锂离子电池纳米电极材料
- 格式:doc
- 大小:736.00 KB
- 文档页数:9
碳纳米管材料在电池制造中的应用碳纳米管(Carbon nanotube,CNT)是一种具有独特属性的纳米材料。
它们是由碳原子组成的,呈现出一种管状结构,长约为数微米到数十微米不等,直径则为几个纳米。
碳纳米管因其高分子量、高比表面积和优异的电导率等特性,已经成为研究的热点,具有广泛的应用前景。
其中,碳纳米管材料在电池制造中的应用是非常引人瞩目的。
一、碳纳米管材料在锂离子电池制造中的应用锂离子电池是当前商业化程度最高的可充电电池之一。
碳纳米管由于其优良的导电性和高比表面积,可以作为锂离子电池的电极材料,提高电池的容量和功率密度。
研究表明,将碳纳米管作为电极材料,不仅可以提高电池初始容量,还可以减轻电极的体积膨胀和收缩,从而延长电池的寿命。
此外,碳纳米管还可以作为导电添加剂用于制备锂离子电池的电解质,提高电解液的电导率,从而提高电池的充放电效率和循环寿命。
二、碳纳米管材料在银锌电池制造中的应用银锌电池是一种常用于医疗器械和电子设备等领域的纽扣电池。
在传统的银锌电池中,锌是主要反应物,其容量较低且存在结构膨胀问题,导致电池循环一定次数后会失去活性。
近年来,研究人员发现通过添加碳纳米管可以显著提高银锌电池的容量和功率密度。
其原理是碳纳米管的高导电性和结构稳定性,能够促进电池反应的进行并减缓电极结构的膨胀和收缩。
三、碳纳米管材料在超级电容器制造中的应用超级电容器,也称为电化学双层电容器,以其高能量密度、长循环寿命和快充速度等优点备受研究者的青睐。
碳纳米管是制备超级电容器的优良材料之一。
首先,碳纳米管具有大比表面积和优异的电极化学性质,可以提高电容器的能量密度和功率密度。
其次,碳纳米管还可以用于制造复合电极材料,通过改变碳纳米管的形态和结构,实现更好的电容性能。
综上所述,碳纳米管作为一种具有优异性能的新型材料,为电池制造提供了新的思路和方法。
未来,碳纳米管材料在电池制造中的应用前景十分广阔,也将为新能源和节能环保等领域的发展做出更大的贡献。
纳米材料在锂离子电池中的应用方法近年来,纳米材料在能源领域的研究和应用取得了显著的进展,尤其是在锂离子电池中的应用方面,纳米材料的独特性能和优势得到了广泛关注和研究。
纳米材料通过提高电池性能和稳定性,进一步拓宽了锂离子电池的应用领域。
本文将重点介绍纳米材料在锂离子电池中的应用方法,并探讨其优势和潜在问题。
首先,纳米材料在锂离子电池中的应用方法之一是作为电极材料。
常见的电极材料包括锂铁磷酸盐(LiFePO4)、钴酸锂(LiCoO2)和锰酸锂(LiMn2O4)等。
使用纳米材料作为电极材料可以提高电解液中离子的扩散速度和电极的可逆容量,从而提高电池的充放电效率和循环寿命。
例如,采用纳米颗粒制备的锂铁磷酸盐电极具有较大的比表面积和短离子扩散路径,提高了离子的迁移速率和锂离子电池的放电容量。
其次,纳米材料在锂离子电池中的应用方法之二是作为添加剂。
通过添加纳米材料到电解液中,可以改善电池的性能和稳定性。
例如,氧化石墨烯可以作为添加剂,提高锂离子电池的循环寿命和抗过充放电性能。
纳米二氧化钛可以作为添加剂,增加锂离子电池的充电速度和减小电池内阻。
此外,纳米材料还可以用于涂层材料,通过改善锂离子电池的界面性能和电子传导性能来提高电池的性能。
另外,纳米材料在锂离子电池中的应用方法之三是作为电解质添加剂。
锂离子电池的电解质主要包括有机电解质和无机电解质。
通过添加纳米材料到电解质中,可以提高电池的离子导电性能和抗氧化性能。
例如,锂离子电池中常用的添加剂之一是纳米氧化铝,在改善电池的稳定性和热稳定性方面具有良好效果。
此外,纳米材料还可以用于制备固态电解质,提高锂离子电池的安全性和循环寿命。
最后,纳米材料在锂离子电池中的应用方法之四是作为导电添加剂。
纳米材料具有较大的比表面积和较好的电导率,因此可以用于提高电池的电子传导性能和电池的输出功率。
例如,纳米碳管可以作为导电添加剂,提高电池的导电性能和电流输出能力。
纳米金属粉末也可以作为导电添加剂,提高电池的输出功率和能量密度。
锂离子电池电极材料锂离子电池是一种重要的储能设备,广泛应用于电动汽车、移动电子设备等领域。
而电极材料作为锂离子电池的核心部件,直接影响着电池的性能和循环寿命。
因此,选择合适的电极材料对于锂离子电池的性能至关重要。
目前,常见的锂离子电池电极材料主要包括锂钴氧化物、锂镍钴锰氧化物、石墨、石墨烯等。
其中,锂钴氧化物因其高比容量和较低的电化学稳定性,被广泛应用于电动汽车和大容量储能系统中。
而锂镍钴锰氧化物由于其较高的比容量和较好的循环寿命,逐渐成为锂离子电池的主流电极材料。
此外,石墨和石墨烯作为负极材料,具有良好的导电性和循环稳定性,被广泛应用于锂离子电池中。
在电极材料的选择上,除了考虑材料的比容量、循环寿命等基本性能外,还需要考虑材料的成本、可持续性等因素。
因此,未来的电极材料研究方向主要包括提高材料的比容量和循环寿命,降低材料的成本,以及开发可持续性的替代材料等方面。
除了电极材料本身的性能外,电极的结构和制备工艺也对电池性能有着重要影响。
目前,常见的电极结构包括片状电极、卷式电极等。
而电极的制备工艺主要包括混合、涂覆、烘干等步骤。
合理的电极结构设计和制备工艺能够提高电极的比表面积,改善电极的导电性和离子传输性能,从而提高电池的能量密度和循环寿命。
此外,电极材料的表面涂层技术也是提高电池性能的重要手段。
通过表面涂层技术,可以有效抑制电极材料的固相界面反应,提高电极材料的循环稳定性和安全性。
目前,常见的电极表面涂层材料包括氧化物、磷酸盐、碳纳米管等。
这些表面涂层材料能够有效提高电极材料的循环寿命和安全性,是未来电极材料研究的重要方向之一。
总的来说,锂离子电池电极材料是影响锂离子电池性能的关键因素之一。
未来,电极材料的研究方向主要包括提高材料的比容量和循环寿命,降低材料的成本,开发可持续性的替代材料,优化电极结构和制备工艺,以及发展表面涂层技术等方面。
通过不断的研究和创新,相信锂离子电池电极材料的性能将会得到进一步的提升,推动锂离子电池在能源储存领域的广泛应用。
纳米纤维锂离子电池
纳米纤维在锂离子电池中的应用通常是通过制备纳米纤维结构的电极材料来实现的,以提高电池的性能和稳定性。
以下是纳米纤维在锂离子电池中的一些关键应用:
电极材料制备:
制备电极材料时,纳米纤维结构可提供更大的比表面积,增加电极与电解质之间的接触面积,有助于提高锂离子电池的电荷/放电速率。
增强导电性:
由于纳米纤维的导电性能较好,将其用作电极材料的支架可以提高整体电池的导电性,减小电极的电阻,有助于提高电池的能量密度和功率密度。
提高结构稳定性:
纳米纤维可以提供更好的机械支撑结构,有助于防止电极材料的机械变形和颗粒剥落,从而提高电池的循环寿命和结构稳定性。
增加电池容量:
纳米纤维结构有助于容纳更多的锂离子,因此可以提高电池的储能容量,使其具有更长的使用寿命和更高的储能能力。
抑制固态电解质界面问题:
在锂离子电池中,纳米纤维结构可以缓解固态电解质与电极之间的界面问题,提高电池的安全性和稳定性。
纳米纤维技术的不断发展和应用使得锂离子电池等能源存储设备能够更好地满足高性能、高能量密度和长寿命的要求。
这些技术的进步对于推动电动汽车、可穿戴设备和可再生能源等领域的发展具有重要意义。
纳米材料在锂离子电池中的应用一、本文概述随着科技的不断进步,锂离子电池已成为现代社会不可或缺的能量储存和转换设备,广泛应用于移动电子设备、电动汽车以及可再生能源系统等领域。
然而,随着对电池性能要求的日益提高,传统的电池材料已难以满足日益增长的需求。
因此,纳米材料因其独特的物理和化学性质,如高比表面积、优异的电导性和离子传输性能,正逐渐在锂离子电池领域展现出巨大的应用潜力。
本文旨在全面探讨纳米材料在锂离子电池中的应用。
我们将首先概述纳米材料的基本特性及其对锂离子电池性能的影响,然后详细介绍不同类型的纳米材料(如纳米碳材料、纳米氧化物、纳米合金等)在锂离子电池正负极、电解质以及隔膜等方面的具体应用。
我们还将讨论纳米材料在提高锂离子电池能量密度、功率密度、循环稳定性和安全性等方面的作用,并展望其未来的发展趋势和挑战。
通过本文的阐述,我们希望能够为相关领域的研究者和从业人员提供有价值的参考和指导。
二、纳米材料在锂离子电池正极中的应用纳米材料在锂离子电池正极中的应用,极大地提升了电池的能量密度、功率密度和循环寿命。
纳米材料具有高的比表面积、优异的电子和离子传输性能,以及独特的物理化学性质,使其在锂离子电池正极材料中展现出巨大的潜力。
纳米材料的高比表面积能够增加其与电解液的接触面积,从而提高锂离子的嵌入/脱出速率。
纳米结构可以有效地缩短锂离子的扩散路径,进一步提高电池的充放电速率。
这对于需要快速充放电的应用场景,如电动汽车和移动设备,尤为重要。
纳米材料在改善正极材料的结构稳定性方面也发挥了重要作用。
在充放电过程中,正极材料会经历体积的膨胀和收缩,这可能导致材料结构的破坏和容量的衰减。
纳米化可以有效地缓解这一问题,因为纳米材料具有更高的结构灵活性和更好的应力承受能力。
纳米材料还可以通过与其他材料的复合,进一步提升正极的性能。
例如,将纳米材料与碳材料复合,可以提高正极的导电性,从而改善电池的倍率性能。
同时,纳米材料还可以与金属氧化物或硫化物等复合,形成具有特殊结构和功能的复合材料,进一步提高正极的能量密度和循环稳定性。
纳米碳管作为锂离子电池负极材料的研究近年来,随着电动汽车、智能手机等电子设备的普及,对于高性能、高能量密度、长寿命的锂离子电池的需求不断增加。
因此,寻找更好的锂离子电池负极材料成为研究的热点之一。
纳米碳管因其具有较高的比表面积、优异的导电性和化学稳定性等特点,被认为是一种潜在的锂离子电池负极材料。
纳米碳管的制备方法主要包括化学气相沉积、电化学沉积、机械合成等。
其中,化学气相沉积是目前应用最广泛的制备方法。
通过调控反应条件,可以得到外径、壁厚均匀的纳米碳管。
此外,还可以通过掺杂、表面修饰等手段改善纳米碳管的电化学性能。
纳米碳管作为锂离子电池负极材料的优点主要包括:其高比表面积可以增加电极的反应面积,提高电极材料的充放电速度和容量;其优异的导电性可以提高电极的导电性能,减小电极内阻;其化学稳定性可以防止电极材料的氧化和腐蚀,延长电池的使用寿命。
纳米碳管作为锂离子电池负极材料的研究还存在一些问题和挑战。
首先,纳米碳管的制备成本较高,需要进一步降低制备成本;其次,纳米碳管充放电过程中容易发生体积变化,导致电极材料的结构破坏,影响电池的循环寿命;最后,纳米碳管的纯度和质量控制也是研究的难点之一。
总之,纳米碳管作为锂离子电池负极材料的研究具有重要的意义和广阔的应用前景。
未来需要进一步深入研究纳米碳管的合成、改性和应用,开发更加高效、可靠的锂离子电池负极材料。
碳纳米管在锂离子电池中的应用研究在如今这个人类普遍使用电子设备的时代,锂离子电池是不可或缺的一个组成部分。
在锂离子电池中,电解质和电极材料是至关重要的。
在此,我们将重点讨论电极材料中碳纳米管(Carbon Nanotubes,CNTs)的应用。
一、碳纳米管的介绍碳纳米管是由碳原子在长度方向上形成的中空圆柱体,其直径可以在几纳米至几十纳米之间变化。
碳纳米管分为单壁碳纳米管与多壁碳纳米管两种。
碳纳米管有很强的机械强度、尺寸稳定性和高导电性,这些特性使得碳纳米管在电化学领域中有着广泛的应用,如在锂离子电池中的应用、电化学传感器中的应用等。
二、碳纳米管在锂离子电池中的应用制备碳纳米管复合材料能够提高锂离子电池的性能。
碳纳米管的应用可以通过分散在电极材料中或涂覆在电极材料上来实现。
与传统电极材料相较而言,碳纳米管复合材料在锂离子电池中的应用具有以下优势:1. 碳纳米管具有高导电性、高机械强度和高化学惯性,这些特性有助于改善电极材料的表面活性,从而提高电极材料的循环稳定性和容量特性。
2. 碳纳米管复合材料可以改善电极材料的导电性,使其更易于电子传输。
此外,由于碳纳米管的高比表面积,材料中更容易存在锂离子扩散,因此具有更高的离子传输性能。
基于上述好处,碳纳米管已经被广泛应用于锂离子电池中,如在锂离子电池的电极材料中作为添加剂,以改善电极材料的性能。
三、结论总的来说,碳纳米管在锂离子电池中的应用研究越来越深入。
这些研究不仅可以改善电极材料性能,而且可以改进电池的循环稳定性和容量特性。
伴随着碳纳米管的不断发展和研究,我们相信碳纳米管在电池领域中将会有更广泛的应用前景。
纳米材料在锂离子电池中的应用研究进展锂离子电池是目前最有前途的电化学储能设备之一,具有高能量密度、长寿命、无记忆效应等优点。
然而,锂离子电池存在的问题也不容忽视,其中最主要的就是其储能密度不足,导致电池容量有限。
为了克服这一难题,纳米材料被引入到锂离子电池中,作为各种电化学活性物质的载体,以期提高电池容量和循环性能。
近年来,围绕纳米材料在锂离子电池中的应用展开了大量的研究工作,并取得了一系列的研究进展。
1. 纳米二氧化钛纳米二氧化钛具有高比表面积和可调控的表面化学特性,可以提供丰富的反应位点,因此被广泛应用于锂离子电池中。
其中,最常见的应用是在锂离子电池的负极上作为锂离子的储存载体。
实验结果表明,由于纳米二氧化钛的高比表面积和可调控的表面化学特性,可以显著提高电池的循环性能和容量,将纳米二氧化钛引入锂离子电池,克服了传统的负极材料在储锂和释放锂过程中面临的种种困难,大大提高了电池的使用寿命和品质。
2. 纳米二氧化硅与纳米二氧化钛不同的是,纳米二氧化硅是一种典型的锂离子电池正极材料,其具有良好的电导率和较高的放电比容量。
实验表明,纳米二氧化硅可以在锂离子电池中形成细小的颗粒,并通过与锂离子的交换和嵌入来储存和释放锂离子。
纳米二氧化硅能够确保锂离子电池正极材料的高效储锂和释锂,提高了锂离子电池的电化学性能,阳极材料的循环性能和容量得到了极大的提高。
3. 纳米硅纳米硅是一种优秀的锂离子电池负极材料,其利用纳米材料带来的高比表面积和抗氧化能力,大大提高了负极材料的储能密度和循环性能。
纳米硅不仅能够激发锂离子在其表面区域的相变反应,还可以确保锂离子在与负极材料的反应中保持稳定,不会发生剧烈的化学反应。
由于纳米硅具有亲水性和亲疏水性的表面特性,可以根据电池的使用条件进行控制,从而实现良好的循环性能和容量。
4. 纳米石墨烯纳米石墨烯是一种新兴的锂离子电池电极材料,在其表面的氧基团、羟基和羰基等团簇可以作为锂离子和电子交换的反应位点,从而提高电池的放电容量和循环性能。
锂离子电池纳米电极材料摘要:纳米材料因为其具有尺寸小、比表面积大等特点,在锂离子电池电极材料的研究中倍受人民关注。
使用纳米电极材料之后锂离子电池容量明显比传统的块体材料提高很多,然而纳米材料的使用也带来了相应的问题。
本文主要讨论纳米材料在锂离子电池电极材料上的应用,分析其优缺点和改进方法,并对未来锂离子电池电极材料做出了展望。
关键词:纳米材料,锂离子电池,1.锂离子电池原理和结构作电压与重量能量密度优于常用的镍镉电池(Ni/Cd)与Ni/MH电池,又无记忆效应及环保问题(锂离子电池的金属含量最低),因此成为目前商业开发二次电池的主流;还以其薄形化及形状有高度的可塑性等特点,因此符合电子产品轻、薄、短、小的要求,所以备受各国科学家及电池业的重视,发展极快。
锂离子电池被人们称为“绿色环保能源”和“跨世纪的能源革命”。
锂离子电池是照相机、电子手表、计算器、各种具有储存功能的电子器件或装置的理想电源。
其结构如下图所示:图1. 锂离子电池的结构锂离子电池由正负电极、电解质、隔膜和外部控制电路组成。
所以研究锂离子电池材料包括:电极材料、电解质材料和隔膜材料。
锂离子电池工作原理如下[1]:图2. 锂离子电池工作原理正极反应:LiCoO2→CoO2+Li++e负极反应:Li++e+C6→LiC6电池反应:LiCoO2+C6→CoO2+ LiC6放电时:锂离子由负极中脱嵌,通过电解质和隔膜,重新嵌入到正极中。
充电时:锂离子从正极中脱嵌,通过电解质和隔膜,嵌入到负极中。
2.纳米电极材料的优缺点锂离子电池纳米电极存在一些潜在的优缺点。
优点:(i)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(ii)可发生在块体材料中不可能出现的反应;(iii)更高的电极/电解液接触面积提高了充/放电速率;(iv)短的电子输运路径(允许在低电导或高功率下使用);(v)短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用)。
缺点:(i)高比表面积带来的不可预期的电极/电解液反应增加,导致自放电现象,差的循环性能及寿命;(ii)劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;(iii)电极合成过程可能会更加复杂。
认识了这些优缺点,人们已经加大在负极材料及最近展开的正极材料的研发力度。
3.1锂离子电池的负极材料锂离子电池负极材料是锂离子的主要宿主,其要求如下:(1)锂贮存量高。
(2)锂在碳中的嵌入脱嵌反应快,即锂离子在固相的扩散系数大,在电极-电解液界面的移动阻抗小。
(3)锂离子在电极材料中的存在状态稳定。
(4)在电池的充放电循环中,碳负极材料体积变化小。
(5)电子导电性高。
(6)碳材料在电解液中不溶解。
负极材料的选择对电池的性能也有很大的影响。
而最常用的是石墨电极,因为石墨导电性好。
结晶度较高,具有良好的层状结构。
适合锂的嵌入\脱出。
而且它的插锂电位低且平坦,可为锂离子电池提供高的平稳的工作电压。
大致为:0.00——0.20V之间(vs Li+/Li)负极材料的种类包括:碳石墨材料(石墨,碳纤维,碳素,裂解等)、金属合金、金属氧化物(锡、铁、锰、镍、钴等过渡金属氧化物)、含锂金属氮化物和复合材料等。
碳负极材料嵌锂容量高,其锂论容量为372mAh/g。
嵌锂电位低且平坦,为锂离子电池提供高而平稳的工作电压。
容量受溶剂的影响程度较大,与有机溶剂的相容能力差。
与锂电位相近,容易在使用过程中石墨层之间形成金属锂枝晶。
目前用石墨作炭负极的生产制造商主要有Panasonic(松下),Sanyo(三洋),Varta (瓦尔塔)等公司。
而碳材料又包括下面分类。
软碳:软碳主要有石油焦、针状焦、碳纤维、碳微球等。
其中,普通石油焦的比容量较低,约为160mAh/g,循环性能较差。
硬碳中主要有树脂碳(如酚醛树脂、环氧树脂、聚糠醇PFA—C等),有机聚台物热解碳(PVA、PVC、PVDF、PAN等)以及碳黑(如乙炔黑)等。
石墨:与普通碳材料相比,石墨的导电性和结晶性更好,因而得到最广泛的应用。
石墨又分为人工石墨,天然石墨和改性石墨。
目前学术界研究热门的碳纳米管在锂离子电池负极材料上也有研究,如下图所示:——D.A.C. Brownson et al. / Journal of Power Sources196 (2011) 4873–4885和普通碳材料相比,碳纳米管有导电性好,具有多孔结构能够给锂离子提供更多的储存空间。
因此碳纳米管具有远高于普通碳负极材料的理论容量,超过1000mAh/g。
然而正是因为碳纳米管的多孔结构,使得碳纳米管负极材料容易受到电池电解液的侵蚀而遭到破坏。
为了解决这个矛盾,D.A.C. Brownson等[2],使用浓硫酸和硝酸对碳纳米管进行了表面修饰,提高了锂离子电池的循环性能。
过渡金属氧化物作为锂离子电池负极材料,因为其特殊的反应机理(不同于石墨等的嵌入和脱出)引起了广泛的关注。
6C + LiCoO2→Li1-x CoO2 + Li x C6 (1.)M x O y+ 2yLi ↔xM + yLi2O (2.) 然而充放电过程中,金属氧化物团聚(粉化)引起较大的体积变化,造成较大的不可逆容量损失,仍然是限制其在更高要求应用(EV、UPS等)的障碍。
目前正在研究的过渡金属氧化物种类有Fe,Ni,Co,Mn,Sn,Cu,Ti等[3],和传统石墨材料相比,具有非常高的理论容量。
如:锡的氧化物包括氧化亚锡、氧化锡及其混合物都具有一定的可逆储锂能力,可达500mAh/g以上, 但首次不可逆容量大,循环衰减快。
通过改进制备工艺条件以及通过向锡的氧化物中掺入B、P、Al及金属元素的方法可使不可逆容量和循环性能得到改善,但仍有待进一步改进和提高。
铁的氧化物包括α-Fe2O3、Fe3O4具有~1000mAh/g的理论容量。
Yong Wang等[4],使用含PVP的SnCl4和尿素溶液分解得到了分散性较好的SnO2纳米颗粒,颗粒的直径在4-6nm之间。
用同样的方法,在尿素分解之前加入人工改性石墨,制备了纳米颗粒和石墨的复合材料。
PVP常作为分散剂,用于制备金属(Pt、Au、Ni、Co等)纳米颗粒。
在纳米颗粒制备的过程中,PVP有效的分散了SnO2颗粒,减弱了颗粒之间的相互作用,从而使制备的样品颗粒更加分散。
SnO2复合材料和分散的纳米颗粒材料相比,循环性能得到了很大的提高,这归因于人工改性石墨对电极材料的保护作用。
Jun Song Chen等[5],使用两步水热合成法得到了碳包覆SnO2纳米颗粒。
首先用Sn盐水解得到前驱体,然后SnO2前驱体与葡萄糖溶液混合水热分解得到碳包覆SnO2纳米颗粒。
葡萄糖裂解碳有两个作用,一是作为SnO2纳米颗粒的保护层,抑制其在充放电过程中的体积变化,二是提高电极材料的导电性。
裂解碳在样品中的质量分数为8%时,样品经过100次循环,其容量依然能够达到631 mAh·g-1,高于传统的SnO2颗粒和石墨材料。
Jun Chen等[6],用阳极氧化铝薄膜模版,硝酸铁导入阳极氧化铝薄膜模版,然后在70℃下干燥2小时,然后在400℃下煅烧5小时,最后使用烧碱去除氧化铝模版,得到了α-Fe2O3纳米管。
右图为样品的SEM图,α-Fe2O3纳米管直径约为200nm。
在100 mA·g-1的放电倍率下,样品在第1、10、100次循环后比容量分别为:1415mAh·g-1、1115mAh·g-1、890mAh·g-1。
这样的比容量是目前为此,所有过渡金属氧化物负极材料中最好的,远远超过石墨材料的372 mAh·g-1。
α-Fe2O3是稳定的铁氧化物,具有八面体结构。
锂电研究制备的纳米材料形状包括纳米晶,纳米管,纳米纺锤体,纳米核壳结构以及其他分层结构等,传统的合成方法有水热法和其他氧化方法,而二维结构的纳米片很少被制备出。
Jun Song Chen等[7],使用至上而下的方法,使用不同的酸腐蚀得到了色子状、片状和西瓜状等结构α-Fe2O3纳米材料。
如右图所示,磷酸沿着(001)晶面轴从两个方向同时腐蚀,可以通过调节腐蚀时间来控制样品的形貌,图中abc是为未经腐蚀的α-Fe2OSEM图,经过一定时间的腐蚀,样品变成直径约为100nm的薄片状。
薄片状的α-Fe2O样品,经过100次循环后,容量保持在以上662 mAh·g-1。
复合负极材料一般高的比容量,典型的如Si、Sn、Al、In、Zn、Ge等,其中金属锡的理论比容量为990mAh/g,硅为4200mAh/g,远高于碳石墨的372 mAh/g。
但锂反复的嵌入脱出导致合金类电极在充放电过程中体积变化较大,逐渐粉化失效,因而循环性能很差。
单种材料总是不能满足高容量和良好的循环性能。
比如金属氧化物具有很高的容量,然而其导电性差,以至于充放电过程能量损失大;而石墨材料导电性好,理论容量较低。
如果将两种材料复合,可以提高综合电化学性能。
常见的复合有掺入金属,与石墨、硅、碳纳米管等复合。
Xiuyun Zhao等[8],用溶胶凝胶法,制备了果冻布丁状的Fe3O4/Fe/Carbon复合材料,具有优异的电化学性能,经过50充放电循环之后,容量仍然保持在600mAh/g以上。
Alok Kumar Rai等[9],用共沉淀法制备了TiP2O7/Li2.6Co0.4N复合材料,以减少单一材料在使用中的容量损失,保持更好的循环性能。
制备的复合材料首次容量为652.57 mAh/g,经过20次循环之后容量为647.54 mAh/g,库仑效率达到98%。
2.2锂离子电池正极材料锂离子电池正极材料的要求:(1)相对锂的电极电位高,材料组成不随电位变化,粒子导电率和电子导电率高,有利于降低电池阻.(2)锂离子嵌入脱嵌可逆性好,伴随反应的体积变化小,锂离子扩散速度快,以便获得良好的循环特性和大电流特性。
(3)与有机电解质和粘结剂接触性能好,热稳性好,有利于延长电池寿命和提高安全性能。
锂离子电池能有较高的电压,也和它的正极材料有很大关系。
因为锂离子电池负极常用相对于锂0—1V 的碳负极,因此要获得3V 以上的电压,必须使用4V 级(vsLi+/Li)正极材料,而通过嵌入过程中吉布斯自由能变化的计算可知,正极电位与晶格能、离子化能、离子的溶剂化能有关.其中晶格能影响较大,因此,电池电压主要由正极结晶结构决定。
而尖晶石结构和层状结构的化合物一般电位较高,故常用作正极材料。
常见的尖晶石结构如:LiMn2O4,层状结构有:LiCoO2。
正极材料面临的挑战在于扩充容量和适应快速充放电[10]。
基于α-NaFeO2尖晶石结构的过渡金属氧化物显示了很好的前景,然而在成本控制和使用寿命(循环性能)上仍需改善。