机器视觉系统基本构成和各部件基本原理
- 格式:ppt
- 大小:10.89 MB
- 文档页数:37
机器视觉的基本原理
机器视觉的基本原理
机器视觉系统是指用电脑来实现人的视觉功能,也就是用电脑来实现对客观的三维世界的识别。
按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。
三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。
所谓三维理解是指对被观察物件的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。
TEO迪奥科技表示机器视觉的系统:
机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。
系统可再细分为
主端电脑(Host Computer)
影像撷取卡(Frame Grabber)与影像处理器(CCD或者COMS 传感器)
影像摄影机(镜头、显微镜头)
照明设备(高周波萤光灯源、LED光源、Halogen卤素灯光源、闪光灯源、其他特殊光源)
影像显示器(LED,LCD)
机构及控制系统(PLC、调焦及其固定地板、Basecam软件处理器、)。
工业机器视觉技术的原理与应用工业机器视觉是指应用计算机视觉技术来实现对工业产品、生产工艺和设备的监测、控制、质量检测和自动化控制等。
它以图像传感器为先导,采用数字图像处理、模式识别、自动控制等技术,通过对图像信息的处理和分析,实现对现场工业环境的现实感知,同时也用于诊断、监测和调试机器故障。
一、工业机器视觉技术的原理工业机器视觉技术主要由光学图像采集系统、图像处理系统、控制计算机和控制器构成。
1.光学图像采集系统光学图像采集系统是工业机器视觉技术的核心部分。
它主要由CCD 相机、光源、镜头和曝光控制器等设备组成。
CCD 相机能够把现场的光信号转换成数字信号,光源目的是为了照亮被检测物体的表面,镜头主要是起到对焦作用,曝光控制器用来控制CCD 相机的曝光时间。
同时,还需要根据被检测物体的不同特性来选择适当的光源和镜头,以达到最佳的图像效果。
2.图像处理系统图像处理系统是对采集到的图像信号进行处理和分析的处理中心,主要包括图像增强、滤波、分割、边缘检测、形态学处理和目标识别等。
图像增强主要用来改善被检测物体的对比度和亮度,滤波则是为消除噪声,分割则是将图像中的目标和背景分离,边缘检测是为了得到目标的轮廓信息,形态学处理用来进行目标结构的填充、腐蚀、膨胀等操作,最后目标识别则是在图像中找出所需的对象,包括形状、大小和颜色等特征。
3. 控制计算机和控制器控制计算机和控制器是用来实现对被检测物体的位置、速度、轮廓、颜色等特征的监测和控制的装置。
在工业机器视觉技术中,最常用的控制器是PLC控制器。
它们在图像处理完成后,将处理结果上传到PLC控制器中,在PLC控制器中进行过滤、处理,使图像处理的结果变成实现控制的信号输出,从而实现自动控制。
二、工业机器视觉技术的应用工业机器视觉技术广泛应用于制造业、半导体、电子、食品、医药、汽车、物流等行业。
其中包括:1. 自动光学缺陷检测工业机器视觉技术可以在生产过程中,实现对产品的缺陷检测,包括开裂、气泡、异物和凹坑等。
机器视觉系统概论一、机器视觉系统构成1.机器视觉的概念机器视觉就是用机器代替人眼来做测量和判断。
机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
美国制造工程师协会(SME Society of Manufacturing Engineers)机器视觉分会和美国机器人工业协会(RIA Robotic Industries Association)的自动化视觉分会对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置”。
在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。
通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。
由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。
这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。
1机器视觉系统的特点是提高生产的柔性和自动化程度。
在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来代替人工视觉;同时在大批量工业生产过程中,用于人工视觉检查产品质量的效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。
而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。
边界跟踪基本要求:目标轮廓边界细、连续无间断、准确。
基本思想:由图象梯度出发,依次搜索并连接相邻边缘点从而逐步检测出边界。
方法:从灰度图像中的一个边缘出发,依次搜索并连接相邻边缘点,从而逐步检测出边界步骤:1确定搜索的起始点2采取合适的数据结构和搜索机理,确定新边界3确定搜索综结准则或停止条件方法:8邻域搜索法,跟踪虫搜索法举例:简易跟踪虫 每次只前进1步, 步距为1个像素;当跨步由黑区进入白区时, 以后各步右转, 直到穿出白区为止;当跨步由白区进入黑区时, 以后各步左转, 直到穿出黑区为止。
图像分割1 区域和边缘(Region and Edge)如何精确解释一幅图像?区域: 相互连结的具有相似特性的一组像素边缘:区域边界上的像素(pixel)图像分割的定义⏹所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。
⏹常见的分割技术:阈值分割技术, 微分算子边缘检测区域增长技术, 聚类分割技术图像分割最简形式: 把灰度图(gray image)转换成二值图讨论:•如何实现区域的分割?理论上,区域分割和边缘检测应该产生相同的结果阈值分割技术全局阈值技术令位于(x , y)点的象素灰度为f( x, y),选择灰度阈值为θ则分割的二值图像为:1,(,)(,)0,f x y g x y其他3 自动阈值化法(auto-threshold)直方图histogram•简单阈值化方法的问题如何找一个最容易将前景和背景分开的阈值?方法:自动寻找阈值(类间方差),对图像进行分割步骤:记t为前景与背景的分割阈值,前景点数占图像比例(概率)为w0,平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。
则图像的总平均灰度为:u=w0*u0+w1*u1。
前景和背景图象的方差:g=w0*(u0-u)*(u0-u)+w1*(u1-u)*(u1-u)=w0*w1*(u0-u1)*(u0-u1)当方差g最大时,可以认为此时前景和背景差异最大,也就是此时的灰度是最佳阈值•自动阈值化方法考虑基于场景中的物体、环境和应用域等知识:对应于物体的图像灰度特性,物体的尺寸,物体在图像中所占比例,图像中不同类型物体的数量•多阈值0.20.40.60.811.21.41.61.82x 104050100150200250(1)模态方法(mode):用正态分布拟合直方图图像中的物体、背景各具有一灰度值,图像被零均值高斯噪声污染,灰度分布曲线是由两个正态分布函数叠加而成.图像直方图将会出现两个分离的峰值,阈值选取波谷最佳。
机器视觉系统工作原理
机器视觉系统是一种通过模拟人类的视觉感知能力来实现物体识别、检测和跟踪的技术。
它由摄像机、图像处理和分析算法以及人工智能技术组成。
机器视觉系统的工作流程如下:
1. 图像采集:系统通过一个或多个摄像机采集所需的图像或视频流。
2. 图像预处理:对采集到的图像进行预处理,包括去噪、增强和图像校正等操作,以提高后续处理的准确性和效果。
3. 特征提取:系统利用图像处理和分析算法,从预处理后的图像中提取有用的特征,例如颜色、纹理、形状和边缘等。
4. 物体识别:通过比对已知物体模型或特征数据库,系统能够识别图像中的物体,并将其分类。
5. 检测和跟踪:系统能够实时检测和跟踪物体的位置、运动和姿态等。
这一步骤通常利用计算机视觉和机器学习算法来实现。
6. 结果输出:系统将处理后的结果以可视化的形式呈现给用户,例如在图像或视频上标注物体位置和信息。
机器视觉系统的工作原理依赖于先进的图像处理、模式识别和机器学习算法。
这些算法通过提取图像的局部特征,然后进行
特征匹配和分类。
利用大量标注好的图像和训练样本,机器学习算法能够自动学习并优化模型,提高系统的准确度和鲁棒性。
总的来说,机器视觉系统通过图像采集、预处理、特征提取、物体识别、检测和跟踪等步骤实现对图像和视频的分析和理解。
它可以应用于许多领域,如工业自动化、无人驾驶、安防监控、医疗诊断和机器人技术等,为人们的生产、生活和工作提供更高效和智能的解决方案。