运动生物力学参数测量
- 格式:ppt
- 大小:7.18 MB
- 文档页数:42
运动生物力学运动生物力学:是生物力学的一个重要分支,是研究体育运动中人体机械规律的科学。
运动生物力学的主要任务:提高运动能力,预防运动损伤运动生物力学的研究方法分为测量方法和分析方法,其中测量方法可以分为运动学测量、动力学测量、人体测量、肌电图测量运动学测量的参数:(角)位移、(角)速度、(角)加速度动力学测量的参数:主要界定在力的测量方面。
人体测量是用来测量人体环节的长度、围度及,(质量、转动惯量等)肌电图测量是用来测量肌肉收缩时的神经支配特性。
动作结构:运动时所组成的各动作间相互联系、相互作用的方法或顺序动作结构的特征主要表现在运动学和动力学,运动学特征指完成动作时的时间、空间和时空方面表现出来的形式或外貌上的特征;动力学的特征指决定动作形式的各种力(力矩)相互作用的形式和特点,包括力、惯性和能量特征。
运动学特征:时间特征、空间特征和时空特征时间特征反映的是人体运动动作和时间的关系:半蹲起立和深蹲起立空间特征是指人体完成运动动作时人体各环节随时间变化所产生的空间位置改变状况:下肢和躯干等空间移动轨迹时空特征指人体完成运动动作时人体位置变化的快慢情况。
动力学特征包括,力的特征、能量特征和惯性特征能量特征:人体运动时完成的功、能和功率方面的表现形式。
惯性特征:人体运动中人的整体、环节以及运动器械的质量、转动惯量对运动动作所具有的影响。
动作系统:大量单一动作按一定规律组成为成套的动作技术,这些成套的动作技术叫做动作系统。
人体基本运动动作形式可主要归纳为推与拉动作、鞭打动作、缓冲和蹬伸动作及扭转、摆动和相向运动等动作形式上肢基本运动动作形式——推(铅球)、拉(单双杠)、鞭打(标枪)★人体基本运动下肢基本运动动作形式——缓冲、蹬伸、鞭打动作形式全身基本运动动作形式——摆动、躯干扭转、相向运动人体的运动是由运动器系的机能特征所决定的,即以关节为支点,以骨为杠杆,在肌肉力的牵拉下绕支点转动,各肢体环节运动的不同组合使人完成千变万化的动作。
运动生物力学实验报告
《运动生物力学实验报告》
摘要:
本实验旨在通过运动生物力学实验,研究人体在运动过程中的生物力学特性。
通过对运动过程中的力、速度、加速度等参数的测量和分析,揭示人体在运动中的力学原理和特点。
实验结果表明,人体在运动过程中能够通过合理的姿势和力量的协调,实现高效的运动表现。
引言:
运动生物力学是研究人体在运动过程中的生物力学特性的学科,具有重要的理论和实践意义。
通过对人体运动过程中的力学参数进行测量和分析,可以深入了解人体在运动中的力学原理和特点,为运动训练和运动损伤的预防提供科学依据。
实验方法:
本实验选择了常见的运动动作,如跑步、跳跃、举重等,通过运动生物力学仪器对参与者进行力、速度、加速度等参数的测量。
同时,利用高速摄像机对运动过程进行录像,以便后期的运动分析。
实验结果:
通过实验测量和分析,得出了人体在不同运动过程中的力学特性。
例如,在跑步过程中,身体的重心和支撑力的变化对于跑步速度和效率有着重要影响;在举重过程中,肌肉的收缩和伸展对于举重效果和损伤风险有着重要影响。
讨论:
运动生物力学实验结果表明,人体在运动过程中能够通过合理的姿势和力量的
协调,实现高效的运动表现。
同时,实验结果也为运动训练和运动损伤的预防提供了科学依据。
未来,可以进一步研究人体在不同运动环境和不同体质条件下的生物力学特性,为运动科学的发展提供更多的理论支持。
结论:
通过运动生物力学实验,我们深入了解了人体在运动过程中的力学特性,为运动训练和运动损伤的预防提供了科学依据。
未来,我们将继续深入研究运动生物力学,为运动科学的发展做出更大的贡献。
运动科学中的运动生物力学研究与分析方法运动生物力学是研究人体运动的科学领域,它通过应用力学原理和解析技术,分析和评估人体在运动过程中的力量、力学、能量等方面的变化,揭示人体运动的机理和规律。
运动生物力学的研究与分析方法对于运动训练、康复治疗等领域具有重要意义。
本文将介绍几种在运动科学中常用的运动生物力学研究与分析方法。
第一种方法是动作分析。
动作分析将人体运动分解为独立的几个关节运动,通过对关节角度、角速度、角加速度等参数的测量,可以揭示人体运动的特点和规律。
常用的动作分析方法包括运动捕捉技术、关节角度测量等。
例如,通过使用运动捕捉系统,可以采集到人体运动的三维坐标数据,进而分析人体姿势、运动幅度、运动轨迹等信息,从而评估运动者的技术水平和动作效果。
第二种方法是力学分析。
力学分析主要用于揭示人体运动中产生和受到的力量变化。
通过测量与受力相关的参数,如力的大小、方向、作用点等,可以定量分析力的传递和转化过程。
常用的力学分析方法包括力平台测量、力矩测量、惯性测量等。
比如,使用力平台可以测量不同步态下的地面反作用力,从而分析人体运动过程中的动作力量和平衡性。
第三种方法是能量分析。
能量分析主要用于研究人体运动中能量的变化和转化。
通过测量与能量相关的参数,如能量消耗、能量产生、能量吸收等,可以评估运动的能量效率。
常用的能量分析方法包括气体分析、代谢测量、功率测量等。
例如,通过测量呼吸氧气和产生二氧化碳的气体浓度变化,可以计算出运动过程中的能量消耗,进而评估运动员的耐力水平和能量效率。
第四种方法是仿真分析。
仿真分析通过建立数学模型和计算机模拟,模拟和预测人体运动的动力学和力学特性。
通过对模型进行参数化和计算机模拟,可以研究不同因素对人体运动的影响。
常用的仿真分析方法包括有限元分析、多体动力学分析等。
例如,使用有限元方法可以建立骨骼、肌肉和关节等组织的数学模型,进而分析和优化人体运动的力学特性。
总结起来,运动生物力学研究与分析方法包括动作分析、力学分析、能量分析和仿真分析等多种技术手段。
运动生物力学经典复习资料汇总及答案解析(本科)绪论1、运动生物力学的概念:研究体育运动中人体及器械机械运动规律及应用的科学。
2、填空习题:(1)运动学测量参数主要包括肢体的角(位移)、角(速度)、角(加速度)等;动力学测量参数主要界定在(力的测量)方面;人体测量是用来测量人体环节的(长度)、(围度)以及(惯性参数),如质量、转动惯量;肌电图测量实际上是测量(肌肉收缩)时的神经支配特性。
(2)运动生物力学的测量方法可以分为:(运动学测量)、(动力学测量)、(人体测量)、以及(肌电图测量)。
(3)人体运动可以描述为:在(神经系统)控制下,以(肌肉收缩)为动力,以关节为(支点)、以骨骼为(杠杆)的机械运动。
2 主观题:(1)运动生物力学研究任务主要有什么?标准答案:一方面,利用力学原理和各种科学方法,结合运动解剖学和运动生理学等原理对运动进行综合评定,得出人体运动的内在联系及基本规律,确定不同运动项目运动行为的不同特点。
另一方面,研究体育运动对人体有关器系结构及机能的反作用。
其主要目的是为提高竞技体育成绩和增强人类体质服务的,并从中丰富和完善自身的理论和体系。
具体如下:第一,研究人体身体结构和机能的生物力学特性。
第二,研究各项动作技术,揭示动作技术原理,建立合理的动作技术模式来指导教学和训练。
第三,进行动作技术诊断,制定最佳运动技术方案。
第四,为探索预防运动创伤和康复手段提供力学依据。
第五,为设计和改进运动器械提供依据(包括鞋和服装)。
第六,为设计和创新高难度动作提供生物力学依据。
第七,为全民健身服务(扁平足、糖尿病足、脊柱生物力学)。
第一章节人体运动实用力学基础1、质点:忽略大小、形状和内部结构而被视为有质量而无尺寸的几何点。
刚体:相互间距离始终保持不变的质点系组成的连续体。
平衡:物体相对于某一惯性参考系(地面可近似地看成是惯性参考系)保持静止或作匀速直线运动的状态。
失重:动态支撑反作用力小于体重的现象。
体育训练中的运动生物力学分析方法体育运动是一项需要精确掌握力量、速度和技巧的运动形式。
为了提高运动员的表现,运动生物力学成为了体育训练中的重要工具。
运动生物力学是对人体运动进行测量、分析和解释的学科,它能够揭示运动员在进行各项技术动作时的力学特性,为训练提供科学依据和指导。
本文将介绍体育训练中常用的运动生物力学分析方法。
一、运动生物力学中的测量设备1. 力板测量系统力板是一种常用的测量力量和力矩的设备,可以测量运动员在不同动作中的着地冲击力、推拉力和支持力。
力板采用高灵敏度的压电传感器,能够准确地测量运动员在运动过程中产生的力量,为训练者提供了力量训练的数据支持。
2. 运动分析仪运动分析仪是一种具备高速摄影和计算机分析功能的设备,通过多摄像头的同步拍摄和电脑分析,能够获得运动员在运动过程中的身体角度、运动轨迹、节奏和速度等相关数据。
运动分析仪在训练和技术改进中扮演了重要角色,能够帮助训练者发现和纠正运动员在技巧动作中的问题。
3. 电子测速仪电子测速仪是一种用于测量运动员速度的设备,它能够通过红外线或射频识别的原理,准确测量运动员在各个阶段的速度和加速度。
电子测速仪广泛应用于田径训练、自行车、游泳等项目中,能够为教练员提供速度训练和战术指导的重要依据。
二、运动生物力学分析方法1. 三维运动分析三维运动分析是一种基于运动分析仪的方法,通过多个摄像头的同步拍摄,可以获得运动员在三维空间中的运动轨迹和身体角度等信息。
三维运动分析可以帮助训练者全面了解运动员的动作特点,找出技术动作中的问题,从而针对性地进行训练和调整。
2. 肌肉活动电位测量肌肉活动电位测量是一种用来研究肌肉收缩特性的方法,通过粘贴电极在运动员身上,可以记录下肌肉收缩时的电信号变化。
这个方法可以帮助训练者了解肌肉的激活程度、收缩速度和协调性,为训练者制定科学的力量训练方案提供依据。
3. 动力学分析动力学分析是一种研究运动员力量和力学特征的方法,通过测量运动员的力量输出和力矩变化,可以了解运动员在技术动作中的力量负荷和力量变化规律。
运动生物力学实验报告运动生物力学实验报告引言:运动生物力学是研究生物体在运动过程中的力学特性和运动机制的学科。
通过对人体或动物运动过程中的力学参数进行测量和分析,可以揭示运动的本质和规律。
本实验旨在通过测量人体行走过程中的步态参数,分析步态的特点和变化规律。
实验方法:1. 实验对象:选择健康的成年人作为实验对象,确保实验结果的可靠性和准确性。
2. 实验仪器:使用高精度的步态分析仪器,包括压力传感器、加速度计、陀螺仪等,用于测量和记录步态参数。
3. 实验过程:实验对象按照自然的步行方式在指定的距离上进行行走,同时步态分析仪器记录下每一步的步幅、步频、支撑时间、摆动时间等参数。
4. 数据处理:将实验得到的数据进行整理和统计,计算平均值和标准差,以得到步态参数的变化规律。
实验结果:经过多次实验和数据处理,得到以下步态参数的变化规律:1. 步幅:随着速度的增加,步幅逐渐增大,但增长速度逐渐减缓。
这是因为步幅受到身体的稳定性和平衡能力的限制,随着速度的增加,身体需要更多的力量来保持平衡。
2. 步频:随着速度的增加,步频逐渐增大。
这是因为为了保持平衡,身体需要更快地移动脚步来适应速度的变化。
3. 支撑时间:随着速度的增加,支撑时间逐渐减少。
这是因为为了保持速度的稳定,身体需要更快地转移重心,减少每一步的支撑时间。
4. 摆动时间:随着速度的增加,摆动时间逐渐减少。
这是因为为了保持速度的稳定,身体需要更快地摆动腿部来适应速度的变化。
讨论与分析:通过对步态参数的测量和分析,可以得出以下结论:1. 步幅和步频是人体行走过程中的两个关键参数,它们相互影响,共同决定了行走的速度和稳定性。
2. 支撑时间和摆动时间是步态过程中的两个重要参数,它们反映了身体的平衡和协调能力。
3. 步态参数的变化规律与运动生物力学的理论相符,说明实验结果的可靠性和准确性。
结论:本实验通过测量和分析步态参数,揭示了人体行走过程中的力学特性和运动机制。
生物力学的基本测试方法和仪器设备生物力学是研究生物体在运动过程中力学特性的学科。
它通过测试方法和仪器设备来测量和分析生物体的运动、力量和力学特征,从而可以帮助我们理解生物体的功能、运动和健康状况。
生物力学的基本测试方法包括动力学测试、静力学测试、运动学测试和生物力学模拟。
下面分别介绍这些方法的基本原理和常用仪器设备。
1.动力学测试:动力学测试是用来测量生物体在运动过程中所受到的力量和力矩。
常用的测试方法包括受力板法、力矩传感器法和动态力学分析法。
受力板法通过放置在地面上的受力板来测量人体脚底所受到的力量和压力分布;力矩传感器法通过安装在关节处的力矩传感器来测量关节的力矩;动态力学分析法通过分析人体在运动过程中所受到的力量和力矩来评估运动的效果和负荷。
2.静力学测试:静力学测试是用来测量生物体静止状态下的力学特性。
常用的测试方法包括静力学平台法和静态测力计法。
静力学平台法通过放置人体或物体在一个平台上来测量其受到的重力和压力分布;静态测力计法通过安装在物体表面的测力计来直接测量其受到的力量。
3.运动学测试:运动学测试是用来测量生物体运动过程中的位置、速度和加速度等动力学参数。
常用的测试方法包括光电测量法、摄像测量法和惯性测量法。
光电测量法通过安装在生物体上的红外线传感器来测量其位置和速度;摄像测量法通过摄像机来记录生物体的运动过程,并通过图像处理技术来分析运动学参数;惯性测量法通过使用惯性测量单元(如陀螺仪和加速度计)来测量生物体的加速度。
4.生物力学模拟:生物力学模拟是用来模拟和分析生物体运动过程中的力学特性。
常用的模拟方法包括有限元分析法、多体动力学模拟法和计算流体力学法。
有限元分析法通过将生物体分割成有限的单元,然后运用力学原理和数值计算方法来模拟其运动过程中的力学行为;多体动力学模拟法通过建立生物体的多体系统,并运用牛顿力学和动力学原理来模拟其运动过程;计算流体力学法通过模拟流体介质中生物体的运动来分析其力学特性。
运动生物力学第一章●运动生物力学是生物力学的一个重要分支,是研究体育运动中人体机械运动规律的科学。
它是将体育运动中人体(或器械)复杂的运动形式及变化规律结合力学和生物学的原理进行研究的一门科学。
●运动生物力学的任务:1改进运动技术。
2改善训练手段。
3改革运动器材。
4预防运动损伤。
5运动康复与健康促进。
●运动生物力学的研究方法:分析法测量法●测量方法有:运动学测量、动力学测量、人体测量及肌电图测量。
运动学测量参数---肢体的(角)位移、(角)速度、(角)加速度等。
运动学参数---主要界定在力的测量。
人体测量参数----人体环节的长度、围度及惯性参数如质量、转动惯量。
肌电图参数----测量肌肉收缩时的神经支配特性。
20世纪生物力学的发展主要体现在3个方面:1生物力学发展成为大学的专业课程。
2生物力学研究结果逐渐用于实践,如医学工业体育等方面。
3生物力学研究人类和动物运动及运动对肌肉—骨骼系统的影响。
第二章●动作结构运动时所组成的各动作间相互联系、相互作用的方式或顺序称为动作结构。
●人体动作结构特征1.运动学特征---时间特征、空间特征、时空特征。
2.动力学特征---力的特征、能量特征、惯性特征。
●动作系统-不同运动项目中的动作技术,都是由若干单一动作组成的。
大量单一动作按一定规律组成为成套的动作技术,这些成套的动作技术称为动作系统。
●动作系统的分类及特点1.周期性动作系统特点---反复性和连贯性、节律性、交互性、惯性作用。
2.非周期性动作系统特点---独立性、复杂性和稳定性。
3.混合性动作系统。
特点---两种动作成分有相互制约性、两种动作的组合部分是动作系统的关键部分。
不固定动作系统特点---复杂多变性、固定于不固定相结合。
●人体基本运动动作形式1.上肢基本运动动作形式: 推拉鞭打2.下肢基本运动动作形式: 缓冲蹬伸鞭打3.全身基本运动动作形式: 摆动躯干扭转相向运动环节--相邻关节之间的部分称环节;●单生物运动链两个相邻骨环节及其之间的可动连接构成,包括相邻两个环节和连结这两个环节之间的关节●多生物运动链:两个或两个以上生物运动链串联而成●开放链:末端为自由环节的生物运动链,该自由环节又称末端环节。