激光原理技术与应用习题解答
- 格式:doc
- 大小:219.00 KB
- 文档页数:15
麦拉福 思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
激光原理与技术习题答案激光是一种特殊的光,它具有高度的单色性、相干性、方向性和亮度。
激光技术是现代物理学的一个分支,广泛应用于通信、医疗、工业加工等多个领域。
为了更好地理解激光原理与技术,我们通常会通过习题来加深理解。
以下是一些激光原理与技术的习题答案,供参考。
习题1:解释激光的产生机制。
激光的产生基于受激辐射原理。
当原子或分子被外部能量激发到高能级后,它们会自发地返回到较低的能级,并在此过程中释放出光子。
如果这些光子能够被其他处于激发态的原子或分子吸收,就会引发更多的受激辐射,形成正反馈机制,最终产生相干的光束,即激光。
习题2:描述激光的三个主要特性。
激光的三个主要特性是:1. 单色性:激光的波长非常窄,频率非常一致,这使得激光具有非常纯净的光谱特性。
2. 相干性:激光束中的光波在空间和时间上具有高度的一致性,使得激光束能够保持稳定的光强和方向。
3. 方向性:激光束的发散角非常小,几乎可以看作是平行光束,这使得激光能够聚焦到非常小的点上。
习题3:解释激光在通信中的应用。
激光在通信中的应用主要体现在光纤通信。
光纤通信利用激光的高亮度和方向性,通过光纤传输信息。
光纤是一种透明的玻璃或塑料制成的细长管,激光在其中传播时损耗非常小,可以实现长距离、大容量的信息传输。
激光通信具有抗干扰性强、传输速度快等优点。
习题4:讨论激光在医疗领域的应用。
激光在医疗领域的应用非常广泛,包括激光手术、激光治疗和激光诊断等。
激光手术可以用于精确切除病变组织,减少手术创伤;激光治疗可以用于治疗皮肤病、疼痛管理等;激光诊断则可以用于无创检测和成像,提高诊断的准确性。
习题5:解释激光冷却的原理。
激光冷却是利用激光与原子或分子相互作用,将它们冷却到接近绝对零度的过程。
当激光的频率略低于原子或分子的自然频率时,原子或分子吸收光子后会向激光传播的反方向运动,从而损失动能。
这个过程被称为多普勒冷却。
通过这种方法,可以实现对原子或分子的精确控制和测量。
1.3如果微波激射器和激光器分别在λ=10μm ,=5×10-1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少?解:若输出功率为P ,单位时间从上能级向下能级跃迁的粒子数为n ,则:由此可得: 其中346.62610J s h-=⨯⋅为普朗克常数,8310m/s c =⨯为真空中光速。
所以,将已知数据代入可得:=10μm λ时:19-1=510s n ⨯ =500nm λ时:18-1=2.510s n ⨯=3000MHz ν时: 23-1=510s n ⨯1.4设一光子的波长=5×10-1μm ,单色性λλ∆=10-7,试求光子位置的不确定量x ∆。
若光子的波长变为5×10-4μm (x 射线)和5×10-18μm (γ射线),则相应的x ∆又是多少mm x m m m x m m m x m h x hx h h μμλμμλμλλμλλλλλλλλλλ111718634621221051051051051051051055/105////0/------⨯=⨯=∆⇒⨯=⨯=⨯=∆⇒⨯=⨯==∆=∆⇒⨯=∆=∆P ≥∆≥∆P ∆∆=P∆=∆P =∆P +P∆=P1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S -1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔的单色能量密度ρ应为多少?cP nh nh νλ==P P n h hcλν==1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。
又如果光强I=10W/mm2,试求受激跃迁几率W10。
2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。
激光技术原理及应用的答案激光技术原理激光(Laser)是指在受激辐射作用下产生的,具有高度一致性、单色性和方向性的光线。
它的原理基于激活物质(如气体、固体或液体)的原子或分子通过受激辐射释放出光子。
具体来说,激光技术原理包括以下几个方面:1.受激辐射:激光的原理是基于受激辐射过程。
当外界光或电子束等能量激发到激光介质中的原子或分子时,它们会处于高能级态,然后通过跃迁回到低能级态,同时发射出与入射能量一致的光子。
2.光放大:在激光器中,激光介质中的光子会与待激发的原子或分子作用,导致原子或分子处于高能级态。
通过引入一个辐射源,其能量很容易被激光介质吸收并转化为更多的光子,从而达到放大激光的效果。
3.光反馈:在激光器中,光放大过程可以被反馈回来,形成一个光学谐振腔。
这个腔体包含一个完全或部分反射镜和一个输出镜。
放大的光通过反射镜反射回来,然后经过多次反射和放大,在腔中形成更多的激光。
4.单色性:激光的光子是高度一致的,它们具有非常狭窄而单一的频率。
这是因为激光器中的光放大过程只允许某个特定的模式在腔中持续放大,其他模式的能量会很快耗散掉。
激光技术应用激光技术由于其独特的特性,在许多领域都有着广泛的应用。
以下是一些常见的激光技术应用:1.激光切割和焊接:激光切割和焊接技术在工业生产中得到了广泛应用。
激光切割可以实现高精度、高速度和无接触的材料切割,适用于金属、塑料和木材等材料。
激光焊接则可以实现高强度的焊接连接,适用于汽车制造和电子设备制造等领域。
2.激光医学:激光在医学领域具有重要应用。
例如,激光手术可以实现无创伤、高精度和快速的手术操作,适用于眼科、皮肤美容和神经外科等领域。
激光也可以用于医学成像,如激光扫描显微镜和激光共聚焦显微镜。
3.激光测距和测量:激光测距和测量技术广泛应用于工程和地理测量领域。
例如,激光测距仪可以测量远距离和高精度的距离,适用于建筑测量和地形测绘。
激光测量仪也可以测量物体的尺寸、形状和表面特征。
1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136) 由以上两个式子联立可得:代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。
证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。
在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。
以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 12显然,光强是以频率cυν⋅2为频率周期变化的。
习题一1、为使氦氖激光器的相干长度达到1m ,它的单色性参数R 应为多大?(光波长为λ=0.6328μm )解: 7610328.61106328.0−−×=×==Δ=c L R λλλ2、中心频率为ν0=4×108MHz 的某光源,相干长度为2m ,求此光源的单色性参数R 及光谱函数的线宽。
解:m c6148001075.0104103−×=××==νλ 7661075.310375.021075.0−−−×=×=×==c L R λννΔ=RMHz R 1501041075.3870=×××==Δ−νν 3、中心波长为λ0=0.6μm 的某光源单色性参数为R=10-4,求此光源的相干长度与相干时间。
解:c L R 0λ= mm m R L c 6106.010106.02460=×=×==−−−λ s c L t c c 1183102103106−−×=××==4、为使光波长等于λ=630nm 的激光器相干时间达到10-5s ,求它的单色性参数R 。
解:10589101.21010310630−−−×=×××===c c ct L R λλ5、中心频率为ν0=4×1014Hz 的某光源单色性参数为R=10-5,求此光源的相干长度。
解: c c L c L R νλ==, m R c L c 75.0104101031468=×××==−ν6、求相干长度为2m 的某光源线宽。
解:MHz Hz L c t c c 150105.12103188=×=×===Δν7、某光源光波长为λ=4000Å,为使距离此光源D=1m 处的相干面积达到2mm 2,求此光源面积应为多大?解:22862102208.0108102)104000(mm m A D A c s =×=××==−−−λ8、某光源面积为A s =5cm 2,波长为λ=6000Å,求距光源D=1m 处的相干面积解:24210421022102.7102.7105)106000(mm m A D A s c −−−−×=×=××==λ9、氦氖激光器出射光斑的半径为r=3mm ,单色性参数R=10-5,求1m 处的相干面积与相干体积。
激光原理第二章习题答案1.估算2C O 气体在室温(300K)下的多普勒线宽D ν∆和碰撞线宽系数α。
并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。
解:2C O 气体在室温(300K)下的多普勒线宽D ν∆为11822770693103007.16107.161010.61044 0.05310H zD T M νν---⨯⎛⎫⎛⎫∆=⨯=⨯⨯⨯ ⎪ ⎪⨯⎝⎭⎝⎭=⨯ 2C O 气体的碰撞线宽系数α为实验测得,其值为49K H z/Pa α≈2C O 气体的碰撞线宽与气压p 的关系近似为L p να∆=当L D νν∆=∆时,其气压为930.053101081.6Pa 4910Dp να∆⨯===⨯所以,当气压小于1081.6P a 的时候以多普勒加宽为主,当气压高于1081.6P a 的时候,变为以均匀加宽为主。
2.考虑某二能级工作物质,2E 能级自发辐射寿命为s τ,无辐射跃迁寿命为τ。
假定在t=0时刻能级2E 上的原子数密度为2(0)n ,工作物质的体积为V ,自发辐射光的频率为ν,求:(1)自发辐射光功率随时间t 的变化规律;(2)能级2E 上的原子在其衰减过程中发出的自发辐射光子数;(3)自发辐射光子数与初始时刻能级2E 上的粒子数之比2η,2η称为量子产额。
解:(1) 在现在的情况下有可以解得:11()22()(0)stn t n eττ-+=可以看出,t 时刻单位时间内由于自发辐射而减小的能级之上的粒子数密度为2/s n τ,这就是t 时刻自发辐射的光子数密度,所以t 时刻自发辐射的光功率为:222()()sdn t n n dtττ=-+(2) 在t dt →时间内自发辐射的光子数为:所以(3) 量子产额为:3.根据红宝石的跃迁几率数据:7151332312121310.510,310,0.310,S s A sA s S S ---=⨯=⨯=⨯=估算13W 等于多少时红宝石对694.3n m λ=的光是透明的。
习题I1、He-Ne激光器,其谱线半宽度,问为多少?要使其相干长度达到1000m,它的单色性应是多少?解:2、He-Ne激光器腔长L=250mm,两个反射镜的反射率约为98%,其折射率=1,已知Ne原子处谱线的,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽约为多少?解:3、设平行平面腔的长度L=1m,一端为全反镜,另一端反射镜的反射率,求在1500MHz频率范围内所包含的纵模数目和每个纵模的频带宽度?解:4、已知CO2激光器的波长处光谱线宽度,问腔长L为多少时,腔内为单纵模振荡(其中折射率=1)。
解:,5、Nd3—YAG激光器的波长处光谱线宽度,当腔长为10cm时,腔中有多少个纵模?每个纵模的频带宽度为多少?解:6、某激光器波长,其高斯光束束腰光斑半径。
①求距束腰10cm、20cm、100cm时,光斑半径和波阵面曲率半径各为多少?②根据题意,画出高斯光束参数分布图。
解:对共焦腔有:7、He-Ne激光器波长,采用平凹腔,其中凹面反射镜R=100m 时:①分别计算当腔长为10cm、30cm、50cm、70cm、100cm时两个反射镜上光斑尺寸W平和W凹。
②根据题意,画出光斑尺寸W平和W凹随腔长L变化曲线。
解:8、比较激光振荡器和放大器的异同点。
解:不同:前者有谐振腔,有选模作用后者无谐振腔;相同:粒子数反转;9、试说明红宝石激光器的谱线竞争。
解:10、说明选单模(横、纵)的意义和方法。
解:选单横模的意义:提高光束质量,包括单色性、方向性、相干性、亮度等,重要的是获得稳定的锁模激光和好的激光聚焦光束,进行时间空间分辨应用。
精细激光加工:光斑直径=透镜焦距*发散角。
超强超快激光应用; 激光通信、雷达、测距等,希望作用距离大,发散角小。
选单横模的方法:加小孔光栏;谐振腔结构。
选单纵模意义:单频激光应用,稳频应用,高相干性和单色性,时间(时钟)标准等。
精密干涉测量,全息照相,高分辨光谱等要求单色性、相干性高的单频光源。
习题I1、He-Ne 激光器m μλ63.0≈,其谱线半宽度m μλ1210-≈∆,问λλ/∆为多少?要使其相干长度达到1000m ,它的单色性λλ/∆应是多少? 解:63.01012-=∆λλ λλδτ∆===21v c c L c 相干 ==∆相干L λλλ2、He-Ne 激光器腔长L=250mm ,两个反射镜的反射率约为98%,其折射率η=1,已知Ne 原子m μλ6328.0=处谱线的MHz F 1500=∆ν,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽ν∆约为多少? 解:MHz Hz L cv q 6001062521032810=⨯=⨯⨯==∆η5.2=∆∆qF v v s c R L c 8101017.4103)98.01(25)1(-⨯=⨯⨯-=-=τ MHz Hz L c R v c c 24104.2)1(217=⨯=-≈=πτδ3、设平行平面腔的长度L=1m ,一端为全反镜,另一端反射镜的反射率90.0=γ,求在1500MHz 频率范围内所包含的纵模数目和每个纵模的频带宽度? 解:MHz Hz nL c v q 150105.110021032810=⨯=⨯⨯==∆ 101501500==∆∆q v v Lc R v c c )1(21-≈=πτδ 4、已知CO 2激光器的波长m μλ60.10=处光谱线宽度MHz F 150=∆ν,问腔长L 为多少时,腔内为单纵模振荡(其中折射率η=1)。
解:L cv v F q η2=∆=∆,F v c L ∆=2 5、Nd 3—YAG 激光器的m μ06.1波长处光谱线宽度MHz F 51095.1⨯=∆ν,当腔长为10cm时,腔中有多少个纵模?每个纵模的频带宽度为多少? 解:MHz L cv q 310105.11021032⨯=⨯⨯==∆η 130=∆∆qF v v Lc R v c c )1(21-≈=πτδ 6、某激光器波长m μλ7.0=,其高斯光束束腰光斑半径mm 5.00=ω。
①求距束腰10cm 、20cm 、100cm 时,光斑半径)(z ω和波阵面曲率半径)(z R 各为多少?②根据题意,画出高斯光束参数分布图。
解:对共焦腔有:πλπλωf R ==20λπω22=R 202200201121)(⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=f z z R z z ωπωλωωω7、He-Ne 激光器波长m μλ6328.0=,采用平凹腔,其中凹面反射镜R=100m 时:①分别计算当腔长为10cm 、30cm 、50cm 、70cm 、100cm 时两个反射镜上光斑尺寸W 平和W 凹。
②根据题意,画出光斑尺寸W 平和W 凹随腔长L 变化曲线。
解:)(,)()()2())()(()(21041212121224121122111412212121210R R L R R L L R L R R L R R L L R L R R L R R L R R L R L R L ≈=⎥⎦⎤⎢⎣⎡-+--=⎥⎦⎤⎢⎣⎡-+--=⎥⎦⎤⎢⎣⎡-+-+--=πωλθπλωπλωπλωR R ,R 21=∞=41221241212121241221412112211)(])[)(⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+--=-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+--=L R L R L R R L L R L R R L L R L R R L L R L R R πλπλωπλπλω凹平(8、比较激光振荡器和放大器的异同点。
解:不同:前者有谐振腔,有选模作用后者无谐振腔;相同:粒子数反转;9、试说明红宝石激光器的谱线竞争。
解:10、说明选单模(横、纵)的意义和方法。
解:选单横模的意义:提高光束质量,包括单色性、方向性、相干性、亮度等,重要的是获得稳定的锁模激光和好的激光聚焦光束,进行时间空间分辨应用。
精细激光加工:光斑直径=透镜焦距*发散角。
超强超快激光应用; 激光通信、雷达、测距等,希望作用距离大,发散角小。
选单横模的方法:加小孔光栏;谐振腔结构。
选单纵模意义:单频激光应用,稳频应用,高相干性和单色性,时间(时钟)标准等。
精密干涉测量,全息照相,高分辨光谱等要求单色性、相干性高的单频光源。
选单纵模方法:(1)色散腔粗选频率:采用棱镜,光栅色散;(2)短腔法:纵模间距越大越好;(3)F-P标准具法:不同的波长有不同的透射率;(4)复合腔法(相当于短腔);(5)利用Q 开关选单纵模,关时: 只有单纵模在阈值附近起振;开时:输出单纵模。
11、钕玻璃激光工作物质,其荧光线宽nm D 0.24=∆λ ,折射率n=1.50,若用短腔选单纵模,腔长应为多少? 解:纵模间距22L D D c c nL ννλλ∆=≥∆=∆212D L n λλ≤=∆12、画出Nd +3-YAG 的能级图。
解:13、试从能级结构上分析钛宝石激光器的可调谐性。
解:14、列举激光输出波长在可见光范围内的激光器,并指出各个波长所对应的颜色。
解:氩离子激光器:514.5nm,488.0nm,紫外He-Ne 气体激光器: 632.8nm红宝石激光器:694nm准分子激光器: 紫外Rh6G染料激光器:570-630nm部分半导体激光器:GaN基,ZnO基Kr离子激光器:氦镉激光器:紫外15、列举输出波长在红外波段的激光器。
解:Nd+3:YAG激光器Nd+3:YVO激光器Nd+3:Glass激光器CO2气体激光器Ti+3:Sapphire激光器Cr+3:LISAF激光器He-Ne 气体激光器部分半导体激光器:GaAs 基部分稀土光纤激光器自由电子激光器16、半导体激光器发射光子的能量近似等于材料的禁带宽度,已知GaAs 材料的Eg=1.43eV 某一InGaAs 材料的Eg=0.96eV ,求它们的发射波长。
解:g hcE h νλ==17、说明利用调Q 技术获得高峰值功率巨脉冲的原理,并简单说明调Q 脉冲形成过程中各参量(泵浦速率、谐振腔损耗、粒子反转数和光子数密度)随时间的变化。
见讲义及书18、当频率MHz f s 40= 的超声波在熔凝石英声光介质(n=1.54)中建立起超声场(us=5.96×105cm/s )时,试计算波长为m μλ06.1= 的入射光满足布拉格条件的入射角θ 。
0sin()22s s f n λλθλυ==19、有一多纵模激光器纵模数是1千个,激光器的腔长 1.5m ,输出的平均功率为1W ,认为各纵模振幅相等。
(1)试求在锁模情况下,光脉冲的周期、宽度和峰值功率各是多少?(2)采用声光损耗调制元件锁模时,调制器上加电压()()t V t V m m ϖcos = ,试问电压的频率是多大?(1)纵模间距:MHz Hz L c v q 1005.1210328=⨯⨯==∆光脉冲周期:ns v c L T q 1012=∆==光谱宽度:GHz MHz v N v q 1001001000=⨯=∆=∆光脉冲宽度:ps s v1010111==∆=-τ脉冲重复率:MHz v T f q 1001=∆== 脉冲能量:f P E 平均功率= 峰值功率:W W f P E P 31161010101001=⨯⨯=⨯==-ττ平均功率峰值(2)声光调制器电压频率是MHz f m 502==ω20、有一掺钕钇铝石榴石激光器,振荡线宽(荧光谱线中能产生激光振荡的范围)osc v ∆ =10×1010Hz ,腔长L=0.5m ,试计算激光器的参量:(1)纵模频率间隔;(2)g v ∆ 可容纳纵模的数目;(3)假设各纵模振幅相等,求锁模后脉冲的宽度和周期;(4)锁模脉冲及脉冲间隔占有的空间距离。
(1) 纵模频率间隔2q c L ν∆=(2)g v ∆ 可容纳纵模的数目:gq νν∆∆(3)锁模后脉冲的宽度:1g ν∆周期:2Lc(4)锁模脉冲占有的空间距离:1g c ν∆脉冲间隔占有的空间距离:22L c L c=21、解释非均匀加宽介质的增益曲线的“烧孔”现象与应用。
解:在谐振腔中,自发发射频率为V q 的纵模,在谐振腔内振荡,并在光子hV q 的作用下,仅仅是具有速度为V z 的激发原子才产生受激发射,V z 满足01z q V c νν⎛⎫=+ ⎪⎝⎭,那么必然导致这部分激发原子的损耗。
相应的粒子数反转值大为减少,而以其他速度运动的激发原子不参与此受激发射,而增益正比于反转粒子数,因此在频率01z q V c νν⎛⎫=+ ⎪⎝⎭处导致粒子数损耗,增益也下降,在增益曲线上产生一个凹陷。
同理在101z q V c νν-⎛⎫=- ⎪⎝⎭处也同样产生一个凹陷。
这样的物理效应称为烧孔效应。
应用:单模产生及稳频应用22、假如实空间体积为V ,则K 空间每个模的体积为)8/()2(3V k k k q n m π=∆∆∆ ,由于02≥=c v k π 和每个v 振荡模可以有2个相互垂直的偏振模,则它在K 空间的模密度是多少?振荡模总数是多少?实空间的模密度(单位体积和单位频率间隔的振荡模数)是多少?解:K 空间的模密度:()3182m n q V k k k ρπ==∆∆∆ 振荡模总数:3312*883N v V cπ=总模(球体积)模密度=实空间的模密度: 2318m dN v P V dv c π==总模思考题:1、调 Q与被动锁模激光器中饱和吸收体的饱和恢复时间有何不同?2、激光器有哪三部分组成?3、谐振腔的稳定条件4、二能级、三能级、四能级系统粒子数反转之差别。
5、辐射能量交换的三个基本过程6、声光互作用的两种类型7、激光器锁模产生超短脉冲原理通常有哪两种分析方法8、超短脉冲压缩色散补偿技术有哪几种?9、兰姆凹陷产生的条件?10、声光调制器的四个组成部分?r v的表达式11、推导出增益系数()12、锁模脉冲的时间和光谱带宽积特点。