人教版高二物理35原子物理讲义
- 格式:doc
- 大小:380.50 KB
- 文档页数:16
玻尔的原子模型重/难点重点:玻尔原子理论的基本假设。
难点:玻尔理论对氢光谱的解释。
重/难点分析重点分析:玻尔原子理论的基本假设包括能级(定态)假设、跃迁假设、轨道量子化假设。
难点分析:原子从基态向激发态跃迁的过程是吸收能量的过程。
原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。
突破策略1.玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为n E )跃迁到另一种定态(设能量为m E )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 m n h E E ν=-(h 为普朗克常量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:21n r n r = n =1,2,3……能 量: 121n E E n =n =1,2,3…… 式中1r 、1E 、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,n r 、n E 分别代表第n 条可能轨道的半径和电子在第n条轨道上运动时的能量,n 是正整数,叫量子数。
3.氢原子的能级图从玻尔的基本假设出发,运用经典电磁学和经典力学的理论,可以计算氢原子中电子的可能轨道半径和相应的能量。
(1)氢原子的大小:氢原子的电子的各条可能轨道的半径211n r r n r =:,1r 代表第一条(离核最近的一条)可能轨道的半径例:n =2, 10 2 2.1210m r -=⨯。
word整理版学习参考资料放射源金箔荧光屏显微镜ABC D第18章原子结构章末复习教案教学目标:1.巩固理解本章知识点;2.会利用本章知识及方法解决实际问题。
教学重点:1.理解和巩固本章知识点;2.掌握本章所涉及的物理方法;3.解决实际问题教学难点:利用本章知识及方法解决实际问题教学过程一.基础知识1、关于?粒子散射实验(英国物理学家卢瑟福完成,称做十大美丽实验之一)(1)?粒子散射实验的目的、设计及设计思想。
①目的:通过?粒子散射的情况获取关于原子结构方面的信息。
②设计:在真空的环境中,使放射性元素钋放射出的?粒子轰击金箔,然后透过显微镜观察用荧光屏接收到的?粒子,通过轰击前后?粒子运动情况的对比,来了解金原子的结构情况。
③设计思想:与某一个金原子发生作用前后的a粒子运动情况的差异,必然带有该金原子结构特征的烙印。
搞清这一设计思想,就不难理解卢瑟福为什么选择了金箔做靶子(利用金的良好的延展性,使每个?粒子在穿过金箔过程中尽可能只与某一个金原子发生作用)和为什么实验要在真空环境中进行(避免气体分子对?粒子的运动产生影响)。
(2)?粒子散射现象①绝大多数?粒子几乎不发生偏转;②少数?粒子则发生了较大的偏转;③极少数?粒子发生了大角度偏转(偏转角度超过90°有的甚至几乎达到180°)。
(3)a粒子散射的简单解释①由于电子质量远远小于?粒子的质量(电子质量约为?粒子质量的1/7300),即使?粒子碰到电子,其运动方向也不会发生明显偏转,就象一颗飞行的子弹碰到尘埃一样,所以电子不可能使α粒子发生大角度散射。
而只能是因为原子中除电子外的带正电的物质的作用而引起的;②使?粒子发生大角度散射的只能是原子中带正电的部分,按照汤姆生的原子模型,正电荷在原子内是均均分布的,?粒子穿过原子时,它受到两侧正电荷的斥力有相当大一部分互相抵消,因而也不可能使?粒子发生大角度偏转,更不可能把?粒子反向弹回,这与?.word整理版学习参考资料粒子散射实验的结果相矛盾,从而否定了汤姆生的原子模型。
高二物理选修3-5原子核知识点总结原子核是每年高二物理期中考试都要出现的考点,学生需要认真掌握并学会运用相关知识点。
下面店铺给大家带来高二物理选修3-5原子核知识点,希望对你有帮助。
高二物理原子核知识点一、原子核的组成1、天然放射现象⑴天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。
这种射线可穿透黑纸而使照相底片感光。
放射性:物质能发射出上述射线的性质称放射性。
放射性元素:具有放射性的元素称放射性元素。
天然放射现象:某种元素自发地放射射线的现象,叫天然放射现象。
这表明原子核存在精细结构,是可以再分的。
⑵放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如下图射线种类射线组成性质电离作用贯穿能力射线氦核组成的粒子流很强很弱射线高速电子流较强较强射线高频光子很弱很强2、原子核的组成原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子。
在原子核中有:质子数等于电荷数、核子数等于质量数、中子数等于质量数减电荷数。
二、原子核的衰变;半衰期⑴衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒。
⑵半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。
放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件没有关系。
三、放射性的应用与防护;放射性同位素放射性同位素:有些同位素具有放射性,叫做放射性同位素。
同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。
正电子的发现:用粒子轰击铝时,发生核反应。
与天然的放射性物质相比,人造放射性同位素:①放射强度容易控制②可以制成各种需要的形状③半衰期更短④放射性废料容易处理放射性同位素的应用:①利用它的射线A.由于γ射线贯穿本领强,可以用来γ射线检查金属内部有没有砂眼或裂纹,所用的设备叫γ射线探伤仪。
原子物理讲义一、物理学简史概要1、普朗克通过对黑体辐射的研究提出了能量量子化的观点,从而成为量子力学的奠基人。
2、光电效应和康普顿效应证明了光具有粒子性,康普顿效应证明了光不仅具有能量还具有动量。
3、德布罗意提出了物质波的猜想,电子衍射实验证明了其猜想。
4、波恩提出了概率波的观点。
5、汤姆孙发现电子并提出了原子的枣糕模型。
6、密立根通过油滴实验测出了电子的电荷量并证明了电荷是量子化的。
7、卢瑟福通过α粒子散射实验,提出了原子的核式结构模型。
8、贝克勒尔发现了天然放射现象说明原子核具有复杂结构。
9、伦琴发现了x 射线。
10、卢瑟福用α粒子轰击氮原子核发现了质子:14 7N +42He ―→17 8O +11H 并预言了中子的存在。
11、约里奥居里夫妇发现放射性同位素,同时发现正电子2713Al +42He ―→3015P +10n 3015P ―→3014Si +0+1e 。
12、查德威克发现中子:42He +94Be ―→12 6C +10n二、光电效应1、赫兹最早发现光电效应现象。
2、定义:照射到金属表面的光能使金属中的电子从表面逸出的现象。
逸出的电子叫光电子。
3、五个概念:①逸出功(0W ):由金属板决定(对于同一金属板逸出功是定值)②最大初动能:0W hv E km -=(由频率决定)③截止频率:hW V c 0=由金属板决定截止的是电流。
也称为极限频率。
④遏制电压:0W hv E eU km c -==得:eW v e hU c 0-=由频率决定 ⑤光强(I ):AtNhvI =光强越强光电子数量越多。
4、四条规律:①光电子的能量由入射光的频率决定与入射光的强度无关。
②每种金属都有一个极限频率当入射光的频率大于等于截止频率才会发生光电效应。
③当入射光的频率大于极限频率时,入射光的强度决定光电子的数目决定饱和光电流的大小。
④光电效应是瞬时的。
5、四类图象图象名称图线形状由图线直接(间接)得到的物理量 最大初动能E k 与入射光频率ν的关系图线①极限频率:图线与ν轴交点的横坐标νc②逸出功:图线与E k 轴交点的纵坐标的值W 0=|-E |=E③普朗克常量:图线的斜率k =h 颜色相同、强度不同的光,光电流与电压的关系①遏止电压U c :图线与横轴的交点 ②饱和光电流I m :电流的最大值 ③最大初动能:E km =eU c颜色不同时,光电流与电压的关系①遏止电压U c1、U c2②饱和光电流③最大初动能E k1=eU c1,E k2=eU c2遏止电压U c与入射光频率ν的关系图线①截止频率νc:图线与横轴的交点②遏止电压U c:随入射光频率的增大而增大③普朗克常量h:等于图线的斜率与电子电量的乘积,即h=ke。
(注:此时两极之间接反向电压)【例题】1、a b种金属上,测得相应的遏止电压分别为U a和U b光电子的最大初动能分别为E k a 和E k b。
h为普朗克常量。
下列说法正确是A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>K k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b答案:BC2、现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生。
下列说法正确的是A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生E .遏止电压的大小与入射光的频率有关,与入射光的光强无关 答案:ACE3、如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标为4.27,与纵轴交点坐标为0.5)。
由图可知(AC )A .该金属的截止频率为4.27×1014 HzB .该金属的截止频率为5.5×1014 HzC .该图线的斜率表示普朗克常量D .该金属的逸出功为0.5 eV4、在某次光电效应实验中,得到的遏止电压U c 与入射光的频率ν的关系如图所示。
若该直线的斜率和截距分别为k 和b ,电子电荷量的绝对值为e ,则普朗克常量可表示为________,所用材料的逸出功可表示为________。
解析 根据爱因斯坦光电效应方程有E km =hν-W 0,又因为E km=eU c ,得到U c =h e ν-W 0e ,所以h e =k ,h =ek ;-W 0e=b ,W 0=-eb 。
答案 ek -eb5、在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示。
则可判断出A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能解析 由于是同一光电管,因而不论对哪种光,极限频率和金属的逸出功相同,对于甲、乙两种光,反向遏止电压相同,因而频率相同,A 错误;丙光对应的反向遏止电压较大,因而丙光的频率较高,波长较短,对应的光电子的最大初动能较大,故C 、D 均错,B 正确。
答案 B三、原子模型1、1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的,并且他提出了原子的枣糕模型。
2、1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验来检验汤姆孙的原子模型时提出了新的原子模型-------核式结构模型。
(1)α粒子的散射实验的现象绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。
(2)核式结构模型的学说内容在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转。
(3)核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。
电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。
由此可得两点结论①电子最终将落入核内,这表明原子是一个不稳定的系统;②电子落入核内辐射频率连续变化的电磁波。
原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。
如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。
3、为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。
(1)玻尔理论的内容:①原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。
②原子从一种定态(设能量为E m)跃迁到另一种定态(设能量为E n)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即③氢原子中电子轨道是量子化的每一可取的轨道对应一个能级。
(2)巴耳末公式研究原子的结构及其规律的一条重要途径就是对光谱的研究。
19世纪末,许多科学家对原子光谱已经做了大量的实验工作。
第一个发现氢原子线光谱可组成线系的是瑞士的中学教师巴耳末,他于1885年发现氢原子的线光谱在可见光部分的谱线,可归纳为如下的经验公式⎪⎭⎫ ⎝⎛-=221211n R λ,n=3,4,5,… 式中的λ为波长,R 是一个常数,叫做里德伯恒量,实验测得R 的值为1.096776⨯1071-m 。
上面的公式叫做巴耳末公式。
当n=3,4,5,6时,用该式计算出来的四条光谱线的波长跟从实验测得的四条谱线的波长符合得很好。
氢光谱的这一系列谱线叫做巴耳末系。
(3)能及图①n 称为量子数,1E 代表基态,n E 代表激发态,值为:121E n E n =。
②原子向外辐射(吸收)光子的能量与发生跃迁的 两个轨道有关。
)(n m E E hv n m >-=,λcv =。
③一个氢原子跃迁发出可能的光谱线条数最多为n -1。
一群氢原子跃迁发出可能的光谱线条数的两种求解方法:N =C 2n =n (n -1)2。
④电子由高能级向低能级跃迁时,动能增加,势能减小,总能量减小。
电子由低能级向高能级跃迁时,动能减小,势能增大,总能量增大。
⑤ 对于光子和原子作用而使原子发生跃迁时,入射光的能量要刚好等于两能级差,原子才能能吸收,对于实物粒子与原子作用使原子激发时,粒子能量大于或等于能级差都行。
⑥电离:由某一定态跃迁到无穷远处。
【例题1】如图所示,为氢原子的能级图,现有大量处于n =3激发态的氢原子向低能级跃迁。
已知当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm 下列说法正确的是A .大量氢原子总共可辐射出三种不同频率的光有2种属于巴耳末系B .氢原子由n =3跃迁到n =2产生的光频率最大C .这些氢原子跃迁时辐射出光子能量的最大值为10.2 eVD .氢原子由n =3跃迁到n =1产生的光照射逸出功为6.34 eV 的金属铂能发生光电效应E .氢原子由n =3跃迁到n =1产生的光波长最短 F.使n =3能级的氢原子电离至少要1.51 eV 的能量G .若从n =2能级跃迁到基态释放的光子能使某金属板发生光电效应,则从n =3能级跃迁到n =2能级释放的光子也一定能使该板发生光电效应H.在3种光子中,从n =3能级跃迁到n =1能级释放的光子康普顿效应最明显 I.原子从a 能级状态跃迁到b 能级状态时发射波长为λ1的光子,原子从b 能级状态跃迁到c 能级状态时吸收波长为λ2的光子,已知λ1>λ2,那么原子从a 能级跃迁到c 能级状态时将要吸收波长为λ1λ2λ1-λ2的光子.J.氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nm K.用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级答案解析:A 巴尔末系属于可见光系也指从大于二能级跃迁至二能级的光从三能级跃迁只有一条属于巴尔末系A 错B 由n =3跃迁到n =2能级差最小频率最小根据cf =λ可知频率越小波长越长B 错E 错C 从n=3跃迁到n=1的光子能量最大ev E E hv 12.0913=-= C 错根据光电效应发生的条件可知D 对 G 错F n =3能级的氢原子电离至少要ev ev E E hv 51.1)51.1(03=--=-=∞ F 对 H 频率越大粒子性越强康普顿效应越明显H 对I 由E =h ν及ν=cλ,可知原子从a 能级状态跃迁到b 能级状态发射光子的能量E 1=hc λ1,原子从b 能级状态跃迁到c 能级状态时吸收光子的能量E 2=hcλ2,则原子从a 能级状态跃迁到c 能级状态时要吸收光子的能量E 3=E 2-E 1=hc (λ1-λ2)λ2λ1,波长为λ1λ2λ1-λ2,I 项正确。