专升本高等数学(二)-导数的应用、中值定理及其应用
- 格式:doc
- 大小:35.05 KB
- 文档页数:8
专升本高数知识点汇总高等数学在专升本考试中占据着重要的地位,对于许多考生来说,掌握好高数的知识点是成功升本的关键之一。
以下是为大家汇总的专升本高数知识点,希望能对大家的学习有所帮助。
一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。
对于定义域内的每一个输入值,都有唯一的输出值与之对应。
2、函数的性质包括奇偶性、单调性、周期性和有界性。
奇函数满足 f(x) = f(x),偶函数满足 f(x) = f(x)。
单调性是指函数在某个区间内是递增或递减的。
周期性函数是指存在一个非零常数 T,使得 f(x + T) = f(x)。
有界性则是指函数的值域在某个范围内。
3、极限的定义极限是指当自变量趋近于某个值时,函数值趋近于的一个确定的值。
4、极限的计算包括利用极限的四则运算法则、两个重要极限(\(\lim_{x \to 0} \frac{\sin x}{x} = 1\),\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\))以及等价无穷小代换来计算极限。
5、无穷小与无穷大无穷小是以零为极限的变量,无穷大是绝对值无限增大的变量。
无穷小的性质在极限计算中经常用到。
二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的切线斜率。
2、导数的几何意义导数表示函数在某一点处的变化率,反映了函数图像的斜率。
3、基本导数公式包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
4、导数的四则运算法则加法法则、减法法则、乘法法则和除法法则。
5、复合函数求导通过链式法则进行求导。
6、隐函数求导通过方程两边同时对自变量求导来求解。
7、微分的定义函数的微分等于函数的导数乘以自变量的微分。
8、微分的几何意义微分表示函数在某一点处切线的增量。
三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 f(a) = f(b),那么在(a,b) 内至少存在一点ξ,使得 f'(ξ) = 0 。
2023成人高考专升本高等数学(二)考试真题含答案2023年成人高考专升本高等数学(二)考试真题含答案(回忆版)高等数学二的内容包括哪些?高等数学二教材内容共有十一章,主要内容为函数与极限、导数与微分、中值定理与导数的应用、不定积分、定积分、定积分的应用、微分方程、空间解析几何与向量代数、多元函数微分学、多元函数积分学、级数。
书后有自测题、习题参考答案、自测题参考答案与提示、积分表。
《高等数学(第二版)》是由马少、张好治、李福乐主编,科学出版社于2019年出版的中国科学院规划教材、大学数学系列教材。
该教材可供于高等院校生物类、经贸类和管理类各专业的本、专科学生和高职院校的学生使用,也可供其他相关专业的学生参考。
成考高等数学一和二区别有哪些学习内容不同:《高数一》主要学数学分析,内容主要为微积分(含多元微分、重积分及常微分方程)和无穷级数等。
),《高数二》主要学概率统计、线性代数等内容。
对知识的掌握程度要求不同:《高数》(一)和《高数》(二)的区别主要是对知识的掌握程度要求不同。
《高数》(一)要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正弦变换、正切变换和正割变换。
《高数(二)只要求掌握正弦变换、正切变换等。
考核内容不同:高等数学(一)考核内容中有二重积分,而高等数学(二)对二重积分并不做考核要求。
高等数学(一)有无穷级数、常微分方程,高等数学(二)均不做要求。
成人高考数学题型高起点数学(文/理):分为Ⅰ卷(选择题共85分)和Ⅱ卷(非选择题65分)。
Ⅰ卷选择题:1-17小题,每小题5分,共85分。
Ⅱ卷填空题:18-21小题,每小题4分,共16分;解答题:22-25小题,各小题分值不等,共49分。
专升本高等数学(一/二):选择题 1-10小题,每小题4分,共40分;填空题 11-20小题,每小题4分,共40分;解答题 21-28小题,共70分。
山东省2020年普通高等教育专科升本科招生考试高等数学II 考试要求Ⅰ. 考试内容与要求本科目考试要求考生掌握必要的基本概念、基本理论、较熟练的运算能力。
主要考查学生识记、理解和应用能力,为进一步学习奠定基础。
具体内容与要求如下:一、函数、极限与连续(一)函数1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.了解分段函数和反函数的概念,理解复合函数的概念。
4.掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图形,了解初等函数的概念。
6.了解经济学中的几种常见函数(成本函数、收益函数、利润函数、需求函数和供给函数)。
(二)极限1.了解数列极限和函数极限(包括左极限与右极限)的概念。
2.了解极限的性质与极限存在的两个准则(夹逼准则与单调有界准则),掌握极限的四则运算法则,掌握利用两个重要极限e xx x x x x =+=∞→→)11(lim ,1sin lim 0求极限的方法。
3.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法。
了解无穷大量的概念及其与无穷小量的关系,会运用等价无穷小量替换求极限。
(三)连续1.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
2.掌握连续函数的性质。
3.掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)。
4.理解初等函数在其定义区间上连续,并会利用连续性求极限。
二、一元函数微分学(一)导数与微分1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程。
2.熟练掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。
3.掌握隐函数的求导法、对数求导法。
4.了解高阶导数的概念,会求简单函数的n 阶导数。
5.了解函数微分的概念,了解微分与导数的关系,会求函数的一阶微分。
(二)中值定理及导数的应用1.理解罗尔中值定理、拉格朗日中值定理,了解柯西中值定理和泰勒定理。
《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x )与其反函数y =ƒ-1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限: 1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。
专升本高数二公式常用对于准备专升本考试的同学来说,高等数学二的学习是一个不小的挑战。
在这门课程中,掌握常用公式是解题的关键。
下面,让我们一起来梳理一下专升本高数二中那些常用的公式。
首先,函数与极限部分。
极限的计算是这部分的重点,常用的公式有:lim(x→a) (x a) = 0 这个公式看似简单,却是计算极限时经常会用到的基础。
lim(x→∞)(1 + 1/x)^x = e 这是一个重要的极限公式,e 约等于 271828,在很多极限计算中起着关键作用。
当涉及到函数的连续性时,有连续的定义:lim(x→x₀) f(x) =f(x₀) ,若函数在某点的极限值等于该点的函数值,则函数在该点连续。
其次,导数与微分部分。
导数的定义式:f'(x) =lim(Δx→0) f(x +Δx) f(x) /Δx ,这是求导的基础。
基本初等函数的导数公式一定要牢记,比如:(x^n)'= nx^(n 1) ,(sin x)'= cos x ,(cos x)'= sin x ,(e^x)'= e^x ,(ln x)'= 1/x 。
导数的四则运算法则也非常重要:(u ± v)'= u' ± v' ,(uv)'= u'v + uv' ,(u/v)'=(u'v uv')/ v²。
微分的定义:dy = f'(x)dx ,它与导数密切相关。
接着,中值定理与导数的应用部分。
罗尔定理:如果函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b) ,那么在(a, b) 内至少存在一点ξ ,使得 f'(ξ) = 0 。
拉格朗日中值定理:如果函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,那么在(a, b) 内至少存在一点ξ ,使得 f(b) f(a) = f'(ξ)(b a) 。
浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x )与其反函数y =ƒ-1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x)与其反函数y =ƒ-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:,,(自己找找...!)并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。
专升本高等数学(二)-导数的应用、中值定理及其应用(总分:94.53,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:5,分数:5.00)1.在下列函数中,以x=0为极值点的函数是______.∙ A.y=-x3∙ B.y=cosx∙ C.y=tanx-x∙ D.y=arcsinx-x(分数:1.00)A.B. √C.D.解析:2.下列命题正确的是______.∙ A.在(a,b)内,f'(x)>0是y=f(x)在(a,b)内为增函数的充分条件∙ B.可导函数的驻点一定是极值点∙ C.连续函数在[a,b]上的极大值必大于极小值∙ D.函数y=f(x)的极值点一定是此函数的驻点(分数:1.00)A. √B.C.D.解析:3.已知y=f(x)在x0处有极大值,下列结论正确的是______.∙ A.f'(x0)=0,且f"(x0)<0∙ B.f'(x0)=0,或f'(x0)不存在∙ C.f'(x0)=0∙ D.f"(x0)<0(分数:1.00)A.B. √C.D.解析:4.下列命题正确的是______.∙ A.若(x0,f(x0))为曲线y=f(x)的拐点,则f"(x0)=0∙ B.若f"(x0)=0,则(x0,f(x0))为曲线y=f(x)的拐点∙ C.若f"(x0)=0,或f"(x0)不存在,则(x0,f(x0))可能为曲线y=f(x)的拐点∙ D.以上命题都不对(分数:1.00)A.B.C. √D.解析:5.已知(0,1)是曲线y=ax3+bx+1上的拐点,则a,b的值是______.∙ A.a=1,b=-3∙ B.a≠0,b∈R∙ C.a=1,b=0∙ D.a∈R,b∈R(分数:1.00)A.B. √C.D.解析:二、{{B}}填空题{{/B}}(总题数:2,分数:2.00)6.曲线f(x)=x3-2x在点x=1的切线方程是 1.(分数:1.00)填空项1:__________________ (正确答案:y=x-2.)解析:7.曲线y=x3-3x2-x的拐点坐标为 1.(分数:1.00)填空项1:__________________ (正确答案:(1,-1).)解析:三、{{B}}解答题{{/B}}(总题数:3,分数:87.50)证明下列等式或不等式.(分数:22.50)2.50)__________________________________________________________________________________________ 正确答案:(证明一个函数是常数函数,分为两步:第一步先证其为常数,即证其导为0;第二步,再用特殊点求常数.设y=arcsinx+arccosx,由于[*],得知函数y为常数函数.取x=0,得y=arcsin 0+arccos 0=[*],所以 arcsinx+arccosx=[*])解析:>1).(分数:2.50)正确答案:(设[*],由于[*],在x>1时恒有y'>0,所以函数[*]在x>1上是单调递增的函数.而y(1)=0,从而y(x)>y(1)=0,即lnx-[*],也即 [*])解析:(3).[0,3]上的最大值和最小值.(分数:2.50)__________________________________________________________________________________________ 正确答案:(因为[*],令y'=0,得驻点x=1,不可导点x=0,x=2.由于y(0)=0,y(2)=0,y(3)=[*],所以最大值为y(3)=[*],最小值为y(0)=0,y(2)=0.)解析:(4). 2.50)__________________________________________________________________________________________ 正确答案:(为方便求导,把函数改写成指数对数形式:[*],由于 [*] 令y'=0,得x=e.当x<e时,y'>0;当x>e时,y'<0.说明函数在x=e处取得极大值,且[*].)解析:(5).求曲线y=ax3+bx2+cx+d,使得(-2,44)为驻点,(1,-10)为拐点.(分数:2.50)__________________________________________________________________________________________ 正确答案:(求曲线y=ax3+bx2+cx+d,使得(-2,44)为驻点,(1,-10)为拐点.由y'=3ax2+2bx+C一0及已知得知:3a(-2)2+2b(-2)+c=0,44=a(-2)3+b(-2)2+c(-2)+d.由y"=6ax+2b=0及已知得知:6a+2b=0,-10=a+b+c+d.联立解得:[*])解析:(6). 2.50)__________________________________________________________________________________________ 正确答案:(描绘函数[*]的图形.(1)函数y=f(x)定义域为(-∞,-1)∪(-1,+∞).x=-1为间断点.[*](2)f'(x)=0的根为x=1;f"(x)=0的根为x=2.点x=1和x=2把定义域划分成四个区间:(-∞,-1),(-1,1],[1,2],[2,+∞).(3)在各部分区间内f'(x),f"(x)的符号、相应曲线弧的升降及凹凸,以及极值点和拐点等如下表所示.x (-∞,-1) (-1,1) 1 (1,2) 2 (2,+∞)f'(x) - + 0 - - -f"(x) - - - - 0 +f(x) [*] [*] 极大值点[*] 拐点[*](4)由于[*].所以图形有一条水平渐近线y=2和一条铅直渐近线x=-1.(5)补充几个点,如算出x=1,x=2处的函数值.[*]从而得图形上的两个点[*].又由于f(0)=2,[*],f(-2)=-4,f(-4)=[*],从而得图形上的4个点.M3(0,2),[*],M5(-2,-4),[*]函数[*]的图形如下图所示.[*])解析:(7).欲用围墙围成面积为216m2的一块巨型的地,并在正中间用一堵墙将其隔成两块.问这块土地的长和宽选取多大尺寸时,才能使所用建筑材料最省?(分数:2.50)正确答案:(设s为围墙总长,长为x,宽为y.则x·y=216所以[*].因为s=2x+3y=2x+[*],所以令[*],得x=18(为x=-18舍去).且x=18是函数的唯一驻点.由结论知x=18是极小值点,也是最小值点.所以当x=18m,[*]时,所用材料最省.)解析:(8).y=x的交点处的切线方程.(分数:2.50)__________________________________________________________________________________________ 正确答案:(由[*]得交点(1,1).再由[*],得切线方程为 [*])解析:(9). 2.50)__________________________________________________________________________________________ 正确答案:(定义域为x≠-1.由[*],得x=0,x=-2.列表讨论(见下表).x (-∞,-2) (-2.-1) (-1,0) (0,+∞)f'(x) + - - +f(x) [*] [*] [*] [*]所以函数的单调递增区间为(-∞,-2)和(0,+∞);单调递减区间为(-2,-1)和(-1,0).)解析:求下列函数的极值.(分数:35.00)(1).y=e x cosx(分数:2.50)__________________________________________________________________________________________ 正确答案:(y'=e x cosx-e x sinx=e x(cosx-sinx),令y'=0得x=kπ+[*].又y"=-2e x sinx,当[*]时,[*],函数有极大值[*]当[*]时,[*],函数有极小值[*])解析:2.50)__________________________________________________________________________________________ 正确答案:([*],令f'(x)=0,得驻点x=1,不可导点x=0.列表讨论(见下表).x (-∞,0) 0 (0,1) 1 (1,+∞)f’(z)+ - 0 +l厂(z) [*] 极大值点[*] 极小值点[*]故极大值f(0)=0,极小值[*].)解析:(3).试证明:如果函数y=ax3+bx2+cx+d满足条件b2-3ac<0,那么这个函数没有极值.(分数:2.50)__________________________________________________________________________________________ 正确答案:(证明:因y'=3ax2+2bx+c,要使可导函数没有极值,必使y'=0恒不成立.即使3ax2+2bx+c=0没有实数解,从而必须使一元二次方程的判别式Δ=(26)2-4·3ac<0即b2-3ac<0.) 解析:(4).试问a为何值时,函数f(x)=asinx+sin3x?它是极大值还是极小值?并求此极值.(分数:2.50)正确答案:(f'(x)=acosx+cos3x,当[*]时,f'(x)=0,得acos[*]+cosπ=0,从而a=2.又f"(x)=-asinx-3sin3x,[*],所以有极大值[*][*])解析:(5).问函数y=x2<0)在何处取得最小值?并求出最小值.(分数:2.50)__________________________________________________________________________________________正确答案:([*],令y'=0得x=-3.又[*].所以在x=-3时y有最小值,其值为27.)解析:(6).求函数-3,3]的最大值和最小值.(分数:2.50)__________________________________________________________________________________________正确答案:(由[*]得驻点x=-2,不可导点x=-5,x=1.而f(-3)=4,f(-2)=[*],f(1)=0,f(3)=[*].所以最大值是f(3)=[*],最小值是f(1)=0.)解析:(7).求函数y=x2e-x的凹凸区间和拐点.(分数:2.50)__________________________________________________________________________________________正确答案:(因为y'=2xe-x-x2e-x=e-x(2x-x2)y"=e-x(2x-x2)+e-x(2-2x)=e-x(x2-4x+2)令y"=0解得[*].易判定[*]都是拐点.凹区间是(-∞,2-[*])∪(2+[*],+∞),凸区间是(2-[*],2+[*]).)解析:(8).描绘函数y=e-x2的图形.(分数:2.50)__________________________________________________________________________________________正确答案:(对于[*](1)定义域为R.(2)易知其为偶函数,图像关于y轴对称,且有y'=-2xe-x2,y"=(4x2-2)e-x2令y'=0,得x1=0;令y"=0,得[*].因此没有使y',y"不存在的点.(3)讨论函数的性质,如下表所示.x [*] [*] [*] 0 [*] [*] [*]f'(x) + + + 0 - - -f"(x) + 0 - - - 0 +f(x) [*] 拐点[*] 极大值点[*] 拐点[*]可见,有两个拐点[*]≈(-0.7,0.6),[*]≈(0.7,0.6).一个极大值点(0,1).(4)因[*],所以有水平渐近线y=0.)解析:(9). 2.50)__________________________________________________________________________________________正确答案:([*])解析:(10).某工厂每天生产x支产品的总成本为元).该产品独家经营,市场需求规律为x=75-3P,其中P为每支售价,问每天生产多少支时获利润最大?此时的每支售价为多少?(分数:2.50)正确答案:(设利润为L(x),[*],则L(x)=px-C(x)=[*]x2+32x-75求导得L'(x)=[*]+32,令L'(x)=0,得[*]+32=0,x=36,从而[*].又L"(x)=[*]<0,所以当每天生产36支时,获利润最大,此时每支售价为13元.)解析:(11).设计一个容积为Vm3的圆柱形无盖容器,已知每平方米侧面材料的价格是底面材料价格的1.5倍,问容器的底半径r与高h为多少时,材料总造价y最小?(分数:2.50)__________________________________________________________________________________________正确答案:(在不影响问题解答的前提下,不妨设底面材料价格为1个单位.则y=πr2+2πrh·1.5由于V=πr2h,得[*],代入上式得y=πr2+[*].求导得y'=2πr-[*],令y'=0,解得3V=2πr3.联立V=πr2h。