度分布和湿度变化等参数,可以帮助农业工程师确定温室内的最佳气候控制策略,提高温室内作物的生长环境。
二、计算流体力学在农田灌溉中的应用灌溉对于农田的水资源利用和农业生产起着至关重要的作用。
利用计算流体力学模拟地下水流动和土壤水分传输,可以评估灌溉系统的水分利用效率,优化灌溉方案,避免水资源的浪费和土壤的盐碱化。
此外,还可以通过计算流体力学模拟灌溉设施内的水流分布和压力变化,以评估系统的性能,并进行优化设计。
三、计算流体力学在精准农业中的应用精准农业是一种利用先进的信息技术和农业装备,对农田进行精细化管理的农业生产模式。
计算流体力学结合无人机、传感器等技术,可以模拟农田内的气候、土壤水分、养分分布等情况,并实时调整农机设备的操作参数,实现对不同农田区块的精细化管理。
通过精确控制农田内的水分、养分和农药的分布,可以提高农作物的产量和质量,减少化肥、农药的使用量,降低环境污染。
四、计算流体力学在农业机械设计中的应用合理的农业机械设计可以提高农业生产效率,降低劳动强度。
利用计算流体力学模拟农业机械与农田的相互作用,可以优化机械设备的结构和性能,改善农机在不同环境下的工作表现。
此外,计算流体力学还可以模拟农机在作业过程中的风阻、水阻等外力,对机械进行优化设计,减少能耗,提高机械的使用寿命。
计算流体力学的发展及应用
计算流体力学的发展:
20世纪30年代,由于飞机工业的需要、要求用流体力学理论来了解和指导飞机设计,当时由于飞行速度很低,可以忽略粘性和旋涡,因此流动的模型为拉普拉斯方程,研究工作的重点是椭圆型方程的数值解。
利用复变函数理论和解的迭加方法来求解析解。
随着飞机外形设计越来越复杂,出现了求解奇异边界积分方程的方法。
以后为了考虑粘性效应,有了边界层方程的数值计算方法,并发展成以位势方程为外流方程,与内流边界层方程相结合,通过迭代求解粘性干扰流场的计算方法。
同一时期许多数学家研究了偏微分方程的数学理论,Courant,Fredric等人研究了偏微分方程的基本特性、数学提法的适定性、物理波的传播特性等问题,发展了双曲型偏微分方程理论。
以后,Courant,Fredric,Lowy等人发表了经典论文,证明了连续的椭圆型、抛物型和双曲型方程组解的存在性和唯一性定理,并针对线性方程的初值问题,首先将偏微分方程离散化,然后证明了离散系统收敛到连续系统,最后利用代数方法确定了差分解的存在性;他们还给出了著名的稳定性判别条件:CFL条件。
这些工作是差分方法的数学理论基础。
20世纪40年代,V onNeumann,Richmyer,Hopf,Lax和其他一些学者建立了非线性双曲型方程守恒定律的数值方法理论,为含有激波的气体流动数值模拟打下了理论基础。
在20世纪50年代,仅采用当时流体力学的方法,研究比较复杂的非线性流动现象是不够的,特别是不能满足高速发展起来的宇航飞行器绕流流场特性研究的需要。
针对这种情况,一些学者开始将基于双曲型方程数学理论基础的时问相关方法用于求解宇航飞行器的气体的定常绕流场问题,这种方法虽然要求花费更多的计算机时,但因数学提法适定,又有较好的理论基础,且能模拟流体运动的非定常过程,所以在60年代这是应用范围较广的一般方法。
以后由Lax、Kais和其他著者给出的非定常偏微分方程差分逼近的稳定性理论,进一步促进了时间相关方法。
当时还出现了一些针对具体问题发展起来的特殊算法。
进人2O世纪80年代以后,计算机硬件技术有了突飞猛进的发展,计算机逐渐进人人们的实践活动范围。
随着计算方法的不断改进和数值分析理论的发展高精度模拟已不再是天方夜谭。
同时随着人类生产实践活动的不断发展,科学技术的日新月异,一大批高新技术产业对计算流体力学提出了新的要求,同时也为计算流体力学的发展提供了新的机遇。
实践与理论的不断互动,形成计算流体力学的新热点、新动力,从而推动计算流体力学不断向前发展。
首先,在计算模型方面,又提出了一些新的模型,如新的大涡模拟模型、考虑壁面曲率等效应的新的湍流模式、新的多相流模式、新的飞行器气动分析与热结构的一体化模型等这就使得计算流体力学的计算模型由最初的Euler和Ⅳ—s方程,扩展到包括湍流、两相流、化学非平衡、太阳风等问题研究模型
在内的多个模型。
其中以考虑更多流动机制,如各向异性的非线性(应力/应变关系)湍流研究为重点。
研究结果再次证明,万能的湍流模型还不存在,重要的是如何在模型精度和计算量上较好地取得折中;也有学者从更高层次研究湍流模型问题,由湍流流动中速度不可微,怀疑Ⅳ—S方程的有效性,进而提出以积分方程为基础的数学模型。
目前,计算流体力学研究的热点是:研究计算方法,包括并行算法和各种新型算法;研究涡流运动和湍流,包括可压和不可压湍流的直接数值模拟、大涡模拟和湍流机理;研究网格生成技术及计算机优化设计;研究计算流体力学用于解决实际流动问题,包括计算生物力学、计算声学、微型机械流动、多相流及涡轮机械流动的数值模拟等。
计算流体力学的应用:
计算流体力学的应用已经从最初的航空航天领域不断地扩展到船舶,海洋、化学、工业设计、城市规划设计、建筑消防设计、汽车多个领域。
近几年来计算流体力学在全机流场计算、旋翼计算、航空发动机内流计算、导弹投放、飞机外挂物、水下流体力学、汽车等方面获得广泛应用。
这表明计算流体力学在解决J二程实际问题方面具有重要的应用价值。
下面仅以在汽车领域的应用为例,介绍计算流体力学应用于工程实际中的速度。
20世纪80年代初期才开始有计算流体力学应用于汽车领域的论文发经过短短的二十余年,其应用已涉及到汽车车身设计、汽车内部空
间的空调与通风、发动机内部的气体流动以及冷却系、汽车液力变矩器、废气涡轮增压器中的压气机和涡轮的叶轮与蜗壳等中的流动现象的研究与计算,同时进一步发展到研究汽车与发动机中传热、燃烧以及预测噪声强度与模具设计等相关的问题。
当着手研究一项计算流体力学课题时,首先需要建立模型,即根据相关专业知识将问题用数学方法表达出来;然后就是如何利用计算流体力学软件,对问题进行求解、分析。
整个计算流体力学处理过程大致包括三个部分:前处理,包括几何模型的选取和网格划分;求解器,包括确定计算流体力学方法的控制方程,选择离散方法进行离散,选用数值计算方法,输人相关参数;后处理,包括速度场、压力场、温度场及其它参数的计算机可视化及动画处理等。
由此和计算流体力学在工程实际中的应用可以将计算流体力学应用的优点大致归纳如下:可以更细致地分析、研究流体的流动、物质和能量的传递等过程;可以容易地改变实验条件、参数,以获取大量在传统实验中很难得到的信息资料;整个研究、设计所花的时间大大减少;可以方便地用于那些无法实现具体测量的场合,如高温、危险的环境;根据模拟数据,可以全方位的控制过程和优化设计。
计算流体力学应用研究中的关键问题包括:对应用于各种具体情况的数学模型、对复杂外形的描述以及对计算网格的划分做进一步研究;探索更有效的算法来提高计算精度,并降低计算费用;进一步开展计算流体力学在各方面的应用等。
计算流体力学的应用现状与现代超级计算机相结合的计算流体力学流体流动模拟工具,使计算流体力学所具有的创立新概念、降低设计成本和缩短生产时间的潜力开始发挥作用。
当前,计算流体力学工作者的重要任务是发展准确、高效的粘性流计算方法,把计算流体力学应用推向一个更新的应用阶段。
展望及结论:
计算流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将计算流体力学直接用于模拟各种实际流动,解决工业生产中提出来的各种问题。
美国和日本在这两方面做得最为突出。
在我国经济飞速发展的今天,一些计算流体力学问题的解决,将有利于我国的国民经济建设工作,我们需要迎头追赶。
参考文献:
[1]刘国俊.《计算流体力学的地位、发展情况和发展趋势》.《航空计算技术》
[2]傅德薰.《流体力学数值模拟》.北京:国防工业出版社
[3]张涵信,《第四届亚洲计算流体力学会议学术交流情况》.《力学进展》
[4]《国家自然科学基金委员会数理科学部.第七届国际计算流体力学尝议简介.力学进展》
[5] 傅晓英,刘俊,许剑峰.《计算流体力学在城市规划没计中的应用研究》.四川大学学报
[6]蔡荣泉.《船舶汁算流体力学的发展与应用》、
[7]尹哗东,王运东,费维场.《计算流体力学》,《在化学工程中的应用》
[8]肖柯则,复艺.《计算流体力学在铸造过程中的应用》内蒙古工业大学学报
[9]翟晓华,谢晶,徐世琼.《计算流体力学在制冷一程中的应用.制冷》
052694
自动化
倪松鹏。