当前位置:文档之家› (整理)A123公司的纳米级磷酸铁锂锂离子蓄电池的开发.

(整理)A123公司的纳米级磷酸铁锂锂离子蓄电池的开发.

(整理)A123公司的纳米级磷酸铁锂锂离子蓄电池的开发.
(整理)A123公司的纳米级磷酸铁锂锂离子蓄电池的开发.

A123公司的纳米级磷酸铁锂锂离子蓄电池的开发

美国A123系统公司是全球著名的生产纳米级磷酸铁锂锂离子蓄电池的生产企业。其总部在美国马萨诸塞州的Watertown市。目前在中国台湾、韩国、中国大陆设有专属制造工厂。

美国A123系统公司是全球著名的生产纳米级磷酸铁锂锂离子蓄电池的生产

企业。其总部在美国马萨诸塞州的Watertown市。主要材料研究单位在美国密执安州的Ann Arbor市。系统组装和系统设计单位在马萨诸塞州的Hopkinton市,目前在中国台湾、韩国、中国大陆具有总面积9300m2的专属制造工厂, 2007年扩大到2.3万m2。2006年, A123公司在常州生产基地动工,生产圆筒形纳米级磷酸铁锂锂离子单体电池。目前全球员工数超过2000人。

A123公司于2010年9月13日在美国密歇根州Livonia举行了新工厂开业仪式, 2011年计划投资5亿美元,其中2.49亿美元由美国能源部资助,部分资

金是来自美国振兴和再投资法案的拨款。新工厂占地3.28万m2,将成为北美地区最大的锂离子蓄电池生产地,主要生产方形纳米级磷酸铁锂锂离子单体电池、蓄电池模块和蓄电池包。

纳米级硝酸铁锂锂离子蓄电池的性能

美国A123系统公司生产的均匀纳米级磷酸铁锂正极材料超细颗粒< 0.1μm。一般磷酸铁锂正极材料颗粒为5μm(见图1)。因颗粒小,增加了总表面面积而大幅提升蓄电池高效电功率,而且稳定性和循环寿命未受影响。A123的纳米级磷

酸铁锂锂正极材料通过高价金属离子掺杂的专利技术提高了材料的导电性。通过对铝箔表面耐腐蚀和碳包裹处理,大大提高了蓄电池的大电流放电能力。蓄电池单体电池负极为石墨,极大地提高了蓄电池倍率性能和使用寿命。纳米级磷酸铁锤锂离子蓄电池单体电池容量20Ah,重量0.48kg,功率密度大于2000W/kg。方形单体电池的能量密度可达140Wh/kg。圆筒形单体电池的能量密度可达

120Wh/kg。单体电池循环寿命超过5000次。方形单体电池结构见图2,图3为

A123方形磷酸铁锂锂离子蓄电池模块。图4为23℃、1C/2C放电深度(DOD)80%、电池单体电池容量达到80%时,循环寿命大于5000次。

A123公司生产的蓄电池为整车企业配套情况

A123系统公司目前为Fisker公司Karma插电式混合动力汽车提供系统。该车预计2011年初上市;与伊顿合作,为混合动力货车提供蓄电池系统,该车用于铺设电线;与纳威斯达(Navistar)合作,为其邮政快递车提供蓄电池系统;与麦格纳合作,为沃尔沃配套蓄电池;为BMW混合动力汽车提供锂离子蓄电池作配套动力;与BAE系统合作,为其混合动力大客车提供蓄电池系统,目前全球己有1800~2000辆混合动力大客车在路上行驶,其中纽约有800~1000辆混合动力大客车。

由于A123系统公司在2010年9月13日新工厂开业,因此美国通用沃蓝达(Volt)增程式电动车的蓄电池由韩国LG化学公司提供。但美国通用汽车公司与A123系统公司发展和建立蓄电池供应商网络,以进行蓄电池开发。

A123系统公司在我国投资情况

A123系统公司在我国常州建立生产圆筒形纳米级磷酸铁锂锂离子蓄电池的单体电池。主要为BAE、AES、EDISON公司提供蓄电池单体电池。

2010年4月29日,由上汽集团公司与美国A123系统有限公司合资组建的上海捷新动力电池有限公司在上海市嘉定区新能源产业园区正式注册成立。真正签订合资协议是2009年12月,注册资本6460万元人民币,其中上汽占51%, A123

占49%,总投资达2000万美元。合资公司将设计、拥有并使用自己的商标,研发、组装、集成和制造主要使用在混合动力汽车和纯电动汽车上的蓄电池模块和蓄电池管理系统。

上海捷新动力电池有限公司主要为荣威750中度混合动力轿车、荣威550插电式混合动力轿车,和上汽纯电动汽车配套纳米级磷酸铁徨徨离子蓄电池。上汽荣威750中度混合动力轿车现配套镍氢蓄电池,以后将用常州生产的圆筒形纳米级磷酸铁锂锂离子蓄电池单休电池,在捷新公司组装成蓄电池模块、蓄电油管理系统。荣威750混合动力轿车现由德尔福提供采用A123蓄电池组成的蓄电池包。荣威550插电式混合动力轿车将采用上海捷新公司生产的方形纳米级磷酸铁生里徨离子蓄电池管理系统,由于常州不生产方形蓄电池单体电池,因此需从美国A123公司进口,然后在上海捷新公司组装。上汽纯电动汽车也采用方形蓄电池。

A123蓄电池不受国际专利纠纷影响

磷酸铁锂正极材料是由美国德州大学(University of Texas)于1997年4月23日申请专利o 2006 年9月,德州大学控告B&D、NTT公司和A123系统公司未获得专利授权情况下制造和销售侵权商品,德州大学Goodenough教授申请锂离子蓄电池专利有2个专利族“可充电锂电池的正极材料”包括22项专利,主要涉及磷酸铁锂正极材料。而A123系统公司于2003~2007年共申请了19项专利,主要是纳米级磷酸铁锂正极材料。但至今法院尚未开庭审理,而德州大学申请的专利将到期。A123系统公司拥有纳米级磷酸铁锂正极材料技术,与德州大学颗粒状磷酸铁锂正极材料不同,因此不会造成对德州大学专利的侵权。

(完整版)磷酸铁锂动力电池特性及应用(精)

磷酸铁锂动力电池特性及应用 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。 一般锂离子电池的电解质是液体的,后来开发出固态及凝胶型聚合物电解质,则称这种锂离子电池为锂聚合物电池,其性能优于液体电解质的锂离子电池。 磷酸铁锂电池的全名应是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池”。 采用LiFePO4材料作正极的意义 目前用作锂离子电池的正极材料主要有:LiCoO2、LiMn2O4、LiNiO2及LiFePO4。这些组成电池正极材料的金属元素中,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)最便宜。正极材料的价格也与这些金属的价格行情一致。因此,采用 LiFePO4正极材料做成的锂离子电池应是最便宜的。它的另一个特点是对环境无污染。 作为可充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 LiFePO4电池的结构与工作原理 LiFePO4电池的内部结构如图1所示。左边是橄榄石结构的LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li+可以通过而电子e-不能通过,右边是由碳(石墨)组成的电

锂电池规格书

储能型磷酸铁锂电池规格书STORAGE LiFePO4 BATTERY SPECIFICATIONS 客户名称(Customer): 产品型号(Type): CF12V80Ah 发行日期(Issuing Date):

1. 适用范围(Product Scope) 本规格书描述了锂离子二次电池的技术要求、测量方法、运输、储存及注意事项。 This Specification describes the requirements of the lithium ion rechargeable battery supplied by 2. 电池组特性 (Battery Group Specifications)

单只电芯曲线图feature curve for single cell 3. 技术要求(Technical Requirements) 测试条件(除特别规定) Testing Conditions (unless otherwise specified) 温度Temperature: 15~35℃ 相对湿度Relative Humidity: 45%~75% 大气压Atmospheric pressure: 86~106Kpa 充放电性能 (Electrical Characteristics)

环境性能 (Environmental Characteristic) 机械性能(Mechanical characteristics)

安全性能(Safe Characteristic)

4 电池组基本性能 (Basic Characteristics of Battery) 5 电池组保护功能要求 (Battery Required Protection Functions) To insure the safety, charger and the protection circuit shall be satisfied the items below. As safety device, please use in combination with the temperature fuse. The standard charge method is CC/CV (constant current/constant voltage) 为确保安全,充电器和保护电路应符合以下要求。同时请使用装有热熔保险丝的安全装置。标准充电方法为CC/CV(恒流/恒压)

分会场十三微纳米光子学

分会场十三:微纳米光子学 主席:吴一辉(中国科学院长春光学精密机械与物理研究所) 李铁(中国科学院上海微系统与信息技术研究所) 特邀报告1:半导体太赫兹光频梳 黎华,中国科学院上海微系统与信息技术研究所,博士生导师,研究 员。2009年博士毕业于中国科学院上海微系统与信息技术研究所, 然后分别在德国慕尼黑工业大学、日本东京大学、法国巴黎七大材料 与量子现象实验室开展博士后研究工作,2015年回国工作,2016年 获得中国科学院“百人计划”A类择优支持。主要研究方向为太赫兹 量子级联激光器及其光频梳、锁模激光器、太赫兹成像及高分辨光谱 技术等。在Advanced Science、Optica、Applied Physics Letters、Optics Express等期刊上发表50余篇论文,曾获“2015中国中国电子学会优秀科技工作者”,“上海市自然科学二等奖”(排名第三)、德国“洪堡”学者奖学金、日本JSPS奖学金等。担任科技部973计划课题负责人、国家自然科学基金面上项目(2项)负责人、KJW 项目(2项)负责人等。 报告摘要: 太赫兹(THz)波(频率范围:0.1-10 THz; 1 THz=1012 Hz)位于红外光和微波之间,在国防安全、生物医疗、空间等领域具有潜在应用。由于缺乏高效THz辐射源和探测器,THz波还没有被完全认知,所以其被称为THz间隙(“terahertz gap”)。在1-5 THz 频率范围内,基于半导体电泵浦的光子学器件THz量子级联激光器(quantum cascade laser, QCL)在输出功率和效率方面比电子学和差频器件高,是关键的THz辐射源器件。本报告主要介绍我们在高性能THz核心器件以及半导体光频梳方面的研究进展。在高性能核心器件方面,我们突破分子束外延生长和半导体工艺技术,研制出高功率(1.2 W)、低发散角(2.4°)、宽频率范围THz QCL器件并实现THz高速探测和多色成像。基于高性能半导体THz QCL器件,成功实现THz QCL光频梳以及双光梳。克服传统THz光谱仪在测量时间和光谱分辨率方面的缺陷,开发出基于THz QCL双光梳的紧凑型高分辨实时光谱检测系统,为将来实现新一代THz光谱仪奠定基础。

磷酸铁锂电池充放电曲线和循环曲线

磷酸铁锂电池充放电曲线和循环曲线我公司生产的磷酸铁锂电池以其无毒、无污染,高安全性,循环寿命长,充放电平台稳定等优点受到锂电池专家的关注。我公司所生产的LiFePO4动力电池在国内、外均处于领先水平,填补了国内、外大功率磷酸铁锂动力电池的空白,并获得多项国家专利。10C充放电1000次循环容量衰减在25%以内,充放电平台稳定,安全性能优良,可大电流充放电,完全解决了钴酸锂,锰酸锂等材料做动力型电池所存在的安全隐患和使用寿命问题。磷酸铁锂动力电池将取代铅酸、镍氢电池、钴酸锂和锰酸锂锂电池,引领汽车工业走进绿色时代。我公司生产的磷酸铁锂18650-1200mAh的电池充放电曲线和大电流循环曲线如下:

我公司生产的磷酸铁锂CR123A-500mAh的电池大电流循环曲线如下

新型磷酸铁锂动力电池 中心议题: ?磷酸铁锂电池的结构与工作原理 ?磷酸铁锂电池的放电特性及寿命 ?磷酸铁锂电池的使用特点 ?磷酸铁锂动力电池的应用状况 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。

统编版语文四年级下册7.《纳米技术就在我们身边》教学设计

7.纳米技术就在我们身边 【课文简析】 《纳米技术就在我们身边》是中国科学院院士刘忠范的作品。刘忠范曾任中国微米纳米学会常务理事,第二届亚洲纳米科技大会执行主席等,他的团队主要从事纳米碳材料、纳米化学等研究,是国际上具有代表性的纳米碳材料研究团队之一。因为对纳米技术有着非常精深的研究,所以这样一篇纳米技术的文章在刘院士笔下写得深入浅出,既清楚地介绍了纳米技术以及它的应用,又极具可读性,一点儿也不枯燥。 《纳米技术就在我们身边》是一篇科普类型的说明文。这篇课文科技含量极高,学生了解甚微。作者首先从纳米说起,介绍了什么是纳米和纳米技术。紧接着,作者通过举例子、列数字、作比较等说明方法,清楚地告诉读者,纳米技术就在我们身边,纳米技术可以让人类更加健康,纳米技术将给人类生活带来深刻的变化。全文篇幅不长,却让读者一下子就对纳米技术有了比较清晰的了解。教师在教学过程中还要注意结合本单元阅读要素“阅读时能提出不懂的问题,并试着解决”,引导学生学会借助资料,同时联系上下文、结合生活经验来解决问题的方法,去解决问题。 【学情分析】 在学习四年级上册第二单元的时候,学生就已经学习了“提问”的方法。如:根据课文内容提问、根据课文写法提问、根据生活提问。因此,四年级的学生已掌握了一定的“提问方法”,并具备一定的“提出问题”的能力,在学习本课时着重培养学生运用学过的“提问方法”进行提问,并尝试解决。让学生掌握解决问题的方法。并且,学生对于不曾接触过的事物有着旺盛的好奇心,要学会利用学生的好奇心激发他们学习这篇科技含量极高的课文的学习兴趣。 【学习目标】 1.会认“乒、乓、拥”等12个生字,会写“纳、拥、箱”等15个生字,掌握多音字“率”。能够把“碳纳米管天梯”等科技术语读正确。 2.在读课文的过程中能够提住不懂的问题,并在交流中梳理问题,尝试着结合课文内容、查找资料解答问题。 3.初步学习列数字、作比较、举例子等说明方法,并尝试着运用。 4.了解纳米相关知识,以及纳米技术在生活中的应用。通过学习,激发学生热爱科学的情感和学习科学的兴趣,培养正确的科学观点。 【学习重、难点】 学习重点: 1.会认“乒、乓、拥”等12个生字,会写“纳、拥、箱”等15个生字,掌握多音字“率”。能够把“碳纳米管天梯”等科技术语读正确。 2.了解纳米相关知识,以及纳米技术在生活中的应用。通过学习,激发学生热爱科学的

锂电池规格书参照

聚合物锂离子电池 产品规格承认书 ::JD220768430F(500Ah) 品名: 品名 编制审核批准 客户确认 签名//日期客户名称//印章签名 客户名称 总部:北京神州巨电新能源技术开发有限公司 Beijing Globe Super Power New Energy Technology Development Corp. 地址:中国北京市海淀区上地3街9号嘉华大厦E座206 ADD:Rm E-206,Gem Tech-Center,No.9,3rd Street,Haidian Dist.,Beijing,P.R.China 86-10--82783543-816Fax:86-10 86-10--82780720-1073 Tel:86-10 工厂:河北神州巨电新能源科技开发有限公司 Hebei Globe Super Power New Energy Technology Development Corp. 地址:河北邢台市巨鹿县巨鹿工业园 Hebei i Province,P.R.China ADD:Industrial District,Ju Jul l u,Xiangtan,Hebe

产品规格承认书 目录 1.适用范围---------------------------------------------------------------------------------------------------------2 2.产品规格---------------------------------------------------------------------------------------------------2 3.电池性能检查测试-----------------------------------------------------------------------------------------2 4.外观尺寸图------------------------------------------------------------------------------------------------------3 5.使用指南--------------------------------------------------------------------------------------------------------3 6.其它事项------------------------------------------------------------------------------------------------------4 7.电芯处理须知---------------------------------------------------------------------------------------------------4

纳米材料与锂电池

纳米材料与锂电池 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

摘要 传统的锂离子电池的负极材料是石墨,在可逆容量,循环寿命方面存在一些问题。二相比于块体材料,纳米材料具有许多优异的性能,纳米材料的制备、性能和应用别广泛研究,其中纳米材料在锂电池方面具应用前景。采用纳米材料取代传统块体材料,可以改善锂电池的性能。因此,本论文我们开展了氧化铁纳米材料在锂电池领域的应用调研。 本调研工作如下: 1) 目前锂离子电池的工作原理、负极材料研究情况,分析它们的优缺点。 2) 氧化铁纳米材料作为锂离子电池的负极时相对与其他负极材料的优越性,了解 氧化铁纳米材料在国内外的最新研究状况,在锂离子电池领域的应用情况。分析氧化铁纳米材料各种合成方法,制备工艺参数,对于氧化铁纳米材料电化学性能的影响,进而对锂离子电池影响。 3) 通过调研工作分析氧化铁纳米材料作为锂离子电池的负极材料目前所存在的问题及可能解决方法。比如从氧化铁纳米材料的结构稳定性、纳米材料的形貌尺寸方面及导电性能等方面着手。 关键词:氧化铁纳米材料,锂离子电池,负极材料。 根据中文摘要修改英文,和最后的总结 Abstract In the 90s of the last century, nano materials, nano composite materials, with its unique performance in lithium ion battery anode material application have great development, the traditional lithium ion battery anode material is graphite, but due to its in the reversible capacity, cycle life performance without nano material as anode materials for lithium ion batteries is superior, so nano material in lithium ion battery anode and by more and more people's attention, for example, the research of iron oxide nano materials because of its high capacity, high safety, high stability, abundant resources, cheap price, etc, by the people's attention.

磷酸铁锂动力电池维护手册(整合版1)

沃特玛电池有限公司 磷酸铁锂动力电池使用手册 电子部 2013-3-15 [为了方面售后服务更好的对OPT管理系统进行维护,特此制定本手册,希望对售后服务有所帮助]

前言 为应对日益突出的燃油供求矛盾和环境污染问题,世界主要汽车生产国纷纷加快部署,将发展新能源汽车作为国家战略,加快推进技术研发和产业化,同时大力发展和推广应用汽车节能技术。节能与新能源汽车已成为国际汽车产业的发展方向。新能源客车,目前正在飞速发展。 当新能源客车穿行于街市,走进人们的生活时,对它的了解和认知也就成我们的必修课。然而,在这新能源之风势在必行之际,谈到动力电池,我们中大多数的人对其都知之甚少,这其中包括很多从事纯电动客车工作的相关从业人员,也正因为如此,才给你们的工作和和生活到来了诸多的困难和疑惑。 为解决这些问题,让从事纯电动客车工作的相关从业人员对动力电池有一些初步的了解和认识,本手册将通过重点介绍磷酸铁锂动力电池和管理系统的运用与维护来让大家了解动力电池的相关知识。为了更好服务客户,让相关从业人员熟悉和掌握我公司的纯电动客车动力电池,也为更好的发挥磷酸铁锂动力电池优越的性能,做好相关的维护保养工作,特制定本手册。希望此举能为大家避免在使用或维护我公司产品时造成不必要的困扰和预防产生一些不可挽回的损失。 烦请在使用或维护沃特玛公司纯电动客车动力电池之前,详细阅读本手册!

目录 前言2 第一章为何选择磷酸铁锂电池作为动力电池5 1.1电池的概念 (5) 1.2磷酸铁锂电池优势: (5) 1.3动力电池种类性能对比: (5) 1.4.关键设计说明 (6) 1.5.产品用途 (7) 第二章动力电池系统构成8 2.1.电池组的主要参数(以五洲龙为例)8 2.2电池组结构说明及其示意图 (9) 第三章技术特性13 3.1 单体放电特性 (13) 3.2不同放电倍率下的放电曲线 (13) 3.3 单体充电特性 (14) 3.4 五洲龙电池系统充放电特性曲线图 (15) 3.5 保存特性 (15) 3.6寿命特性 (16) 第四章. 电池系统的使用与安装17 4.1 电池系统使用环境 (17) 4.2 电池系统的使用 (18) 4.4电池系统的安装 (18) 第五章动力电池信息仪表认识23 5.1混合动力电池信息仪表认识 (23) 5.2纯电动电池信息仪表认识 (24) 第六章动力电池存储、维护与保养25 6.1 储存、维护和保养基本要求 (25) 6.2维护与保养: (25) 6.3日常保养: (27) 6.4周保养: (28) 6.5.月保养: (29) 第七章OPT管理系统运用与维护31 7.1电池管理系统BMS基本结构 (31) 7.2 BMS管理系统安装 (33) 7.3 BMS故障处理方法 (34) 第八章紧急处理方案43

浅谈磷酸铁锂电池的性能与应用

龙源期刊网 https://www.doczj.com/doc/659178385.html, 浅谈磷酸铁锂电池的性能与应用 作者:张志伟 来源:《中国科技博览》2015年第30期 [摘要]随着科学技术发展速度不断加快,锂离子电池技术也得到了相应的发展,磷酸铁锂带电池应运而生,这种类型的电池所具优势明显,如安全性好、没有记忆效应、工作电压高、循环寿命长以及能量密度大等。下面笔者就磷酸铁锂电池的性能以及应用进行研究和分析。 [关键词]滇池;性能;磷酸铁锂;储能 中图分类号:TG113.22 文献标识码:A 文章编号:1009-914X(2015)30-0368-01 一、前言 目前在锂电池的研究中,所研究的主要正极材料包含有LMin2O4、LiCoO和LiNiO2等,但因钴资源有限,再加上其有毒,在制备钼酸锂上难度较大。自从磷酸铁锂所具的可逆嵌脱锂特性被报道以后,该材料也受到了广泛关注,关于该材料方面的研究和文献报道也随之增多,和传统锂电池比较,磷酸铁锂电池所具安全性能较好,原材料来源比较广泛,循环寿命长且成本较低等,目前在通信、电网建设中已得到广泛应用。 二、磷酸铁锂电池性能分析 磷酸铁锂电池正极由LiFePO4材料所构成,由铝箔连接正极;电池负极为碳石墨构成,由铜箔和负极连接;电池中间为聚合物隔膜,借助于此隔开电池正负极,其中锂电子能经过隔膜,而电子不可经过隔膜,在电池内存在电解质。于LiFePO4和FePO4间完成电池充放电反应,充电期间,LiFePO4缓慢脱离出锂离子成为FePO4;放电期间,锂离子嵌入FePO4逐渐形成为LiFePO4。当电池在充电时,自磷酸铁锂晶体电池中锂离子迁移至晶体的表面,于电场力不断作用下开始进入电解液,接着穿过隔膜,而后通过电解液迁移至石墨晶体表面,继而嵌入到石墨晶格。在此时,电子通过导电体逐渐流向电池正极铝箔集电极,通过极耳—电池正极柱—外电路—负极极柱—负极极耳逐步流向至铜箔集流体,最后再通过导电体流至石墨负极,从而使负极电荷可达到平衡。电池在放电期间,锂离子脱嵌于石墨晶体,进入电解液,接着穿过隔膜,通过电解液迁移至磷酸铁锂晶体表面,而后重新嵌入至磷酸铁锂晶格中,此时,电子通过导电体逐渐流向至铜箔集电极,通过极耳—电池负极柱—外电路—正极极柱—正极极耳而流向至铝箔集流体,并再通过导电体流至电池正极,以便正极电荷达到平衡。 磷酸铁锂电池借助于自身所具独特优势,如高工作电压、绿色环保、能量密度大、支持无极扩展以及循环寿命长等,将其组成为储能系统以后能够大规模储存电能。由磷酸铁锂电池构成的储能系统,除磷酸铁锂电池组外,还包含有电池管理系统、中央监控系统、换流装置以及变压器,其中换流装置中又包括整流器以及逆变器。该系统能量转换机理主要如下:在充电

纳米储锂材料和锂离子电池.

纳米储锂材料和锂离子电池 3 黄学杰 李泓王庆刘伟峰师丽红陈立泉 (中国科学院物理研究所纳米物理与器件实验室北京 100080 摘要简单综述了锂离子电池的基本原理和发展现状 , 对中国科学院物理研究所固体离子学课题组在纳米储锂材料方面的研究进展做了介绍 . 用 HRTE M 等手段研究了纳米 SnO 、纳米 S i 以及纳米 SnSb 合金在 Li 入脱嵌过程中结构的变化 . 着重介绍了一种具有纳米微孔的球形硬碳材料和纳米 SnSb 合金钉扎的复合负极材料 , 在高功率密度和高能量密度锂离子电池方面具有广阔应用前景 . 关键词锂离子电池 , 纳米材料 , 负极 NAN O 2SCA LE D MATERIA LS FOR M AN D LITHIU M ION H UANG Xue 2Jie LI H ong W SHI Li 2H ong CHE N Li 2Quan (Nano scaled Physics &Device , Institute , Academy o f Sciences , Beijing 100080, China Abstract aspects of lithium ion batteries are briefly introduced. Then we summarize the research on nano 2for lithium storage in the Laboratory for S olid S tate I onics , where the structural ev o 2lution of nano 2SnO , nano 2S i particles and nano 2SnSb alloy during lithium insertion Πextraction has been studied by high resolution transm ission electron m icroscope. In addition , the electrochem ical properties of hard carbon spherules (HCS and nano 2SnSb alloy pinned HCS com posites are described. The large lithium storage capacity and cyclic ca 2pability of these materials make them

纳米粉体材料行业分析报告行业基本情况.doc

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.doczj.com/doc/659178385.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY ,英文缩写为CSMNT )是全国范围纳米行业的自律性管理 组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、 国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和 单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要 开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理 和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上, 政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: 序号法律法规名称发布单位 1 《中华人民共和国产品质量法》全国人大 2 《中华人民共和国标准化法》全国人大 3 《中华人民共和国计量法》全国人大 4 《中华人民共和国计量法实施细则》国家计量局 (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有:序号行业标准名称编号 1 纳米材料术语GB/T 19619-2004 2 纳米粉末粒度分布的测定X 射线小角散射法GB/T 13221-2004 3 气体吸附BET 法测定固态物质比表面积GB/T19587-2004 4 纳米镍粉GB/T 19588-2004 5 纳米氧化锌GB/T 19589-2004 6 超微细碳酸钙GB/T 19590-2004 7 纳米二氧化钛GB/T 19591-2004 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于 国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016 年6 月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要

ISSN 1674-8484CN 11-5904/U 汽车安全与节能学报, 2011年, 第2卷第1期J Automotive Safety and Energy, 2011, Vol. 2 No. 1Manufacture and Performance Tests of Lithium Iron Phosphate Batteries Used as Electric Vehicle Power ZHANG Guoqing, ZHANG Lei, RAO Zhonghao, LI Yong (Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China Abstract: Owing to the outstanding electrochemical performance, the LiFePO 4 power batteries could be used on electric vehicles and hybrid electric vehicles. A kind of LiFePO 4 power batteries, Cylindrical 26650, was manufactured from commercialized LiFePO 4, graphite and electrolyte. To get batteries with good high-current performance, the optimal content of conductive agent was studied and determined at 8% of mass fraction. The electrochemical properties of the batteries were investigated. The batteries had high discharging voltage platform and capacity even at high discharge current. When discharged at 30 C current, they could give out 91.1% of rated capacity. Moreover, they could be fast charged to 80% of rated capacity in ten minutes. The capacity retention rate after 2 000 cycles at 1 C current was 79.9%. Discharge tests at - 20 ℃ and 45 ℃ also showed impressive performance. The battery voltage, resistance and capaci ty varied little after vibration test. Through the safety tests of nail, no in ? ammation or explosion occurred. Key words: hybrid and electric vehicles; power batteries; lithium iron phosphate; lithium ion batteries; 电动汽车用磷酸铁锂动力电池的制作及性能测试 张国庆、张磊、饶忠浩、李雍

磷酸铁锂与锰酸锂的对比

10Ah磷酸铁锂电池与錳酸锂电池对照分析 1.电器特性 磷酸铁磷錳酸锂 电池最高电压(V) 3.9 电池最高电压(V) 4.2 电池最低电压(V) 2.5 电池最低电压(V) 2.75 额定电压(V) 3.2 额定电压(V) 3.7 电池容量(AH) 10 电池容量(AH) 10 最大充电电流(A) 5 最大充电电流(A) 5 最大放电电流(A) 18 最大放电电流(A) 18 过充保护电压(V) 3.95 过充保护电压(V) 4.25 过放保护电压(V) 2.2 过放保护电压(V) 2.45 放电保护电流(A) 20 放电保护电流(A) 20 2.曲线分析 10AH錳酸锂电池0.2C充电曲线 分析: 1.充电第一阶段(0—30 min),充电电流较大,充电快,电池内阻较小。充电平均速率 v=0.025V/min 2.充电第二阶段(30—250 min),电池进入充电稳定状态,内阻增大。充电平均速率 v=6.82*10-4V/min 3.充电第三阶段 (250—370 min ),充电幅度比第二阶段略快,内阻增大。v=0.0025V/min 4.充电过程中,电池容量减小。 5.电池电容C=△Q/△U=10*3600/1.2=30000F 10AH磷酸铁锂电池0.2C充电曲线 分析: 1. 充电第一阶段(0—30 min), 电池内阻有增大的趋势,充电平均速率 v=0.01166V/min 2. 充电第二阶段(30—260 min), 总体处于充电平稳状态,内阻增大, v=4.3478*10-4V/min 3. 充电第三阶段(260—310 min),充电电压上升幅度较大,内阻增大,v=0.01V/min 4. 充电过程中,电池容量减小。 5. 电池电容C=△Q/△U=10*3600/1=36000F 两种电池的比较分析: 1. 10AH磷酸铁锂电池比10AH錳酸锂电池容量小。 2. 充电的第一、二阶段,錳酸锂电池比磷酸铁锂电池要快,第三阶段相反。 两种电池的内阻在充电过程中都趋于增大,电池容量减小。

纳米结构材料在锂离子电池中的应用进展(一)

纳米结构材料在锂离子电池中的应用进展(一) 锂离子电池是现代材料电化学学科的一个巨大的成功。相关的科学与技术连篇累牍地见诸于先前的评论和专着中,有兴趣的读者可以从中得到更多的细节1]。锂离子电池由锂离子插层负极材料(一般为石墨)、锂离子插层正极材料(一般为锂的氧化物如LiCoO2)及将两者分离开的锂离子传导电解液(如溶有锂盐LiPF6的碳酸乙二酯-碳酸二乙酯有机溶液)等材料构成。虽然这类电池已被成功地商业化,但现有的电极和电解液材料已达到了性能的极限。在消费电子,以及清洁能源存储和混合电动交通工具的使用中,新一代可充电锂电池的研制迫切需要材料技术的进一步突破。其中已在开发中的一种途径是纳米材料在锂离子电池中的应用。一、电极锂离子电池纳米电极存在一些潜在的优缺点。优点:(i)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(ii)可发生在块体材料中不可能出现的反应;(iii)更高的电极/电解液接触面积提高了充/放电速率;(iv)短的电子输运路径(允许在低电导或高功率下使用);(v)短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用)。缺点:(i)高比表面积带来的不可预期的电极/电解液反应增加,导致自放电现象,差的循环性能及寿命;(ii)劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;(iii)电极合成过程可能会更加复杂。认识了这些优缺点,人们已经加大在负极材料及最近展开的正极材料的研发力度。二、负极储锂金属存在的问题储锂金属可部分重复地、在低电压(相对于锂)下进行储锂反应,它提供了比传统石墨大得多的比容量。例如,锂硅合金,饱和状态下的分子式为Li4.4Si,理论上可以达到4200mAh/g 的比容量,而金属锂为3600mAh/g,石墨只有372mAh/g。但是,锂的嵌入再加上相变会导致体积发生巨大的变化,产生的应力致使金属电极断裂破碎,电阻增大,存储电荷的能力骤降。尽管在合金化反应中结构的变化是很正常的,但人们依然努力去降低这一效应以保持电极的完整性。活泼/惰性纳米复合(active/inactivecomposite)概念该方法包含了两种材料的混合,一种与锂反应,另一种作为惰性的局域缓冲。在这种复合材料中,活泼相纳米级金属团簇被包裹在惰性非晶相基体中,在嵌锂过程中很好地消除了产生的内应力,从而提高了合金化反应的可逆性。将这一概念应用到不同的体系中,结果显示这些电极极大地提高了锂电池的循环性能。1999年ouMao等2]发现机械合金化得到的Sn基复合材料Sn-Fe-C存在Sn2Fe 和SnFe3C两相,前一相中的Sn可以与Li发生反应因而被称为活泼相,而后一相却几乎不发生嵌锂反应因而被称为惰性相。在两相的协调作用下,循环80次容量几无降低。Si-C纳米复合材料亦有类似功能3,4],2004年Novak,P等5]在日本召开的锂电池会议中宣布其Si-C 纳米复合材料电极循环100次后比容量仍高达1000mAh/g,因而受到了非常的注目。纳米形貌特征对循环性能的贡献2005年3月份,AdvancedMaterials发表了对TiO2-B纳米管或纳米线的研究成果(B表示TiO2的类型而非硼元素)6]。这种材料可由简单的水相合成途径大量合成,直径在40-60nm之间,长度可达数微米。多晶TiO2-B纳米管是一种优秀的锂嵌入载体,插锂电位在1.5-1.6V,形成Li0.91TiO2-B(305mAh/g),具有优异的可逆循环容量(循环100次后容量几无降低)。有意思的是,它的比容量要优于同种相的直径跟纳米线直径相仿的纳米粒子。2003年Green,M等7]发现表面纳米柱磁电极因尺寸限制改变了颗粒的形变行为,减少了断裂的产生,同样显示了优异的可逆容量(循环50次后大部分柱状结构仍保持原样)。人们研究发现纳米碳管的充放电容量可以超过石墨嵌锂化合物理论容量的一倍以上。Z.H.Yang8]发现用化学气相沉积法制备的纳米碳管容量可达700mAh/g,Frackowia9]用Co/硅胶为催化剂在900℃下催化分解乙炔气体得到的纳米碳管的首次嵌锂容量达到952mAh/g。但同时也发现与其它碳材料相比,纳米碳管作为负极材料不仅存在电位滞后,而且存在明显的双电层效应。颗粒度的降低拓宽了人们对电极材料的选择范围纳米尺寸研究上的突破可能会迅速地改变人们对无机材料的化学/电化学反应原有的认识,原以为不满足传统锂插层标准而被否决的材料现在却值得重新思考了。这来自于2003年Larcher,D等所做的关于宏观&纳

锂电池规格书

充电器规格书 Specification of Battery Charger 型号:ES2406S 6A 锂电池充电器 (全铝外壳) / 6A Li Iron/Li Polymer BATTERY CHARGER 1.概述 General 此型号2406S 155×90×50mm的铝质外壳充电器能在输出6A的情况下工作,具有反接保护功能。 Battery Charger 2406S 155×90×50mm can work normally under 6A and with reverse polarity protection. 2.主要参数

Main product specification 3.环境条件 Environmental condition 4.技术特征 Electrical characteristics 输入特征: Input characteristic 输出特征和充电模式:

Output characteristic or charge stages 保护特征: Protection characteristics

充电指示 Charging indicator 5.安全性 Safety & EMC

备注:辨识A:在技术要求范围内,充电器功能正常; Remark: Discrimination A- Function OK under technical requirement range; 辨识R:只有由外部干扰信号引起的保护装置(保险丝)损坏,整个设备在更换保护装置和重设运行参数后才能正常工作,因机械性损坏和设备故障的设备却不能。 Discrimination R- Physical damage or failure of equipment are not allowed, but damage of protection device (fuse) caused by interference signal of outside is allowed, and the whole equipment can work normally after replacement of protection device and reset of running parameter 6.环境测试要求 Environmental testing requirements

磷酸铁锂电池地放电特性及寿命

磷酸铁锂电池(以下简称锂铁电池)作为铁电池的一种,一直受到业界朋友的广泛关注(也有人说锂铁电池其实就是锂离子电池的一种)。就铁电池而言,它可以分为高铁电池和锂铁电池,今天我们以型号为STL18650的锂铁电池为例,来具体说明一下锂铁的电池的放电特性及寿命。 STL18650的锂铁电池(容量为1100mAh)在不同的放电率时其放电特性如图2所示。最小的放电率为0.5C,最大的放电率为10C,五种不同的放电率形成一组放电曲线。由图1中可看出,不管哪一种放电率,其放电过程中电压是很平坦的(即放电电压平稳,基本保持不变),只有快到终止放电电压时,曲线才向下弯曲(放电量达到800mAh以后才出现向下弯曲)。在0.5~10C的放电率范围内,输出电压大部分在2.7~3.2V范围内变化。这说明该电池有很好的放电特性。 图1 STL18650的放电特性 容量为1000mAh的STL18650在不同的温度条件下(从-20~+40℃)的放电曲线如图2所示。如果在23℃时放电容量为100%,则在0℃时的放电容量降为78%,而在-20℃时降到65%,在+40℃放电时其放电容量略大于100%。 从图3中可看出,STL18650锂铁电池可以在-20℃下工作,但输出能量要降低35%左右。 图2 STL18650在多温度条件下的放电曲线 STL18650的充放电循环寿命曲线如图4所示。其充放电循环的条件是:以1C充电率充电,以2C放电率放电,历经570次充放电循环。从图3的特性曲线可看出,在经过570次充放电循环,其放电容量未变,说明该电池有很高的寿命。

图3 STL18650的充放电循环寿命曲线 过放电到零电压试验 采用STL18650(1100mAh)的锂铁动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。 试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 这试验说明该电池即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。

相关主题
文本预览
相关文档 最新文档