空间向量与空间距离
- 格式:doc
- 大小:851.54 KB
- 文档页数:22
空间向量的应用----求空间角与距离一、考点梳理1.自新教材实施以来,近几年高考的立体几何大题,在考察常规解题方法的同时,更多地关注向量法〔基向量法、坐标法〕在解题中的应用。
坐标法〔法向量的应用〕,以其问题〔数量关系:空间角、空间距离〕处理的简单化,而成为高考热点问题。
可以预测到,今后的高考中,还会继续表达法向量的应用价值。
2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:1)求直线和直线所成的角假设直线AB 、CD 所成的角是α,cos α=|,cos |><CD AB ||||||CD AB CD AB •=2).利用法向量求线面角设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,那么有2πϕθ=-或2πϕθ=+。
特别地0ϕ=时, 2πθ=,l α⊥;2πϕ=时,0θ=,l α⊂或l α。
计算公式为:||sin cos ||||v n v n θϕ==或||sin sin()cos (0)2||||||||v n v n v n v n v n πθϕϕ=-=-=-=<3).利用法向量求二面角设1n 、2n 分别为平面α、β的法向量,二面角l αβ--的大小为θ,向量1n 、2n 的夹角为ϕ,那么有θϕπ+=或θϕ=。
计算公式为:1212cos cos ||||n n n n θϕ=-=1212cos cos ||||n n n n θϕ==4).利用法向量求点面距离如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,那么点P 到平面的距离θcos ||||PA PO d ==||||||||||||n PA PA n PA n PA n •=⊗•=5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。
其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。
用向量法求空间距离湖南省冷水江市七中(417500) 李继龙在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离.例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点,DQ=41DB ,求P 、Q 两点间的距离.解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则0)4141(Q )21021(,,、,,P , 所以)21-4141(-,,=.46=,即P 、Q 两点的距离为46. 二、 求点到直线之间的距离已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d .则有><⋅=⋅cos ,所以cos >=<故><⋅=∠⋅==QP PQO PQ PO d sin sin=⋅==xa图2例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2).所以0)32-(AC 2)02-(AO 1,,,,,==. 故d =13286213168=-= 所以点O 1到直线AC 的距离为132862. 三、 求点到平面的距离如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量在方向上的射影长就是点A 到平面α的距离d,所以d ==><⋅=cos .例3 如图5,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB=2,AF=1,M 是线段EF 的中点,N 为AC 与BD 的交点,求点B 到平面CMN 的距离. 解 如图5,以CE CB CD 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系C-xyz.因为AB=2,AF=1,所以)12222(CM ,,=,)02222(CN ,,=)02(0CB ,,=设平面CMN 的法向量为)(x z y ,,=,则有图4yxx⎪⎩⎪⎨⎧=⋅=⋅0n CM 即⎪⎪⎩⎪⎪⎨⎧=+=++0222202222y x z y x 令x=1,得y=-1,z=0,所以)01(1,,-=.所以点B 到平面CMN的距离1==d .四、 求异面直线间的距离如图6,假设a 、b 是异面直线,平移直线a 至a ′且交b 于点A ,那么直线a ′和b 确定平面α,且直线a ∥α,设n ⊥a ,n ⊥b ,即n 为异面直线a 、b 的公垂线的方向向量.所以异面直线a 的b 的距离等于直线a 上任意一点至平面α的距离.若F ∈a ,E ∈b ,则异面直线a 、b之间的距离d =⋅=><⋅=cos ,即为异面直线a 、b 之间的距离.例4 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求异面直线A 1C 1与B 1C 的距离. 解 如图7所示,以1DD DC DA 、、所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则有1)01-(C B 0)11-(C A 111-,,,,,==.设B C A 111与的公垂线的方向向量为)(x z y ,,=,则⎪⎩⎪⎨⎧=⋅=⋅0B 0111C n C A n 即⎩⎨⎧=--=+-00z x y x 令x=1,得y=1,z=-1,所以)11(1-=,,又)010(11,,=B A ,x所以A 1C 1与B 1C的距离3331===d . 五、 求直线与它平行平面及求两个平行平面之间的距离求直线与它平行平面及两个平行平面之间的距离可以转化为求点到平面的距离,即运用d =求它们之间的距离.例5 如图8,设正方体ABCD-A 1B 1C 1D 1的棱长为1,M 、N 、E 、F 分别是A 1B 1、A 1D 1、B 1C 1 C 1D 1的中点.求平行平面AMN 与平面EFDB 的距离. 解 以1CC 、、所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系C-xyz ,则0)0(1)121(0)1021(,,,,,,,,=-=-=.设平面EFDB 的法向量为)(x n z y ,,=,则有⎪⎩⎪⎨⎧=⋅=⋅0即⎪⎩⎪⎨⎧=+-=+-021021z y z x 取1=z ,则2==y x ,所以)12(2,,=,所以平行平面AMN 与平面EFDB的距离32==d .x。
空间向量间的距离(高中全部8种方法详细例题)1. 利用欧式距离公式计算已知向量A(2, 3, 4)和向量B(1, -2, 5),求两向量间的欧式距离。
解答:欧式距离公式为:d = √((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)其中,(x1, y1, z1)为向量A的坐标,(x2, y2, z2)为向量B的坐标。
代入数值计算:d = √((1-2)^2 + (-2-3)^2 + (5-4)^2)= √((-1)^2 + (-5)^2 + (1)^2)= √(1 + 25 + 1)= √27≈ 5.196所以向量A和向量B之间的欧式距离约为5.196。
2. 利用曼哈顿距离公式计算已知向量C(3, 5, 2)和向量D(6, 1, 4),求两向量间的曼哈顿距离。
解答:曼哈顿距离公式为:d = |x2-x1| + |y2-y1| + |z2-z1|其中,(x1, y1, z1)为向量C的坐标,(x2, y2, z2)为向量D的坐标。
代入数值计算:d = |6-3| + |1-5| + |4-2|= |3| + |-4| + |2|= 3 + 4 + 2= 9所以向量C和向量D之间的曼哈顿距离为9。
3. 利用切比雪夫距离公式计算已知向量E(7, 2, 6)和向量F(4, 8, 3),求两向量间的切比雪夫距离。
解答:切比雪夫距离公式为:d = max(|x2-x1|, |y2-y1|, |z2-z1|)其中,(x1, y1, z1)为向量E的坐标,(x2, y2, z2)为向量F的坐标。
代入数值计算:d = max(|4-7|, |8-2|, |3-6|)= max(|-3|, |6|, |-3|)= 6所以向量E和向量F之间的切比雪夫距离为6。
4. 利用马氏距离公式计算已知向量G(2, 4, 6)和向量H(4, 8, 12),求两向量间的马氏距离。
解答:马氏距离公式为:d = √((x2-x1)^T * C^-1 * (x2-x1))其中,(x1, x2)为向量G和向量H的坐标,C为协方差矩阵。
空间向量与空间距离(45分钟 100分)一、选择题(每小题6分,共30分)1.已知△ABC的三个顶点的坐标为A(-1,0,1),B(1,3,5),C(-1,-1,1),则BC边上的中线AD的长为( )A. B.6 C. D.32.在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1的中点,则点A1到平面MBD的距离是( )A. aB. aC. aD. a3.(2013·开封高二检测)四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别为PB,PD的中点,则P到直线EF的距离为( )A.1B.C.D.4.已知正方体ABCD-A1B1C1D1的棱长为3,E为CD的中点,则点D1到平面AEC1的距离为( )A. B. C. D.15.(2013·石家庄高二检测)正方体ABCD-A1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为( )A.1B.C.D.二、填空题(每小题8分,共24分)6.(2013·东莞高二检测)平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,则AC1的长为.7.在直四棱柱ABCD-A1B1C1D1中,底面为直角梯形,AB∥CD且∠ADC=90°,AD=1,CD=,BC=2,AA1=2,E是CC1的中点,则A1B1到平面ABE的距离是.8.在长方体ABCD-A1B1C1D1中,AB=4,BC=3,CC1=2,则平面A1BC1与平面ACD1的距离是.三、解答题(9题,10题14分,11题18分)9.正方形ABCD的边长为2,E,F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图所示),M是矩形AEFD内一点,如果∠MB'E=∠MB'C',MB'和平面B'C'FE所成的角的正切值为,求点M到直线EF的距离.10.(2013·济南高二检测)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截而得到的,其中AB=4,BC=2,CC1=3,BE=1.(1)求||.(2)求点C到平面AEC1F的距离.11.(能力挑战题)如图所示,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,EF与B1D相交于点H.(1)求证:B1D⊥平面ABD.(2)求证:平面EGF∥平面ABD.(3)求平面EGF与平面ABD的距离.答案解析1.【解析】选A.易知D(0,1,3),∴=(1,1,2),∴||=.2.【解析】选A.如图所示,建立空间直角坐标系,则A1(a,0,a),M(a,0,),B(a,a,0),D(0,0,0)∴=(0,0,),=(a,0,),=(a,a,0),设平面MBD的法向量为n=(x,y,z),则令x=1,得n=(1,-1,-2)∴点A1到平面MBD的距离为= a.【一题多解】由于M是AA1的中点,故A1与A到平面MBD的距离相等. 又V A-MBD=V B-AMD,即××a×a×h=×××a×a,解得h= a.3.【解析】选D.建系如图,即P(0,0,2),E(1,0,1),F(0,1,1),∴=(-1,0,1),=(-1,1,0).∴在上的投影为==,∴点P到直线EF的距离为=.4.【解题指南】先求平面AEC1的法向量,代入点面距公式求解.【解析】选A.建立如图所示空间直角坐标系,则A(3,0,0),D1(0,0,3),E(0,,0),C1(0,3,3),=(-3,,0),=(-3,3,3),=(0,3,0),设n=(x,y,z)为平面AEC1的法向量,则令x=1,得y=2,z=-1,∴n=(1,2,-1).∴D1到平面AEC1的距离为==.5.【解析】选B.易知A1C1∥平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建系如图,易知=(0,0,1)平面ACD1的一个法向量为n=(1,1,1),故所求的距离为=.6.【解析】=++,∴||2=(++)2=||2+||2+||2+2·+2·+2·=1+22+32+2||·||·cos<,>+2||·||·cos<,>+2||·||·cos<,>=14+2×1×2cos 90°+2×1×3cos 60°+2×2×3cos 60°=23,∴||=,即AC1=.答案:7.【解析】以D为原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则A(1,0,0),B(1,2,0),E(0,,1),A1(1,0,2),∴=(0,2,0),=(-1,-,1),设平面ABE的法向量为n=(x,y,z),则解得,取z=1,则n=(1,0,1).又易证A1B1∥平面ABE,所以A1B1到平面ABE的距离等于点A1到平面ABE的距离,又=(0,0,2),∴点A1到平面ABE的距离为==.答案:8. 【解析】由AD1∥BC1,A1B∥D1C可证得平面A1BC1∥平面ACD1,建立如图所示的空间直角坐标系,∵AB=4,BC=3,CC1=2,则A1(3,0,2),B(3,4,0),C1(0,4,2),A(3,0,0).∴=(0,4,-2),=(-3,0,2).设平面A1BC1的法向量为n=(x,y,z),则n⊥,n⊥,解得,取z=6,则n=(4,3,6),又=(0,4,0),则平面A1BC1与平面ACD1的距离为==.答案:9.【解析】建立如图所示的空间直角坐标系,作MN⊥EF,垂足为N,则MN⊥平面B'C'FE,连接B'N,则∠MB'N即为MB'与平面B'C'FE所成的角,∴tan∠MB'N=,设M(0,y,z),0<y<2,0<z<1,则由题意可知N(0,y,0),而E(0,0,0),B'(1,0,0),C'(1,2,0),∴=(-1,0,0),=(0,2,0),=(-1,y,z),=(-1,y,0),=(0,0,-z),∴cos∠MB'E==,cos∠MB'C'===,tan∠MB'N===.∵∠MB'E=∠MB'C',∴y=1,z=.因此点M到直线EF的距离为.10.【解析】以D为原点,DA,DC,DF所在直线为x轴,y轴,z轴建立空间直角坐标系,D(0,0,0),B(2,4,0),A(2,0,0),C(0,4,0),E(2,4,1),C1(0,4,3).(1)设F(0,0,a),由=,得(-2,0,a)=(-2,0,2),∴a=2.∴F(0,0,2),=(-2,-4,2).∴||=2.(2)设n=(x,y,z)为平面AEC1F的法向量,由得取z=1,则n=(1,-,1),又=(0,0,3),∴C到平面AEC1F的距离d==.11.【解题指南】寻找条件中的三线两两垂直建立空间直角坐标系,正确地求出图中各点坐标,然后利用向量的坐标运算证明、求解.【解析】如图所示,建立空间直角坐标系,设A1(a,0,0),则B1(0,0,0),F(0,1,0),E(0,0,1),A(a,0,4),B(0,0,4),D(0,2,2),G(,1,0).(1)=(0,2,2),=(-a,0,0),=(0,2,-2).∴·=0+0+0=0,·=0+4-4=0.∴B1D⊥AB,B1D⊥BD.又AB∩BD=B,∴B1D⊥平面ABD.(2)∵=(-a,0,0),=(0,2,-2).=(-,0,0),=(0,1,-1),∴=,=.∴GF∥AB,EF∥BD.又GF∩EF=F,AB∩BD=B,∴平面EGF∥平面ABD.(3)方法一:由(1)(2)知DH为平面EFG与平面ABD的公垂线段.设=λ=(0,2λ,2λ),则=(0,2λ,2λ-1),=(0,1,-1).∵与共线,∴=,即λ=,∴=(0,,),∴=(0,,),∴||=.∴平面EGF与平面ABD的距离为.方法二:由(2)知平面EGF∥平面ABD,设平面ABD的法向量为n=(x,y,z),则n⊥,n⊥,∴解得取z=1,则n=(0,1,1),∵=(0,2,1),∴d===,即平面EGF与平面ABD的距离为.。
2021届高考数学立体几何突破性讲练09利用空间向量求空间距离一、考点传真:能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用. 二、知识点梳理:空间距离的几个结论(1)点到直线的距离:设过点P 的直线l 的方向向量为单位向量n ,A 为直线l 外一点,点A 到直线l 的距离d =|P A →|2-|P A →·n |2. (2)点到平面的距离:设P 为平面α内的一点,n 为平面α的法向量,A 为平面α外一点,点A 到平面α的距离d =|P A →·n ||n |.(3)线面距离、面面距离都可以转化为点到面的距离. 三、例题:例 1.(2018天津)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z轴的正方向的空间直角坐标系(如图),可得(0,0,0)D ,(2,0,0)A ,(1,2,0)B ,(0,2,0)C ,(2,0,2)E ,(0,1,2)F ,(0,0,2)G ,3(0,,1)2M ,(1,0,2)N .N ABC D EF G M(1)证明:依题意(0,2,0)DC =,(2,0,2)DE =.设0(,,)x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,,不妨令1z =-,可得0(1,0,1)=-n . 又3(1,,1)2MN =-,可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得(1,0,0)BC =-,(122)BE =-,,,(0,1,2)CF =-.设(,,)x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,,不妨令1z =,可得(0,1,1)=n .设(,,)x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令1z =,可得(0,2,1)=m .因此有cos ,||||10⋅<>==m n m n m n,于是sin ,<>=m n 所以,二面角E BC F --. (3)设线段DP 的长为h ([0.2]h ∈),则点P 的坐标为(0,0,)h ,可得(12)BP h =--,,. 易知,(0,2,0)DC =为平面ADGE 的一个法向量,故cos BP DC BP DC BP DCh ⋅<⋅>==3sin602==,解得[0,2]3h=.所以线段DP例2. (2014新课标2)如图,四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D AE C--为60°,AP=1,AD求三棱锥E ACD-的体积.【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(Ⅱ)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,AP为单位长,建立空间直角坐标系Axyz-,则D1(0,),22E1(0,)2AE=.设(,0,0)(0)B m m>,则(C m(AC m=.设1(,,)x y z=n为平面AEC的法向量,则110,0,AC AE ⎧⋅=⎪⎨⋅=⎪⎩n n即0,10,22mx y z ⎧+=+=⎪⎩,可取1=-n . 又2(1,0,0)=n 为平面DAE 的法向量, 由题设121cos ,2=n n12=,解得32m =. 因为E 为PD 的中点,所以三棱锥E ACD -的高为12. 三棱锥E ACD -的体积113132228V =⨯⨯=. 例3.(2013天津) 如图, 四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB DC ∥,AB AD ⊥,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.(Ⅰ)证明11B C CE ⊥;(Ⅱ)求二面角11B CE C --的正弦值;(Ⅲ)设点M 在线段1C E 上;且直线AM 与平面11ADD A, 求线段AM 的长.【解析】解法一 如图,以点A 为原点建立空间直角坐标系,1A 1依题意得A(0,0,0),B(0,0,2),C(1,0,1),B 1(0,2,2),C 1(1,2,1),E(0,1,0)(Ⅰ)易得=(1,0,-1),=(-1,1,-1),于是,所以. (Ⅱ) =(1,-2,-1).设平面1B CE 的法向量,则,即消去,得y+2z =0,不妨令z=1,可得一个法向量为=(-3,-2,1).由(Ⅰ)知,,又,可得平面,故=(1,0,-1)为平面的一个法向量. 于是从而 所以二面角B 1-CE -C 1的正弦值为. (Ⅲ)=(0,1,0),=(1,l ,1),设,,有.可取=(0,0,2)为平面的一个法向量,设为直线AM 与平面所成的角, 则,解得,所以11B C CE 110BC CE ⋅=11B C CE ⊥1B C (),,x y z =m 100B C CE ⎧⋅=⎪⎨⋅=⎪⎩m m 200x y z x y z --=⎧⎨-+-=⎩x m 11B C CE ⊥111CC B C ⊥11B C ⊥1CEC 11B C 1CEC 111111cos ,||||14B C B C B C ⋅<>===m m m 1121sin ,7B C <>=m 7AE 1EC ()1,,EM EC λλλλ==01λ≤≤(),1,AM AE EM λλλ=+=+AB 11ADD A θ11ADD A sin cos ,3AM AB AM AB AM ABθ⋅=<>==⋅6=13λ=AM =例4.(2012福建)如图,在长方体1111ABCD A B C D -中11AA AD ==,E 为CD 中点.(Ⅰ)求证:11B E AD ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得DP ∥平面1B AE ?若存在,求AP 的行;若存在,求AP 的长;若不存在,说明理由.(Ⅲ)若二面角11A B E A --的大小为30°,求AB 的长. 【解析】(Ⅰ)以A 为原点1,,AB AD AA 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB a =,则(0,0,0)A ,(0,1,0)D ,1(0,1,1)D ,,1,02a E ⎛⎫⎪⎝⎭, 1(,0,1)B a 故1(0,1,1)AD =,1,1,12a B E ⎛⎫=-- ⎪⎝⎭,1(,0,1)AB a =,,1,02a AE ⎛⎫= ⎪⎝⎭.∵11011(1)102aAD B E ⋅=-⨯+⨯+-⨯=, ∴11B E AD ⊥ (Ⅱ)假设在棱AA 1上存在一点0(0,0,)P z , 使得DP ∥平面1B AE .此时0(0,1,)DP z =-.又设平面1B AE 的法向量n =(x ,y ,z ).∵n ⊥平面1B AE ,∴1AB ⊥n ,AE ⊥n ,得002ax z ax y +=⎧⎪⎨+=⎪⎩取1x =,得平面1B AE 的一个法向量1,,2a a ⎛⎫=-- ⎪⎝⎭n . 要使DP ∥平面1B AE ,只要DP ⊥n ,有002a az -=,解得012z =. 又DP ⊄平面1B AE ,∴存在点P ,满足DP ∥平面1B AE ,此时AP =12.(Ⅲ)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D .∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD 是平面A 1B 1E 的一个法向量,此时1AD =(0,1,1). 设1AD 与n 所成的角为θ,则11cos a an AD n AD θ--⋅==⋅.∵二面角A -B 1E -A 1的大小为30°,∴cos cos30θ=3a=解得2a =,即AB 的长为2. 四、巩固练习:1.如图,已知圆柱OO 1底面半径为1,高为π,平面ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其运动路程最短时在侧面留下曲线Γ.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后得到平面A 1B 1C 1D 1,边B 1C 1与曲线Γ相交于点P .(1)求曲线Γ的长度;(2)当θ=π2时,求点C 1到平面APB 的距离.【解析】 (1)将圆柱一半展开后底面的半个圆周变成长方形的边BA ,曲线Γ就是对角线BD .由于AB =πr =π,AD =π,∴BD =2π. 故曲线Γ的长度为2π.(2)当θ=π2时,建立如图所示的空间直角坐标系,则O (0,0,0),A (0,-1,0),B (0,1,0),P ⎝⎛⎭⎫-1,0,π2,C 1(-1,0,π),则AB →=(0,2,0),AP →=⎝⎛⎭⎫-1,1,π2,OC 1→=(-1,0,π), 设平面ABP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧2y =0,-x +y +π2z =0, 取z =2得n =(π,0,2),∴点C 1到平面P AB 的距离d =|OC 1→·n ||n |=ππ2+4.2.如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB ⊥AC ,AE ⊥BD ,DE ∥12AC ,AD =BD =1.(1)求AB 的长;(2)已知2≤AC ≤4,求点E 到平面BCD 的距离的最大值.【解析】 (1)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC ⊥AB ,∴AC ⊥平面ABD . 又∵DE ∥AC ,∴DE ⊥平面ABD ,从而DE ⊥BD . 注意到BD ⊥AE ,且DE ∩AE =E ,∴BD ⊥平面ADE , 于是,BD ⊥AD .而AD =BD =1,∴AB = 2. (2)∵AD =BD ,取AB 的中点为O ,∴DO ⊥AB . 又∵平面ABD ⊥平面ABC ,∴DO ⊥平面ABC .过O 作直线OY ∥AC ,以点O 为坐标原点,直线OB ,OY ,OD 分别为x ,y ,z 轴,建立空间直角坐标系Oxyz ,如图所示.记AC =2a ,则1≤a ≤2, A ⎝⎛⎭⎫-22,0,0,B ⎝⎛⎭⎫22,0,0, C ⎝⎛⎭⎫-22,2a ,0,D ⎝⎛⎭⎫0,0,22,E ⎝⎛⎭⎫0,-a ,22,BC →=(-2,2a,0),BD →=⎝⎛⎭⎫-22,0,22.设平面BCD 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧BC →·n =0,BD →·n =0得⎩⎪⎨⎪⎧-2x +2ay =0,-22x +22z =0. 令x =2,得n =⎝⎛⎭⎫2,1a ,2. 又∵DE →=(0,-a,0),∴点E 到平面BCD 的距离d =|DE →·n ||n |=14+1a2.∵1≤a ≤2,∴当a =2时,d 取得最大值, d max =14+14=21717.3.如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离. 【解析】 (1)证明:由题设知,三棱柱的侧面为矩形. 由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD .又因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1A 1,所以CA ,CB ,CC 1两两垂直.以C 为坐标原点,CA →的方向为x 轴的正方向,建立如图所示的空间直角坐标系Cxyz .由题意知B (0,1,0),D (1,0,1),C 1(0,0,2),B 1(0,1,2),P ⎝⎛⎭⎫12,12,2,则BD →=(1,-1,1),DC 1→=(-1,0,1),PC 1→=⎝⎛⎭⎫-12,-12,0. 设m =(x ,y ,z )是平面BDC 1的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·DC 1→=0,即⎩⎪⎨⎪⎧x -y +z =0,-x +z =0,可取m =(1,2,1). 设点P 到平面BDC 1的距离为d ,则d =⎪⎪⎪⎪⎪⎪PC 1→·m |m |=64. 4.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E ,F 分别为PD ,PB 的中点.(1)求证://CF 平面PAD ;(2)若截面CEF 与底面ABCD 所成锐二面角为4π,求PA 的长度. 【解析】(1)证明:取PA 的中点Q ,连接QF ,QD ,F 是PB 的中点,//QF AB ∴且12QF AB =, 底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===//CD AB ∴,12CD AB =, //QF CD ∴且QF CD =,∴四边形QFCD 是平行四边形,//FC QD ∴,又FC ⊄平面PAD ,QD ⊂平面PAD ,//FC ∴平面PAD .(2)如图,分别以AD ,AB ,AP 为x ,y ,z 轴建立空间直角坐标系,设PA a =。
空间向量与空间距离1.了解点到直线、平面距离的概念.2.会用空间向量求点到直线、平面距离.空间距离的向量求法1.判断(正确的打“√”,错误的打“×”)(1)平面α外一点A到平面α的距离,就是点A与平面内一点B→的长度.()所成向量AB(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.()(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案:(1)× (2)√ (3)√2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A.534 B.532 C.532 D.132答案:C3.已知直线l 过点A (1,-1,2),和l 垂直的一个向量为n =(-3,0,4),则P (3,5,0)到l 的距离为( )A .5B .14 C.145 D.45 答案:C4.已知直线l 与平面α相交于点O ,A ∈l ,B 为线段OA 的中点,若点A 到平面α的距离为10,则点B 到平面α的距离为________.答案:5探究点一 点到直线的距离如图,在空间直角坐标系中有长方体ABCD -A ′B ′C ′D ′,AB=1,BC =2,AA ′=3,求点B 到直线A ′C 的距离.[解] 因为AB =1,BC =2,AA ′=3,所以A ′(0,0,3),C (1,2,0),B (1,0,0),所以直线A ′C 的方向向量A ′C →=(1,2,-3).又BC→=(0,2,0), 所以BC →在A ′C →上的射影长为|BC →·A ′C →||A ′C →|=414. 所以点B 到直线A ′C 的距离d =|BC →|2-⎪⎪⎪⎪⎪⎪⎪⎪BC →·A ′C →|A ′C →|2= 4-1614=2357.用向量法求点到直线的距离的一般步骤(1)建立空间直角坐标系;(2)求直线的方向向量;(3)计算所求点与直线上某一点所构成的向量在直线的方向向量上的射影长;(4)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.1.已知正方体ABCD -A1B 1C 1D 1中,E ,F 分别是C 1C ,D 1A 1的中点,求点A 到EF 的距离.解:以D 点为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,设DA =2,则A (2,0,0),E (0,2,1),F (1,0,2),则EF →=(1,-2,1),F A →=(1,0,-2).|EF →|=12+(-2)2+12=6,F A →·EF→=1×1+0×(-2)+(-2)×1=-1, F A →在EF →上的射影长为|F A →·EF →||EF→|=16. 所以点A 到EF 的距离d =|F A |2-⎝ ⎛⎭⎪⎫162 =296=1746.探究点二 点到平面的距离四棱锥P -ABCD 中,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD =DA =2,F ,E 分别为AD ,PC 的中点.(1)求证:DE ∥平面PFB ;(2)求点E 到平面PFB 的距离.[解] (1)证明:以D 为原点,建立如图所示的空间直角坐标系,则P (0,0,2),F (1,0,0),B (2,2,0),E (0,1,1). FP→=(-1,0,2),FB →=(1,2,0),DE →=(0,1,1), 所以DE →=12FP →+12FB →,又因为DE ⊄平面PFB ,所以DE ∥平面PFB .(2)因为DE ∥平面PFB ,所以点E 到平面PFB 的距离等于点D 到平面PFB 的距离. 设平面PFB 的一个法向量n =(x ,y ,z ),则⎩⎨⎧n ·FB →=0n ·FP →=0⇒⎩⎨⎧x +2y =0,-x +2z =0, 令x =2,得y =-1,z =1,所以n =(2,-1,1).又因为FD→=(-1,0,0), 所以点D 到平面PFB 的距离d =|FD →·n ||n |=26=63. 所以点E 到平面PFB 的距离为63.用向量法求点面距的方法与步骤(1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.(3)求向量:求出相关向量的坐标.(4)利用公式即可求得点到平面的距离.2.如图,已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离;(2)求直线AC 到平面PEF 的距离.解:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0. 设DH ⊥平面PEF ,垂足为H ,则DH→=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z (x +y +z =1), PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1. 所以DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0. 同理,DH →·PF →=x +54y -z =0, 又x +y +z =1,所以可解得x =y =417,z =917.所以DH →=317(2,2,3).所以|DH →|=31717. 因此,点D 到平面PEF 的距离为31717.(2)连接AC ,设AH ′⊥平面PEF ,垂足为H ′,则AH′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ. 所以AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.所以AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,所以AC 到平面PEF 的距离为1717.1.空间距离的种类(1)空间中的距离有:点与点的距离、点到线的距离、点到面的距离、线与线的距离、线与面的距离、面与面的距离.(2)空间中各种距离一般都可以转化为点点距、点线距、点面距,其中点点距、点线距最终都可用空间向量的模来求解,而点面距则可由平面的法向量来求解.2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量;(3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.即如图,点B 到平面α的距离为d =⎪⎪⎪⎪|AB →|·cos 〈AB →·n 〉 =|AB →·n ||n |. [说明] ①|AB →·n ||n |表示向量AB →在向量n 方向上投影的绝对值,也是其投影的大小,因此,点B 到平面α的距离也可以表示成⎪⎪⎪⎪⎪⎪⎪⎪AB →·n |n |或⎪⎪⎪⎪⎪⎪AB →·n |n |. ②由于n |n |=n 0可以视为平面的单位法向量,所以点到平面的距离实质就是平面的单位法向量与从该点出发的斜线段向量的数量积的绝对值,即d =|AB →·n 0|.1.若三棱锥P -ABC 的三条侧棱两两垂直,且满足P A =PB =PC =1,则点P 到平面ABC 的距离是( ) A.66 B.63 C.36 D.33 解析:选D.分别以P A ,PB ,PC 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,则A (1,0,0),B (0,1,0),C (0,0,1).可以求得平面ABC 的一个法向量为n =(1,1,1),则d =|P A →·n ||n |=33.2.已知直线l 经过点A (2,3,1),且向量n =(1,0,-1)所在直线与l 垂直,则点P (4,3,2)到l 的距离为________.解析:因为P A →=(-2,0,-1),又n 与l 垂直,所以点P 到l 的距离为|P A →·n ||n |=|-2+1|2=22. 答案:223.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解:建系如图,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),所以AG→=(0,1,0), GE→=(-2,1,1),GF →=(-1,-1,2). 设n =(x ,y ,z )是平面EFG 的法向量,点A 到平面EFG 的距离为d ,则⎩⎨⎧n ·GE →=0n ·GF →=0,所以⎩⎨⎧-2x +y +z =0,-x -y +2z =0,所以⎩⎨⎧x =z ,y =z ,所以n =(z ,z ,z ), 令z =1,此时n =(1,1,1), 所以d =|AG →·n ||n |=13=33,即点A 到平面EFG 的距离为33.[A 基础达标]1.已知平面α的一个法向量n =(-2,-2,1),点A (-1,3,0)在α内,则P (-2,1,4)到α的距离为( )A .10B .3 C.83D.103解析:选D.由已知得P A →=(1,2,-4),故点P 到α的距离d =|P A →·n ||n |=|-2-4-4|3=103. 2.在棱长为1的正方体ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1上取一点E ,使∠EAB =∠EAD =60°,则线段AE 的长为( )A.52B.62C. 2D. 3解析:选C.建立如图所示的空间直角坐标系,设A (0,0,0),B (1,0,0),D (0,1,0),E (x ,y ,1), 故cos ∠EAB =AE→·AB →|AE →||AB →|=xx 2+y 2+1=12,cos ∠EAD =AE →·AD →|AE →||AD →| =yx 2+y 2+1=12.于是x =y =22,故|AE→|=12+12+1= 2.3.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 是A 1B 1的中点,则点A 到直线BE 的距离是( )A.655 B.455 C.255D.55解析:选B.建立空间直角坐标系如图所示, 则BA→=(0,2,0),BE →=(0,1,2),设∠ABE =θ,则cos θ=|BA→·BE →||BA →||BE →|=225=55, sin θ=1-cos 2θ=25 5.故A 到直线BE 的距离 d =|AB →|sin θ=2×255=455. 4.正方体 ABCD -A 1B 1C 1D 1的棱长为1,O 是A 1C 1的中点,则O 到平面ABC 1D 1的距离为( )A.32B.24 C 12D.33解析:选B.以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,则A 1(1,0,1),C 1(0,1,1),C 1O →=12C 1A 1→=⎝⎛⎭⎪⎫12,-12,0,平面ABC 1D 1的法向量DA 1→=(1,0,1),点O 到平面ABC 1D 1的距离d =|DA 1→·C 1O →||DA 1→|=122=24.故选B.5.如图,ABCD EFGH 是棱长为1的正方体,若P 在正方体内部且满足AP →=34AB →+12AD →+23AE →,则P 到AB 的距离为( )A.34 B.45 C.56D.35解析:选C.如图,分别以AB 、AD 、AE 所在直线为x 、y 、z 轴建立空间直角坐标系,AB→、AD →、AE →可作为x 、y 、z 轴方向上的单位向量, AP →=34AB →+12AD →+23AE →, AP →=⎝⎛⎭⎪⎫34,12,23, AB →=(1,0,0),AP →·AB →|AB →|=34,所以P 点到AB 的距离 d =|AP →|2-⎪⎪⎪⎪⎪⎪AP →·AB →|AB →|2 =181144-916=56.6.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是________.解析:以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95,所以AP →在AB 上的投影长为|AP →·AB →||AB →|=165, 所以点P 到AB 的距离为d =|AP →|2-⎝⎛⎭⎪⎫1652=16+8125-25625=3.答案:37.在底面是直角梯形的四棱锥P -ABCD 中,侧棱P A ⊥底面ABCD ,BC ∥AD ,∠ABC =90°,P A =AB =BC =2,AD =1,则AD 到平面PBC 的距离为________.解析:AD 到平面PBC 的距离等于点A 到平面PBC 的距离.由已知可知AB ,AD ,AP 两两垂直.以A 为坐标原点,AB→,AD →,AP →的方向为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),P (0,0,2),D (0,1,0),则PB→=(2,0,-2),BC →=(0,2,0). 设平面PBC 的法向量为n =(a ,b ,c ),则⎩⎨⎧2a -2c =0,b =0,取a =1,得n =(1,0,1),又AB →=(2,0,0), 所以d =|AB→·n ||n |= 2.答案: 28.已知矩形ABCD 中,AB =1,BC =3,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为________.解析:过B ,D 分别向AC 作垂线,垂足分别为M ,N (图略). 则可求得AM =12,BM =32,CN =12,DN =32,MN =1. 由于BD→=BM →+MN →+ND →, 所以|BD→|2=(BM →+MN →+ND →)2=|BM →|2+|MN →|2+|ND →|2+2(BM →·MN →+MN →·ND →+BM →·ND →)=⎝ ⎛⎭⎪⎫322+12+⎝ ⎛⎭⎪⎫322+2×(0+0+0)=52,所以|BD →|=102. 答案:1029.在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,M 为BB 1的中点,N 为BC 的中点.(1)求点M 到直线AC 1的距离; (2)求点N 到平面MA 1C 1的距离.解:(1)建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),M (2,0,1),C 1(0,2,2),直线AC 1的一个单位方向向量为s 0=⎝⎛⎭⎪⎫0,22,22,AM →=(2,0,1),故点M 到直线AC 1的距离d =|AM →|2-|AM →·s 0|2=5-12=322.(2)设平面MA 1C 1的法向量为n =(x ,y ,z ),则n ·A 1C 1→=0且n ·A 1M →=0,即(x ,y ,z )·(0,2,0)=0且(x ,y ,z )·(2,0,-1)=0,即y =0且2x -z =0,取x =1,得z =2,故n =(1,0,2)为平面MA 1C 1的一个法向量,与n 同向的单位向量为n 0=⎝ ⎛⎭⎪⎫55,0,255.因为N (1,1,0),所以MN →=(-1,1,-1),故点N 到平面MA 1C 1的距离d =|MN →·n 0|=355.10.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D .(2)当E 为AB 的中点时,求点E 到面ACD 1的距离.解:以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,设AE =x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0),C (0,2,0).(1)证明:因为DA 1→·D 1E →=(1,0,1)·(1,x ,-1)=0,所以DA 1→⊥D 1E →,即D 1E ⊥A 1D .(2)因为E 为AB 的中点,则E (1,1,0),从而D 1E →=(1,1,-1),AC →=(-1,2,0),AD 1→=(-1,0,1), 设平面ACD 1的法向量为n =(a ,b ,c ),。