2019年高考物理总复习第九章磁场综合检测教科版
- 格式:doc
- 大小:1.55 MB
- 文档页数:15
第一节磁场及其对电流的作用(建议用时:60分钟)一、单项选择题1.(2018·山东青岛模拟)一通电直导体棒用两根绝缘轻质细线悬挂在天花板上,静止在水平位置(如正面图).现在通电导体棒所处位置加上匀强磁场,使导体棒能够静止在偏离竖直方向θ角(如侧面图)的位置.如果所加磁场的强弱不同,则磁场方向的范围是(以下选项中各图均是在侧面图的平面内画出的,磁感应强度的大小未按比例画)( )解析:选C.要使导体棒能够静止在偏离竖直方向θ角(如侧面图)的位置,则安培力的范围是由竖直向上顺时针转到沿细线向下,可以竖直向上,但不能沿细线向下.再由左手定则可知磁感应强度的方向是由水平向右顺时针转到垂直于细线向下,但不能沿垂直于细线向下.所以C图正确.2.(2018·沈阳模拟)如图所示,条形磁铁放在桌子上,一根通电直导线由S极的上端平移至N极的过程中,导线保持与磁铁垂直,导线的通电方向如图,则在这个过程中磁铁受到的摩擦力(保持静止)( )A.为零B.方向由向左变为向右C.方向保持不变D.方向由向右变为向左解析:选B.由图可知通电导线所在位置的磁场的方向,根据左手定则可以判定通电导线所受安培力的方向如图所示,显然安培力有一个水平方向的分量,根据牛顿第三定律可知条形磁铁受到通电导线的安培力也有一个水平方向的分量,而由于条形磁铁保持静止,故条形磁铁所受地面的静摩擦力与安培力在水平方向的分量相互平衡.故当导线在条形磁铁的左侧上方时条形磁铁所受的静摩擦力方向向左,而当导线运动到条形磁铁的右半部分上方时条形磁铁所受地面的静摩擦力水平向右.故条形磁铁所受摩擦力的方向由向左变为向右,故B正确,A、C、D错误.3.一个可以自由运动的线圈L1和一个固定的线圈L互相绝缘垂直放置,且两个线圈的圆心重合,如图2所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L将( )1A.不动B.顺时针转动C.逆时针转动D.在纸面内平动解析:选B.法一电流元分析法把线圈L1沿水平转动轴分成上下两部分,每一部分又可以看成无数段直线电流元,电流元处在L2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向向上,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看线圈L1将顺时针转动.法二等效分析法把线圈L1等效为小磁针,该小磁针刚好处于环形电流I2的中心,小磁针的N极应指向该点环形电流I2的磁场方向,由安培定则知I2产生的磁场方向在其中心处竖直向上,而L1等效成小磁针后,转动前,N极指向纸内,因此小磁针的N极应由指向纸内转为向上,所以从左向右看,线圈L1将顺时针转动.法三结论法环形电流I1、I2之间不平行,由于两不平行的电流的相互作用,则两环必有相对转动,直到两环形电流同向平行为止,据此可得,从左向右看,线圈L1将顺时针转动.4.如图所示,长为L的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为k的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B 的匀强磁场中,弹簧伸长x,棒处于静止状态.则( )A .导体棒中的电流方向从b 流向aB .导体棒中的电流大小为kx BLC .若只将磁场方向缓慢顺时针转过一小角度,x 变大D .若只将磁场方向缓慢逆时针转过一小角度,x 变大 解析:选B.由受力平衡可知安培力方向水平向右,由左手定则可知,导体棒中的电流方向从a 流向b ,故A 错误;由于弹簧伸长为x ,根据胡克定律有kx =BIL ,可得I =kx BL,故B 正确;若只将磁场方向缓慢顺时针或逆时针转过一小角度,则安培力在水平方向上的分力减小,根据力的平衡可得,弹簧弹力变小,导致x 变小,故C 、D 错误.5.如图所示,两平行的粗糙金属导轨水平固定在匀强磁场中,磁感应强度为B ,导轨宽度为L ,一端与电源连接.一质量为m 的金属棒ab 垂直于平行导轨放置并接触良好,金属棒与导轨间的动摩擦因数为μ=33,在安培力的作用下,金属棒以v 0的速度向右匀速运动,通过改变磁感应强度的方向,可使流过金属棒的电流最小,此时磁感应强度的方向与竖直方向的夹角为( )A .37°B .30°C .45°D .60°解析:选B.由题意对棒受力分析,设磁感应强度的方向与竖直方向成θ角,则有BIL cos θ=μ(mg-BIL sin θ),整理得BIL =μmg cos θ+μsin θ.电流有最小值,就相当于安培力有最小值,最后由数学知识解得:θ=30°,则A 、C 、D 错,B 对.6.(2018·上海杨浦区模拟)如图所示,质量m =0.5 kg 的通电导体棒在安培力作用下静止在倾角为37°、宽度L =1 m 的光滑绝缘框架上,磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内).右侧回路中,电源的电动势E=8 V、内阻r=1 Ω,额定功率为8 W、额定电压为4 V 的电动机M正常工作.取sin 37°=0.6,cos 37°=0.8,重力加速度大小g=10 m/s2,则磁场的磁感应强度大小为( ) A.2 T B.1.73 TC.1.5 T D.1 T解析:选C.电动机M正常工作时的电流I1=P1U=2 A,电源内阻上的电压U′=E-U=8 V-4 V=4 V,根据欧姆定律得干路中的电流I=U′r=4 A,通过导体棒的电流I2=I-I1=2 A,导体棒受力平衡,有BI2L=mg sin 37°,得B=1.5 T,只有选项C 正确.二、多项选择题7.(2018·甘肃兰州一中模拟)质量为m的通电细杆放在倾角为θ的导轨上,导轨的宽度为d,杆与导轨间的动摩擦因数为μ,有电流通过杆,杆恰好静止于导轨上,在如图所示的A、B、C、D四个图中,杆与导轨间的摩擦力一定不为零的是( )解析:选CD.A图中杆受到向下的重力,水平向右的安培力和垂直于导轨的支持力的作用,在这三个力的作用下,可以处于平衡状态,摩擦力可以为零.B图中杆子受重力、竖直向上的安培力,在这两个力的作用下,可以处于平衡状态,故摩擦力可能为零.C图中杆受到的重力竖直向下,安培力竖直向下,支持力垂直导轨向左上方,杆要静止的话,必定要受到沿导轨向上的摩擦力的作用,摩擦力不可能为零.D图中杆受到的重力竖直向下,安培力水平向左,支持力垂直导轨向左上方,杆要静止的话,必定要受到沿导轨向上的摩擦力的作用,摩擦力不可能为零,本题选摩擦力不可能为零的,故选C、D.8.图中装置可演示磁场对通电导线的作用.电磁铁上、下两磁极之间某一水平面内固定两条平行金属导轨,L是置于导轨上并与导轨垂直的金属杆.当电磁铁线圈两端a、b,导轨两端e、f,分别接到两个不同的直流电源上时,L便在导轨上滑动.下列说法正确的是( )A.若a接正极,b接负极,e接正极,f接负极,则L向右滑动B.若a接正极,b接负极,e接负极,f接正极,则L向右滑动C.若a接负极,b接正极,e接正极,f接负极,则L向左滑动D.若a接负极,b接正极,e接负极,f接正极,则L向左滑动解析:选BD.若a接正极,b接负极,电磁铁磁极间磁场方向向上,e接正极,f接负极,由左手定则判定金属杆所受安培力向左,则L向左滑动,A选项错误,同理判定B、D选项正确,C选项错误.9.(2018·长沙长郡中学摸底测试)如图所示,同一平面内有两根平行的无限长直导线1和2,通有大小相等、方向相反的电流,a、b两点与两导线共面,a点在两导线的中间且与两导线的距离均为r,b点在导线2右侧,与导线2的距离也为r.现测得a点的磁感应强度大小为B0,已知距一无限长直导线d处的磁感应强度大小B=kId,其中k为常量,I为无限长直导线的电流大小,下列说法正确的是( )A.b点的磁感应强度大小为B 0 4B.若去掉导线2,b点的磁感应强度大小为B 0 6C.若将导线1中电流大小变为原来的2倍,b点的磁感应强度为0D.若去掉导线2,再将导线1中电流大小变为原来的2倍,a点的磁感应强度大小仍为B解析:选BD.根据B=kId,可知,a点磁感应强度B0=kIr+kIr=2kI r ,则:kI r =12B 0,根据右手螺旋定则,此时b 点磁感应强度为:B b =kI r -kI 3r =2kI 3r =13B 0,方向向外,故选项A 错误;若去掉导线2,b 点的磁感应强度大小为:B b =kI 3r =16B 0,故选项B 正确;若将导线1中电流大小变为原来的2倍,b 点的磁感应强度为B b =kI r -k 2I 3r =kI 3r =16B 0,方向向外,故选项C 错误;若去掉导线2,再将导线1中电流大小变为原来的2倍,a 点的磁感应强度大小为B a =k 2I r=B 0,故选项D 正确. 10.通有电流的导线L1、L2、L3、L 4处在同一平面(纸面)内,放置方式及电流方向如图甲、乙所示,其中L 1、L 3是固定的,L 2、L 4可绕垂直纸面的中心轴O 转动,则下列判定正确的是( )A .L 2绕轴O 按顺时针转动B .L 2绕轴O 按逆时针转动C.L4绕轴O按顺时针转动D.L4绕轴O按逆时针转动解析:选BC.题图甲中由右手螺旋定则可知导线L1上方磁场垂直纸面向外,且离导线L1的距离越近,磁场越强,导线L2上每一小部分受到的安培力方向均水平向右,但O点下方部分安培力较大,所以L2绕轴O按逆时针转动,A错,B对;图乙中O点上方导线L所受安培力向右,O点下方导线L4所受安培力4向左,即L4绕轴O按顺时针转动,C对,D错.三、非选择题11.(2018·江苏泰州模拟)如图所示,在倾角为37°的光滑斜面上有一根长为0.4 m、质量为6×10-2kg的通电直导线,电流大小I=1 A,方向垂直于纸面向外,导线用平行于斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4 T、方向竖直向上的磁场中.设t=0时,B=0,则需要多长时间,斜面对导线的支持力为零?(g取10 m/s2)解析:斜面对导线的支持力为零时导线的受力如图所示.由平衡条件得FTcos 37°=FFTsin 37°=mg两式联立解得F=mgtan 37°=0.8 N 由F=BIL得B=FIL=2 T由题意知,B与t的变化关系为B=0.4t(T)代入数据得t=5 s.答案:5 s12.如图所示,将长为50 cm、质量为10 g的均匀金属棒ab的两端用两只相同的弹簧悬挂成水平状态,位于垂直于纸面向里的匀强磁场中.当金属棒中通以0.4 A的电流时,弹簧恰好不伸长.g=10 m/s2.(1)求匀强磁场的磁感应强度的大小;(2)当金属棒中通过大小为0.2 A、方向由a到b的电流时,弹簧伸长1 cm.如果电流方向由b到a,而电流大小不变,则弹簧伸长又是多少?解析:(1)弹簧恰好不伸长时,ab棒受到向上的安培力BIL 和向下的重力mg大小相等,即BIL=mg解得B=mgIL=0.5 T.(2)当大小为0.2 A的电流由a流向b时,ab棒受到两只弹簧向上的拉力2kx1及向上的安培力BI1L和向下的重力mg作用,处于平衡状态.根据平衡条件有2kx1+BI1L=mg当电流反向后,ab棒在两个弹簧向上的拉力2kx2及向下的安培力BI2L和重力mg作用下处于平衡状态.根据平衡条件有2kx2=mg+BI2L联立解得x2=mg+BI2Lmg-BI1L x1=3 cm.答案:(1)0.5 T (2)3 cm。
2019年高考物理一轮复习第九章磁场第1讲磁场及其对电流的作用练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理一轮复习第九章磁场第1讲磁场及其对电流的作用练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理一轮复习第九章磁场第1讲磁场及其对电流的作用练习的全部内容。
第1讲磁场及其对电流的作用板块三限时规范特训时间:45分钟满分:100分一、选择题(本题共10小题,每小题6分,共60分。
其中1~6为单选,7~10为多选)1。
[2018·陕西宝鸡一模]如图所示,垂直纸面放置的两根平行长直导线分别通有方向相反的电流I1和I2,且I1>I2,纸面内的一点H到两根导线的距离相等,则该点的磁感应强度方向可能为图中的()A。
B1 B.B2 C.B3 D.B4答案C解析根据右手螺旋定则得出两电流在H点的磁场方向如图所示,根据平行四边形定则可判定H点的合磁感应强度方向可能为B3方向,C正确。
2.[2018·郑州质量预测]目前世界上输送功率最大的直流输电工程——哈(密)郑(州)特高压直流输电工程已正式投运。
高压直流输电具有无感抗、无容抗、无同步问题等优点。
已知某段直流输电线长度l=200 m,通有从西向东I=4000 A的恒定电流,该处地磁场的磁感应强度B=5×10-5T,磁倾角(磁感线与水平面的夹角)为5°(sin5°≈0。
1)。
则该段导线所受安培力的大小和方向为()A.40 N,向北与水平面成85°角斜向上方B。
4 N,向北与水平面成85°角斜向上方C.4 N,向南与水平面成5°角斜向下方D。
第九章磁场章末质量检测(九)(时间:50分钟满分:100分)一、选择题(本题共9小题,每小题6分,共54分。
1~6题为单项选择题,7~9题为多项选择题)1.下列装置中,没有利用带电粒子在磁场中发生偏转的物理原理的是( )解析洗衣机将电能转化为机械能,不是利用带电粒子在磁场中的偏转制成的,所以选项D 正确。
答案 D2.(2017·湖南省五市十校高三联考)下列说法正确的是( )A.将通电直导线放在某处,若通电直导线所受安培力为零,则该处的磁感应强度为零B.磁场中某点的磁场方向,与放在该点的极短的通电导线所受安培力的方向可以成任意夹角C.磁场中某点的磁场方向,与放在该点的小磁针北极受到的磁场力的方向相同D.给两平行直导线通以方向相反的电流时,两通电导线通过磁场相互吸引解析当通电直导线电流的方向与磁场方向平行时,即使该处的磁感应强度不为零,磁场对通电直导线也没有作用力,故选项A错误;通电直导线在磁场中所受的安培力方向与磁场方向相互垂直,故选项B错误;磁场中某点的磁场方向,与放在该点的小磁针北极受到的磁场力方向相同,选项C正确;给两平行直导线通以方向相反的电流时,两通电导线相互排斥,故选项D错误。
答案 C3.如图1所示,在通电螺线管中央的正上方用轻质细线悬挂长为l 的一小段通电直导线,导线中通入垂直于纸面向里的电流I ,力传感器用来测量细线的拉力大小,导线下方的螺线管与一未知极性的直流电源连接。
开关断开时,力传感器的示数恰好等于通电直导线的重力G ,现闭合开关,则下列说法正确的是( )图1A.通电螺线管在通电直导线处产生的磁场方向可能竖直向下B.通电直导线可能受到垂直纸面向里的安培力作用C.若力传感器的示数变大,则电源的右端一定为正极D.若力传感器的示数变为通电直导线重力的一半,则通电直导线所在处的磁感应强度大小一定为G2Il解析 闭合开关后,通电螺线管在周围产生磁场,通电螺线管在通电直导线处产生的磁场方向水平,选项A 错误;由于通电螺线管在通电直导线处产生的磁场方向水平,故安培力方向一定竖直向上或竖直向下,选项B 错误;若力传感器的示数变大,说明通电直导线受到竖直向下的安培力作用,由左手定则可知,此处磁场方向水平向右,由安培定则可知,电源的左端为正极,选项C 错误;若力传感器的示数变为导线重力的一半,说明导线受到的安培力方向竖直向上,且大小等于导线重力的一半,则有BIl =12G ,可得B =G 2Il,选项D 正确。
章末过关检测(九)(时间:60分钟 满分:100分)一、单项选择题(本题共6小题,每小题6分,共36分.在每小题给出的四个选项中,只有一个选项正确)1.如图所示,A 为一水平旋转的橡胶盘,带有大量均匀分布的负电荷,在圆盘正上方水平放置一通电直导线,电流方向如图.当圆盘高速绕中心轴OO ′转动时,通电直导线所受磁场力的方向是( )A .竖直向上B .竖直向下C .水平向里D .水平向外解析:选C.从上向下看,由于带负电的圆盘顺时针方向旋转,形成的等效电流为逆时针方向,由安培定则判定所产生的磁场方向竖直向上.由左手定则可判定通电导线所受安培力的方向水平向里.故C 正确.2.如图所示,在直角三角形ABC 的A 点和B 点分别固定一垂直纸面向外和向里的无限长通电直导线,其电流强度分别为I A 和I B ,∠A =30°,通电直导线形成的磁场在空间某点处的磁感应强度B =k I r,k 为比例系数,r 为该点到导线的距离,I 为导线的电流强度.当一电子在C 点的速度方向垂直纸面向外时,所受洛伦兹力方向垂直BC 向下,则两直导线的电流强度I B 与I A 之比为( )A.12 B .34C.32D .14解析:选D.由左手定则可知C 点处磁场的磁感应强度B 合的方向平行BC 向右,设A 处导线和B 处导线在C 处形成的磁场的磁感应强度大小分别为B A 和B B ,方向分别与AC 和BC垂直,如图所示,可知B B B A =sin 30°=12,又B B B A =kI B l BC k I A l AC,计算可得I B I A =14,D 正确.3.一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图所示,如果直导线可以自由地运动且通以方向为由a 到b 的电流,则导线ab 受磁场力后的运动情况为( )A .从上向下看顺时针转动并靠近螺线管B .从上向下看顺时针转动并远离螺线管C .从上向下看逆时针转动并远离螺线管D .从上向下看逆时针转动并靠近螺线管解析:选D.先由安培定则判断出通电螺线管的N 、S 极,找出导线左、右两端磁感应强度的方向,并用左手定则判断这两端受到的安培力的方向,如图甲所示.可以判断导线受磁场力后从上向下看逆时针方向转动.再分析此时导线位置的磁场方向,再次用左手定则判断导线受磁场力的方向,如图乙所示,导线还要靠近螺线管,所以D 正确,A 、B 、C 错误.4.(2018·东北三校联考)如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关 解析:选A.设带电粒子在加速电场中被加速后的速度为v 0,根据动能定理有qU 1=12mv 20.设带电粒子从偏转电场中出来进入磁场时的速度大小为v ,与水平方向的夹角为θ,如图所示,在磁场中有r =mv qB ,v =v 0cos θ,而d =2r cos θ,联立各式解得d =2mv 0qB,因而选项A 正确.5.如图所示,在x 轴上方存在垂直纸面向里的磁感应强度为B 的匀强磁场,x 轴下方存在垂直纸面向外的磁感应强度为B2的匀强磁场,一带负电的粒子从原点O 以与x 轴成30°角斜向上的速度v 射入磁场,且在x 轴上方运动半径为R .则下列说法正确的是( )A .粒子经偏转一定能回到原点OB .粒子在x 轴上方和下方两磁场中运动的半径之比为2∶1C .粒子完成一次周期性运动的时间为2πm3qBD .粒子第二次射入x 轴上方磁场时,沿x 轴前进3R解析:选D.由r =mvqB可知,粒子在x 轴上方和下方两磁场中运动的半径之比为1∶2,所以B 错误;粒子完成一次周期性运动的时间t =16T 1+16T 2=πm 3qB +2πm 3qB =πmqB ,所以C 错误;粒子第二次射入x 轴上方磁场时沿x 轴前进l =R +2R =3R ,粒子经偏转不能回到原点O ,所以A 错误、D 正确.6.如图所示,圆形区域内有一垂直纸面的匀强磁场,P 为磁场边界上的一点.有无数带有同样电荷、具有同样质量的粒子在纸面内沿各个方向以相同的速率通过P 点进入磁场.这些粒子射出边界的位置均处于边界的某一段圆弧上,这段圆弧的弧长是圆周长的13.将磁感应强度的大小从原来的B 1变为B 2,结果相应的弧长变为原来的一半,则B 2∶B 1等于( )A. 2 B . 3 C .2 D .3解析:选B.当轨迹半径小于或等于磁场区半径时,粒子射出圆形磁场的点离入射点最远距离为轨迹直径.如图所示,当粒子从13圆周射出磁场时,粒子在磁场中运动的轨迹直径为PQ ,粒子都从圆弧PQ 之间射出,因此轨迹半径r 1=R cos 30°=32R ;若粒子射出的圆弧对应弧长为“原来”的一半,即16周长,对应的弦长为R ,即粒子运动轨迹直径等于磁场区半径R ,轨迹半径r 2=R 2,由r =mv qB 可得B 2B 1=r 1r 2= 3.选项B 正确.二、多项选择题(本题共4小题,每小题6分,共24分.在每小题给出的四个选项中,有多个选项符合题目要求,全选对的得6分,选对但不全的得3分,有错选或不答的得0分)7.(高考江苏卷)如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为 I ,线圈间产生匀强磁场,磁感应强度大小 B 与 I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为 I H ,与其前后表面相连的电压表测出的霍尔电压 U H 满足:U H =kI H Bd,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A.霍尔元件前表面的电势低于后表面B.若电源的正负极对调,电压表将反偏C.I H与I成正比D.电压表的示数与R L消耗的电功率成正比解析:选CD.当霍尔元件通有电流I H时,根据左手定则,电子将向霍尔元件的后表面运动,故霍尔元件的前表面电势较高.若将电源的正负极对调,则磁感应强度B的方向换向,I H方向变化,根据左手定则,电子仍向霍尔元件的后表面运动,故仍是霍尔元件的前表面电势较高,选项A、B错误;因R与R L并联,根据并联分流,得I H=R LR L+RI,故I H与I成正比,选项C正确;由于B与I成正比,设B=aI,则I L=RR+R LI,P L=I2L R L,故U H=kI H Bd=ak(R+R L)R2dP L,知U H∝P L,选项D正确.8.(2018·湖北宜城第一中学高三月考)如图所示,一条形磁铁放在水平桌面上,在其左上方固定一根与磁铁垂直的长直导线,当导线中通以图示方向的电流时( ) A.磁铁对桌面的压力增大B.磁铁对桌面的压力减小C.磁铁受到向右的摩擦力作用D.磁铁受到向左的摩擦力作用解析:选BC.根据条形磁铁磁感线分布情况得到直线电流所在位置磁场方向(切线方向),再根据左手定则判断安培力方向,如图甲,根据牛顿第三定律,电流对磁铁的作用力向左上方,F=F′,如图乙,根据平衡条件,可知通电后支持力变小,静摩擦力变大,故磁铁对桌面的压力变小,而静摩擦力向右.选项B、C正确.9.(2018·陕西西安模拟)如图所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的带电粒子,恰好从e 点射出,则( )A .如果粒子的速度增大为原来的二倍,将从d 点射出B .如果粒子的速度增大为原来的三倍,将从f 点射出C .如果粒子的速度不变,磁场的磁感应强度变为原来的2倍,也将从d 点射出D .只改变粒子的速度使其分别从e 、d 、f 点射出时,在磁场中运动时间关系为:t e =t d >t f解析:选AD.作出示意图,如图所示,根据几何关系可以看出,当粒子从d 点射出时,轨道半径增大为原来的二倍,由半径公式R =mvqB可知,速度v 增大为原来的二倍或磁感应强度变为原来的一半,A 项正确,C 项错误;如果粒子的速度增大为原来的三倍,则轨道半径也变为原来的三倍,从图中看出,出射点在f 点下面,B 项错误;据粒子的周期公式T =2πm qB,可知粒子的周期与速度无关,在磁场中的运动时间取决于其轨迹圆弧所对应的圆心角,所以从e 、d 点射出时所用时间相等,从f 点射出时所用时间最短,D 项正确.10.如图所示,一个绝缘且内壁光滑的环形细圆管固定于竖直平面内,环的半径为R (比细圆管的内径大得多).在圆管的最低点有一个直径略小于细圆管内径的带正电小球处于静止状态,小球的质量为m ,带电荷量为q ,重力加速度为g .空间存在一磁感应强度大小未知(不为零),方向垂直于环形细圆管所在平面向里的匀强磁场.某时刻,给小球一方向水平向右、大小为v 0=5gR 的初速度,则以下判断正确的是( )A .无论磁感应强度大小如何,获得初速度后的瞬间,小球在最低点一定受到管壁的弹力作用B .无论磁感应强度大小如何,小球一定能到达环形细圆管的最高点,且小球在最高点一定受到管壁的弹力作用C .无论磁感应强度大小如何,小球一定能到达环形细圆管的最高点,且小球到达最高点时的速度大小都相同D .小球从环形细圆管的最低点运动到所能到达的最高点的过程中,水平方向分速度的大小一直减小解析:选BC.小球在轨道最低点时受到的洛伦兹力方向竖直向上,若洛伦兹力和重力的合力恰好提供小球所需要的向心力,则在最低点时小球不会受到管壁弹力的作用,A 选项错误;小球运动的过程中,洛伦兹力不做功,小球的机械能守恒,运动至最高点时小球的速度v =gR ,由于是双层轨道约束,小球运动过程中不会脱离轨道,所以小球一定能到达轨道的最高点,C 选项正确;在最高点时,小球圆周运动的向心力F =m v 2R=mg ,小球受到竖直向下的洛伦兹力的同时必然受到与洛伦兹力等大反向的轨道对小球的弹力,B 选项正确;小球从最低点运动到最高点的过程中,小球在下半圆内上升的过程中,水平分速度向右且减小,到达圆心的等高点时,水平分速度为零,而运动至上半圆后水平分速度向左且不为零,所以水平分速度一定有增大的过程,D 选项错误.三、非选择题(本题共2小题,共40分.按题目要求作答,计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位)11.(20分)(2015·高考山东卷)如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方d2处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场.不计粒子的重力.(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mvqD,粒子运动一段时间后再次经过H点,求这段时间粒子运动的路程.解析:(1)设极板间电场强度的大小为E ,对粒子在电场中的加速运动,由动能定理得qE d 2=12mv 2① 由①式得E =mv 2qd.②甲(2)设Ⅰ区磁感应强度的大小为B ,粒子做圆周运动的半径为R ,由牛顿第二定律得qvB =m v 2R③如图甲所示,粒子运动轨迹与小圆相切有两种情况.若粒子轨迹与小圆外切,由几何关系得R =D4④ 联立③④式得B =4mvqD⑤若粒子轨迹与小圆内切,由几何关系得R =3D4 ⑥联立③⑥式得B =4mv3qD.⑦(3)设粒子在Ⅰ区和Ⅱ区做圆周运动的半径分别为R 1、R 2,由题意可知,Ⅰ区和Ⅱ区磁感应强度的大小分别为B 1=2mv qD 、B 2=4mv qD,由牛顿第二定律得qvB 1=m v 2R 1,qvB 2=m v 2R 2⑧代入数据得R 1=D 2,R 2=D4⑨设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动学公式得T 1=2πR 1v ,T 2=2πR 2v⑩乙据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图乙所示,根据对称性可知,Ⅰ区两段圆弧所对圆心角相同,设为θ1,Ⅱ区内圆弧所对圆心角设为θ2,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系得θ1=120° ⑪ θ2=180° ⑫ α=60°⑬丙粒子重复上述交替运动回到H 点,轨迹如图丙所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得t 1=360°α×θ1×2360°T 1, t 2=360°α×θ2360°T 2⑭设粒子运动的路程为s , 由运动学公式得s =v (t 1+t 2)⑮联立⑨⑩⑪⑫⑬⑭⑮式得s =5.5πD .答案:(1)mv 2qd (2)4mv qD 或4mv3qD(3)5.5πD12.(20分)(2018·江苏扬州高三模拟)在竖直平面内建立一平面直角坐标系xOy ,x 轴沿水平方向,如图甲所示.第二象限内有一水平向右的匀强电场,场强为E 1.坐标系的第一、四象限内有一正交的匀强电场和匀强交变磁场,电场方向竖直向上,场强E 2=12E 1,匀强磁场方向垂直纸面.处在第三象限的发射装置(图中未画出)竖直向上射出一个比荷qm=102C/kg 的带正电的粒子(可视为质点),该粒子以v 0=4 m/s 的速度从-x 上的A 点进入第二象限,并以v 1=8 m/s 速度从+y 上的C 点沿水平方向进入第一象限.取粒子刚进入第一象限的时刻为0时刻,磁感应强度按图乙所示规律变化(以垂直纸面向外的磁场方向为正方向),g =10 m/s 2.试求:(1)带电粒子运动到C 点的纵坐标值h 及电场强度E 1;(2)+x 轴上有一点D ,OD =OC ,若带电粒子在通过C 点后的运动过程中不再越过y 轴,要使其恰能沿x 轴正方向通过D 点,求磁感应强度B 0及其磁场的变化周期T 0;(3)要使带电粒子通过C 点后的运动过程中不再越过y 轴,求交变磁场磁感应强度B 0和变化周期T 0的乘积B 0T 0应满足的关系.解析:(1)t =v 0g=0.4 s ,h =v 02t =0.8 ma x =v 1t=2g ,qE 1=2mg ,E 1=0.2 N/C.(2)qE 2=mg ,所以带电粒子在第一象限将做匀速圆周运动,设粒子运动圆轨道半径为R ,周期为T ,则qv 1B 0=m v 21R 可得R =0.08B 0使粒子从C 点运动到D 点,则有:h =(2n )R =(2n )0.08B 0,B 0=0.2n (T)(n =1,2,3…)T =2πm qB 0,T 02=T4T 0=T 2=πm qB 0=π20n(s)(n =1,2,3…).11 (3)当交变磁场周期取最大值而粒子不再越过y 轴时可作如图运动情形:由图可知θ=5π6,T 0≤56T =π60B 0所以可得B 0T 0≤π60(kg/C).答案:(1)0.8 m 0.2 N/C(2)0.2n (T)(n =1,2,3…) π20n (s)(n =1,2,3…)(3)B 0T 0≤π60(kg/C)。
绝密★启用前2019年高三物理一轮复习测试第九章电磁感应本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
第Ⅰ卷一、单选题(共20小题,每小题3.0分,共60分)1.如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是()A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)2.如图所示,通电直导线右边有一个矩形线框,线框平面与通电直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将()A.保持不变B.逐渐增大C.逐渐减小D.不能确定3.如图所示,金属棒MN,在竖直放置的两根平行导轨上无摩擦地下滑,导轨间串联一个电阻,磁感应强度垂直于导轨平面,金属棒和导轨的电阻不计,设MN下落过程中,电阻R上消耗的最大功率为P,要使R消耗的电功率增大到4P,可采取的方法是()A.使MN的质量增大到原来的2倍B.使磁感应强度B增大到原来的2倍C.使MN和导轨间距同时增大到原来的2倍D.使电阻R的阻值减到原来的一半4.如图所示,三条平行虚线位于纸面内,中间虚线两侧有方向垂直于纸面的匀强磁场,磁感应强度等大反向.菱形闭合导线框ABCD位于纸面内且对角线AC与虚线垂直,磁场宽度与对角线AC长均为d,现使线框沿AC方向匀速穿过磁场,以逆时针方向为感应电流的正方向,则从C点进入磁场到A点离开磁场的过程中,线框中电流i随时间t的变化关系,以下可能正确的是()A.B.C.D.5.如图所示,磁极远离和靠近圆环时产生的现象正确的是()A.图中磁铁N极接近A环时,A环被吸引,而后被推开B.图中磁铁N极远离A环时,A环被排斥,而后随磁铁运动C.用磁铁N极接近B环时,B环被推斥,远离磁铁运动D.用磁铁的任意一磁极接近A环时,A环均被排斥6.如图所示,MN和PQ是电阻不计的平行金属导轨,其间距为L,导轨弯曲部分和水平部分均光滑,二者平滑连接.右端接一个阻值为R的定值电阻.水平部分导轨左边区域有宽度为d的匀强磁场区域,磁场方向竖直向上,磁感应强度大小为B.质量为m、电阻也为R的金属棒从磁场区域的右边界以平行于水平导轨的初速度v0进入磁场,离开磁场后沿弯曲轨道上升h高度时速度变为零,已知金属棒与导轨间接触良好,则金属棒穿过磁场区域的过程中(重力加速度为g)()A.金属棒产生的最大感应电动势为Bdv0B.通过金属棒的电荷量为C.克服安培力所做的功为mv02D.整个过程电路中产生的焦耳热为mv02-mgh7.如图,电灯的灯丝电阻为2 Ω,电池电动势为2 V,内阻不计,线圈匝数足够多,其直流电阻为3 Ω.先合上开关S,过一段时间突然断开S,则下列说法中正确的是()A.电灯立即熄灭B.电灯立即变暗然后再逐渐熄灭C.电灯会突然比原来亮一下再熄灭,且电灯中电流方向与S断开前方向相同D.电灯会突然比原来亮一下再熄灭,且电灯中电流方向与S断开前方向相反8.如图所示,a、b、c三个圆环水平套在条形磁铁外面,其中a和b两环大小相同,c环最大,a环位于N极处,b和c两环位于条形磁铁中部,则穿过三个环的磁通量的大小是()A.c环最大,a与b环相同B.三个环相同C.b环比c环大D.a环一定比c环大9.如图所示,两根光滑的平行金属导轨位于水平面内,匀强磁场与导轨所在平面垂直,两根金属杆甲和乙可在导轨上无摩擦地滑动,滑动过程中与导轨接触良好且保持垂直.起初两根杆都静止.现突然给甲一个冲量使其获得速度v而开始运动,回路中的电阻不可忽略,那么在以后的运动中,下列说法正确的是()A.甲克服安培力做的功等于系统产生的焦耳热B.甲动能的减少量等于系统产生的焦耳热C.甲机械能的减少量等于乙获得的动能与系统产生的焦耳热之和D.最终两根金属杆都会停止运动10.下列不属于涡流应用的是()A.雷达B.真空冶炼炉C.探雷器D.金属探测器11.如图所示,两平行金属导轨固定在水平面上.匀强磁场方向垂直导轨平面向下,金属棒ab、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动.两棒ab、cd的质量之比为2∶1.用一沿导轨方向的恒力F水平向右拉棒cd,经过足够长时间以后()A.两棒间距离保持不变B.棒ab、棒cd都做匀速运动C.棒ab上的电流方向是由a向bD.棒cd所受安培力的大小等于12.某磁场磁感线如图所示,有一铜线圈自图示A处落至B处,在下落过程中,自上向下看,线圈中的感应电流方向是()A.始终顺时针B.始终逆时针C.先顺时针再逆时针D.先逆时针再顺时针13.如图所示,某实验小组在操场上做摇绳发电实验.长导线两端分别连在灵敏电流表的两个接线柱上,形成闭合电路.两位同学以每2秒约3圈的转速匀速摇动AB段导线.假定被摇动的导线由水平位置1按图示方向第一次运动到竖直位置2的过程中,磁通量的变化量约为10-4Wb,则该过程回路中产生的感应电动势约为()A. 2×10-4VB. 2.7×10-4VC. 3×10-4VD. 6×10-4V14.如图所示,矩形闭合线圈放置在水平薄板上,薄板左下方有一条形磁铁,当磁铁匀速自左向右通过线圈下方时,线圈始终保持静止,那么线圈中产生感应电流的方向(从上向下看) 和线圈受到薄板的摩擦力方向分别是()A.感应电流的方向先逆时针方向,后顺时针方向B.感应电流的方向先顺时针方向,后逆时针方向C.摩擦力方向先向左、后向右D.摩擦力方向先向右、后向左15.图中电感线圈L的直流电阻为RL,小灯泡的电阻为R,小量程电流表G1、G2的内阻不计,当开关S闭合且稳定后,电流表G1、G2的指针均偏向右侧(电流表的零刻度在表盘的中央),则当开关S断开时,下列说法中正确的是()A. G1、G2的指针都立即回到零点B. G1缓慢回到零点,G2立即左偏,然后缓慢回到零点C. G1立即回到零点,G2缓慢回到零点D. G2立即回到零点,G1缓慢回到零点16.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为()A.B.C.D.17.如图甲所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接有阻值为R 的定值电阻.阻值为r的金属棒ab垂直导轨放置,其它部分电阻不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上.从t=0时刻开始棒受到一个平行于导轨向上的外力F,由静止开始沿导轨向上运动,运动中棒始终与导轨垂直,且接触良好,通过R的感应电流随时间t变化的图象如图乙所示.下面分别给出了穿过回路abPM的磁通量Φ、磁通量的变化率、棒两端的电势差Uab和通过棒的电荷量q随时间变化的图象,其中正确的是()A.B.C.D.18.如图所示,条形磁铁竖直放置,闭合的金属线框水平靠近磁铁放置,从A端移至B端的过程中,穿过线框的磁通量的变化情况是()A.变大B.变小C.先变小后变大D.先变大后变小19.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨所在平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.t=0时,将开关S由1掷到2.若分别用U、F、q和v表示电容器两端的电压、导体棒所受的安培力、通过导体棒的电荷量和导体棒的速度.则下列图象表示这些物理量随时间变化的关系中可能正确的是()A.B.C.D.20.如图所示,abcd为水平放置的平行“l”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计.已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的发热功率为第Ⅱ卷二、计算题(共4小题,每小题10.0分,共40分)21.如图所示装置,导体棒AB、CD在相等的外力作用下,沿着光滑的轨道各朝相反方向以0.1 m/s 的速度匀速运动.匀强磁场垂直纸面向里,磁感强度B=4 T,导体棒有效长度都是L=0.5 m,电阻R=0.5 Ω,导轨上接有一只R′=1 Ω的电阻和平行板电容器,它的两板间距相距1 cm,试求:电容器极板间的电场强度的大小和方向?22.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.质量为0.2 kg的导体棒MN垂直于导轨放置,距离顶端1 m,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面向下的匀强磁场,磁感应强度随时间变化的规律如图乙所示.先固定导体棒MN,2 s后让MN由静止释放,运动一段时间后,小灯泡稳定发光.重力加速度g取10 m/s2,sin 37°=0.6.求:(1)1 s时流过小灯泡的电流大小和方向;(2)小灯泡稳定发光时消耗的电功率;(3)小灯泡稳定发光时导体棒MN运动的速度.23.如图所示,两根完全相同的“V”字形导轨OPQ与KMN倒放在绝缘水平面上,两导轨都在竖直平面内且正对、平行放置,其间距为L,电阻不计.两条导轨足够长,所形成的两个斜面与水平面的夹角都是α.两个金属棒ab和a′b′的质量都是m,电阻都是R,与导轨垂直放置且接触良好.空间有竖直向下的匀强磁场,磁感应强度为B.(1)如果两条导轨皆光滑,让a′b′固定不动,将ab释放,则ab达到的最大速度是多少?(2)如果将ab与a′b′同时释放,它们所能达到的最大速度分别是多少?24.如图所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4 T、方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场.电阻R=0.3 Ω、质量m1=0.1 kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05 kg 的小环.已知小环以a=6 m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率.答案解析1.【答案】A【解析】设此时回路面积为S,据题意,磁通量Φ=BS cosθ,对A选项,S增大,θ减小,cosθ增大,则Φ增大,A正确;对B选项,B减小,θ减小,cosθ增大,Φ可能不变,B错误;对C选项,S减小,B增大,Φ可能不变,C错误;对D选项,S增大,B增大,θ增大,cosθ减小,Φ可能不变,D错误;故只有A正确.2.【答案】C【解析】通电直导线产生稳定的磁场,离导线越远磁场越弱,磁感线越稀疏,故当线框远离通电直导线时,穿过线框的磁感线的条线越来越少,所以磁通量逐渐减小,故只有选项C正确.3.【答案】A【解析】当金属棒做匀速直线运动时,金属棒消耗的功率最大,此时有:mg=BIL=.若MN的质量增大到原来的2倍,则v增大到原来的2倍,根据能量守恒定律,电阻R上消耗的功率等于重力的功率,即P=mgv,则使R消耗的电功率增大到4P,故A正确.使磁感应强度B增大到原来的2倍,则速度变为原来的,根据P=mgv知,电功率变为原来的,故B错误.使MN和导轨间距同时增大到原来的2倍.则速度变为原来的,根据P=mgv知,电功率变为原来的,故C错误.使电阻R的阻值减到原来的一半,则速度变为原来的,根据P=mgv知,电功率变为原来的,故D错误.4.【答案】D【解析】设BD=L.在线圈进入磁场一半的过程中,切割的有效长度均匀增大,感应电动势均匀增大,则感应电流均匀增大,当BD刚进入磁场时,感应电流最大为I1=i0;在线圈进入磁场全部过程中,切割的有效长度均匀减小,感应电动势均匀减小,则感应电流均匀减小至零;线圈通过两个磁场的分界线时,切割的有效长度先均匀增大,感应电流均匀增大,当BD通过磁场分界线时,感应电流最大为I2=2i0,后均匀减小至零;在线圈出磁场一半的过程中,在线圈全部出磁场的过程中,切割的有效长度先均匀增大后均匀减小,感应电流先均匀增大后均匀减小,此过程感应电流最大为I3=i0,故D正确,B错误.5.【答案】D【解析】根据楞次定律,感应电流在回路中产生的磁通量总是反抗(或阻碍)原磁通量的变化,所以用磁铁的任意一磁极接近A环时,A环均被排斥;由于B环不是闭合回路,因此没有感应电流.6.【答案】D【解析】根据电磁感应定律可知,导体棒在磁场中切割磁感应线产生的最大感应电动势E=BLv m,在磁场中运动时因受安培力作用而做减速运动,所以在刚开始运动时速度最大,所以最大电动势为BLv0,所以选项A错误;通过导体棒的电荷量Q=·Δt==,所以选项B错误;根据动能定理可知W安-mgh=0-mv02,故可知克服安培力所做的功为mv02-mgh,所以选项C错误;克服安培力做的功转化为电能通过电路转化为焦耳热,所以选项D正确.7.【答案】B【解析】突然断开S,线圈将产生自感现象,且与电灯构成一闭合回路,此时通过电灯的电流向上,与断开前的电流方向相反;因线圈直流电阻比灯泡大,断开前通过线圈是电流小于通过灯泡的电流,即电灯会突然比原来暗一下再熄灭,B正确,A、C、D错误.8.【答案】C【解析】所有磁感线都从条形磁铁内部通过,且与外部磁感线方向相反,所以外部磁感线越多,磁通量越小,C对.9.【答案】C【解析】给甲一个冲量使其获得速度v而开始运动,回路中产生顺时针方向的感应电流,根据左手定则,甲棒受到向左的安培力而减速,乙棒受到向右的安培力而加速,根据能量守恒定律,故甲棒减小的动能等于系统增加的内能和乙棒增加的动能之和,故A、B、D错误,C正确.10.【答案】A【解析】雷达是利用电磁波发射与接收频率,从而确定间距,不属于涡流,故A错误;真空冶炼炉是线圈中的电流做周期性变化,在冶炼炉中产生涡流,从而产生大量的热量,故B正确;探雷器中变化电流遇到金属物体,在金属物体上产生涡流,故C正确;金属探测器中变化电流遇到金属物体,在金属物体上产生涡流,故D正确.11.【答案】D【解析】在拉力F作用下,cd棒向右运动,同时开始切割磁感线,产生感应电动势,并在ab和cd 构成的回路形成感应电流,cd棒受到向左的安培力,ab棒受到向右的安培力,使得ab棒开始加速运动,ab棒切割磁感线产生与cd棒反向的感应电流.cd棒随速度增大,所受安培力增大,加速度逐渐减小,运动稳定后,整个电路的电动势为Ecd-Eab=BLv cd-BLv ab=BL(v cd-v ab),当电动势不再变化时,即v cd-v ab不再变化,即两棒的加速度相等,选项A、B错.对ab棒要向右加速,安培力必然向右,因此电流方向由b到a,选项C错.由于两棒电流相同,磁场相同,因此安培力相同,所以有aab=,acd=,根据acd=aab可得F安=F,选项D对.12.【答案】C【解析】13.【答案】D【解析】每2秒约3圈,则1圈需要s,那么圈需要s;在s的时间内,闭合线圈的磁通量变化量约为10-4Wb,根据法拉第电磁感应定律得:E=n=V=6×10-4V,故D正确,A、B、C错误.14.【答案】B【解析】当磁铁N极向右靠近线圈时,线圈中向上的磁场增加,由楞次定律知感应电流的磁场阻碍原磁通量的增加,所以感应电流顺时针方向;当磁铁N极向右远离线圈时,线圈中向上的磁场减小,感应电流的磁场向上,所以感应电流逆时针方向,选项A错误,B正确;N极靠近线圈时,线圈的感应电流总要阻碍磁极的相对运动,给磁极向左的作用力,那么磁极给线圈向右的作用力,线圈静止不动,是因为受到了向左的摩擦力,当N极远离线圈,线圈的感应电流总要阻碍磁极的相对运动,给磁极向左的作用力,那么磁极给线圈向右的作用力,线圈静止不动,是因为受到了向左的摩擦力,所以整个过程线圈所受的摩擦力一直向左,选项C、D均错误.故选B.15.【答案】B【解析】S闭合且稳定时,通过含电流表G1、G2的两条支路的电流均由左向右,断开S,L中产生自感电动势,由“增反减同”可知,自感电动势E自的方向一定与原电流方向相同,显然,断开S后,在E自的作用下,题图回路中将继续形成沿顺时针方向的电流,这时流经含有电流表G2支路的电流方向已变为由右向左了.由于这段时间E自是逐渐减小的,故电流也是逐渐减小的,综上所述选B.16.【答案】C【解析】根据转动切割感应电动势公式E=BL2ω,L=,求出感应电动势,由欧姆定律求解感应电流.根据法拉第定律求解磁感应强度随时间的变化率.从静止开始绕过圆心O以角速度ω匀速转动时,线框中产生的感应电动势大小为E=BL2ω=B0()2ω=,感应电流为I==,根据法拉第定律得E==S=π()2=联立得=,故选C.17.【答案】B【解析】回路中的感应电动势为:E=,感应电流:I==,由图可知I=kt,即=kt,故有:=kRt,所以图象B对;由于产生的感应电动势是逐渐增大的,而A图描述磁通量与时间关系中斜率不变,产生的感应电动势不变,故A、C错误;通过导体棒的电量为:Q=It=kt2,故Q -t图象为双曲线,并非过原点的直线,故D错误.18.【答案】C【解析】条形磁铁外部磁感线靠近两极密,中间稀疏,故磁通量先变小后变大.19.【答案】C【解析】将开关S由1掷到2时,由于电容器放电,所以在导体棒中有向下的电流,导体棒受安培力作用向右运动,当导体棒切割磁感线产生的电动势等于电容器两端电压时,电路中电流为零,于是安培力为零,导体做匀速运动,电容器带电量及两板电压保持不变.此过程中安培力的变化及速度的变化都不是线性变化,所以选项C正确.20.【答案】B【解析】电路中的感应电动势E=Blv,感应电流I===,故A错误,B正确;金属杆所受安培力大小F=BI=,故C错误;金属杆的发热功率P=I2R=I2r=,故D错误.21.【答案】20 V/m方向b→a【解析】导体AB、CD在外力的作用下做切割磁感线运动,使回路中产生感应电流.I===A=0.2 A电容器两端电压等于R′两端电压UC=UR′=0.2×1 V=0.2 V根据匀强电场的强度公式E==20 V/m回路电流流向D→C→R′→A→B→D,所以,电容器b极板电势高于a极板电势,故电场强度方向b→a.22.【答案】(1)0.1 A,方向为逆时针(2)1 W(3)5 m/s【解析】(1)在0~2 s的时间内,MN静止,故由电磁感应定律可得,电动势E===0.2 V,再由欧姆定律得,电流I===0.1 A,由于磁场是逐渐变大的,磁通量是增加的,故产生感应电动势的磁场是相反的,即沿斜面向上,由右手定则可判断出回路中的电流方向为逆时针方向.(2)2 s后,MN由静止释放时,此时它受到的安培力为F=BIL=0.8 T×0.1 A×0.5 m=0.04 N,而导体棒的重力沿斜面向下的分量为mg sin 37°=0.2 kg×10 N/kg×0.6=1.2 N,故导体棒会向下运动;待小灯泡稳定发光时,说明MN在某一速度下运动时,它受到的力是平衡的.由导体棒的受力平衡可得:F=mg sin 37°-μmg cos 37°=0.2 kg×10 N/kg×(0.6-0.5×0.8)=0.4 N;故安培力的大小为F=0.4 N,设平衡时电路中的电流为I1,由公式F=BI1L,得电路中的电流为I1===1 A,故小灯泡稳定发光时消耗的电功率P=IR=(1 A)2×1 Ω=1 W;(3)设平衡时导体棒的运动速度为v,则根据E1=BLv,I1==得,1 A=,解得v=5 m/s.23.【答案】(1)(2)【解析】(1)ab运动后切割磁感线,产生感应电流,而后受到安培力,当受力平衡时,加速度为0,速度达到最大,受力情况如图所示.则:mg sinα=F安cosα又F安=BILI=E感=BLv m cosα联立上式解得v m=(2)若将ab、a′b′同时释放,因两边情况相同,所以达到的最大速度大小相等,这时ab、a′b′都产生感应电动势而且是串联.所以mg sinα=F安′cosαF安′=BI′LI′=所以v m′=.24.【答案】(1)0.2 N(2)2 W【解析】(1)设小环受到的摩擦力大小为F f,由牛顿第二定律有:m2g-F f=m2a解得F f=0.2 N(2)设通过K杆的电流为I1,根据平衡有:F f=B1I1l设回路总电流为I,总电阻为R总,,因为I=2I1R总=R设Q杆下滑速度大小为v,产生的感应电动势为E,有I=E=B2LvF+m1g sinθ=B2IL拉力的瞬时功率为P=Fv联立以上方程得到P=2 W.。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学 习 资 料 专 题第九章 磁场章末综合测试(九) (时间:60分钟 分数:100分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的.在下列四个图中,正确表示安培假设中环形电流方向的是( )解析:B 由日常知识可知,地球的南极为磁场的N 极,由右手螺旋定则可知,电流方向如图B ,故选项B 正确.2.不计重力的两个带电粒子M 和N 沿同一方向经小孔S 垂直进入匀强磁场,在磁场中的运动轨迹如图.分别用v M 与v N ,t M 与t N ,q M m M 与q N m N表示它们的速率、在磁场中运动的时间、比荷,则( )A .如果q M m M =q N m N ,则v M >v NB .如果q M m M =q N m N,则v M <v N C .如果v M =v N ,则q M m M >q N m N D .如果t M =t N ,则q M m M >q N m N解析:A 由图可知r M >r N .若q M m M =q N m N ,利用r =mv qB,可得v M >v N ,A 项正确、B 项错误;若t M =t N ,利用T =2πm qB ,可得q M m M =q N m N ,D 项错误;若v M =v N ,利用r =mv qB ,可得q M m M <q Nm N,C 项错误.3.利用如图所示的实验装置可以测量磁感应强度B .用绝缘轻质丝线把底部长为L 、电阻为R 、质量为m 的“U”型线框固定在力敏传感器的挂钩上,并用轻质导线连接线框与电源,电源内阻不计,电压可调,导线的电阻忽略不计.当外界拉力F 作用于力敏传感器的挂钩上时,力敏传感器会显示拉力的大小F .当线框接入恒定电压为E 1的电源时,力敏传感器显示拉力的大小为F 1;当线框接入恒定电压为E 2的电源时,力敏传感器显示拉力的大小为F 2.下列说法正确的是( )A .当线框接入恒定电压为E 1的电源时所受安培力为F 1B .当线框接入恒定电压为E 2的电源时力敏传感器显示拉力的大小为线框所受安培力与重力之差C .待测磁场的磁感应强度B 的大小为F 1-F 2RE 2-E 1LD .待测磁场的磁感应强度B 的大小为F 1-F 2RE 1-E 2L解析:D 当线框接入恒定电压为E 1的电源时,“U”型线框中电流I 1=E 1R,所受安培力F 安=BLI 1=BLE 1R ,力敏传感器显示拉力的大小为F 1=BLE 1R+mg ,F 1>F 安,A 错误.同理,当线框接入恒定电压为E 2的电源时,力敏传感器显示拉力的大小F 2=BLE 2R+mg ,B 错误.由F 1=BLE 1R +mg 和F 2=BLE 2R +mg ,联立解得B =F 1-F 2RE 1-E 2L,C 错误,D 正确. 4.(2017·湖北宜昌调研)如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O 和y 轴上的点a (0,2L ).一质量为m 、电荷量为e 的电子从a 点以初速度v 0平行于x 轴正方向射入磁场,并从x 轴上的b 点射出磁场,此时速度的方向与x 轴正方向的夹角为60°.下列说法正确的是( )A .电子在磁场中运动的时间为4πL 3v 0B .电子在磁场中运动的时间为2πL3v 0C .磁场区域的圆心坐标为(32L ,L 2)D .电子在磁场中做圆周运动的圆心坐标为(0,-L )解析:A 本题考查带电粒子在磁场中的运动,意在考查考生对带电粒子在磁场中运动知识的应用能力.由图可以计算出电子做圆周运动的半径为4L .故在磁场中运动的时间为t =π3·4L v 0=4πL 3v 0,A 正确,B 错误;ab 是磁场区域圆的直径,故圆心坐标为(3L ,L ),电子在磁场中做圆周运动的圆心为O ′,计算出其坐标为(O ,-2L ),所以C 、D 错误.5.如图所示为“用质谱仪测定带电粒子质量”的装置示意图.速度选择器中场强E 的方向竖直向下,磁感应强度B 1的方向垂直纸面向里,分离器中磁感应强度B 2的方向垂直纸面向外,在S 处有甲、乙、丙、丁四个一价正离子垂直于E 和B 1入射到速度选择器中,若它们的质量关系满足m 甲=m 乙<m 丙=m 丁,速度关系满足v 甲<v 乙=v 丙<v 丁,它们的重力均可忽略,则打在P 1、P 2、P 3、P 4四点的离子分别是()A .甲、丁、乙、丙B .乙、甲、丙、丁C .丙、丁、乙、甲D .丁、甲、丙、乙解析:A 乙、丙速度相等,通过速度选择器,进入磁场B 2,由半径公式r =mvqB 2,质量大半径大,P 3、P 4对应的离子是乙、丙.甲的速度小于丁的速度,在速度选择器中,甲的洛伦兹力小于乙的洛伦兹力,甲的电场力大于洛伦兹力而向下偏,而丁向上偏转,A 正确.6.如图,初速度可忽略、质量相同、电荷量分别为q 和3q 的粒子P 和M ,经电压为U 的电场加速后,垂直进入方向垂直纸面向里的匀强磁场区域,不计粒子重力,下列表述不正确的是( )A .P 和M 离开电场区域时的动能相同B .P 和M 在电场中运动时的加速度之比为1∶3C .P 在磁场中运动的半径较大D .M 在磁场中运动的周期较大解析:ACD 由动能定理,qU =12mv 2,可知,当质量、电压与初速度相同情况下,电荷量越大,动能越大,故A 错误;由牛顿第二定律与E =U d 相结合.有a =qU md,可知,a 与q 成正比,选项B 正确;由半径公式R =mv Bq 结合qU =12mv 2,有R =1B2mUq,得出R 与1q成正比,故C 正确;由周期公式T =2πm Bq,则有T 与1q成正比,选项D 错误.7.如图所示,AOB 为一边界为14圆的匀强磁场,O 点为圆心,D 点为边界OB 的中点,C 点为边界上一点,且CD ∥AO .现有两个完全相同的带电粒子以相同的速度射入磁场(不计粒子重力),其中粒子1从A 点正对圆心射入,恰从B 点射出,粒子2从C 点沿CD 射入,从某点离开磁场,则可判断( )A .粒子2在B 、C 之间某点射出磁场 B .粒子2必在B 点射出磁场C .粒子1与粒子2在磁场中的运行时间之比为3∶2D .粒子1与粒子2的速度偏转角度应相同解析:BC 粒子1从A 点射入,恰好从B 点射出,则粒子做圆周运动的半径等于14圆的半径,从圆弧AB 水平入射的粒子都将聚集到B 点,则选项B 正确、A 错误;分析得粒子1和2的运动的轨迹如图所示,其圆弧对应的圆心角分别为90°和60°,由t =θ360°T ,得两粒子运动的时间之比为3∶2,则选项C 正确、D 错误.8.(2018·山东淄博一模)如图所示,空间存在一水平方向的匀强电场和一水平方向的匀强磁场,磁场的磁感应强度大小为B ,电场强度大小为E =3mgq,电场方向和磁场方向相互垂直.在此电磁场正交的空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内.一质量为m ,带电量为+q 的小球套在绝缘杆上.若给小球一沿杆向下的初速度v 0,小球恰好做匀速运动,且小球电量保持不变,重力加速度为g ,则下列说法正确的是( )A .小球的初速度为v 0=2mgqBB .若小球的初速度为3mgqB,小球将做加速度不断增大的减速运动,最后停止C .若小球的初速度为mg qB,小球将做加速度不断增大的减速运动,最后停止D .若小球的初速度为mg qB ,则运动中克服摩擦力做功为m 3g 22q 2B2解析:ACD 对小球进行受力分析如图所示,电场力的大小:F =qE =q ×3mgq=3mg ,由于重力的方向竖直向下,电场力的方向水平向左,二者垂直,合力F G +F =F 2+mg2=2mg ,由几何关系可知,重力与电场力的合力与杆的方向垂直,不会对小球做功,而洛伦兹力的方向与速度的方向垂直,也不会对小球做功.所以,当小球做匀速直线运动时,不可能存在摩擦力,没有摩擦力,说明小球与杆之间就没有支持力的作用,则洛伦兹力大小与重力、电场力的合力大小相等,方向相反,有qv 0B =2mg ,解得v 0=2mgqB,A 正确.若小球的初速度为3mgqB时,则洛伦兹力f =qv 0B =3mg >F G +F ,则在垂直于杆的方向上,小球还受到垂直于杆向下的支持力,则摩擦力F f =μF N ,小球将做减速运动.随速度的减小,洛伦兹力减小,则支持力逐渐减小,摩擦力减小,小球做加速度不断减小的减速运动,最后当速度减小到2mg qB 时,小球开始做匀速直线运动,B 错误.若小球的初速度为mg qB,则洛伦兹力f =qv 0B=mg <F G +F ,则在垂直于杆的方向上,小球还受到垂直于杆向上的支持力,而摩擦力F f =μF N ,小球将做减速运动,随速度的减小,洛伦兹力减小,则支持力逐渐增大,摩擦力逐渐增大,小球的加速度增大,所以小球将做加速度不断增大的减速运动,最后停止,C 正确.若小球的初速度为mg qB ,球运动中克服摩擦力做功等于小球的动能,所以W =12mv 20=m 3g22q 2B2,D 正确.二、非选择题(本大题共3小题,第9题14分,第10题18分,第11题20分,共52分)9.如图所示,两根平行放置的金属导轨,间距为L ,倾角为θ,导轨间有电动势为E 、内阻不计的电源.现有一质量为m 的铜棒ab ,与导轨垂直放于导轨上,流过铜棒ab 的电流为I ,导轨与铜棒间的动摩擦因数为μ.导轨电阻不计,要使ab 棒静止在导轨上,已知最大静摩擦力等于滑动摩擦力.求所施加的竖直向上的磁场的磁感应强度大小的范围.解析:B 最大时,铜棒有沿导轨上滑的趋势,摩擦力的方向沿导轨向下,有ILB 1cos θ=mg sin θ+f 1(2分)N 1=IBL 1sin θ+mg cos θ(2分) f 1=μN 1(2分)联立可得B 1=mgθ+μcos θIL θ-μsin θ(1分)B 最小时,铜棒有沿导轨下滑的趋势,摩擦力方向沿导轨向上,则有ILB 2cos θ+f 2=mg sin θ(2分)N 2=ILB 2sin θ+mg cos θ,f 2=μN 2(1分)联立可得B 2=mg θ-μcos θIL θ+μsin θ(1分)综上可知mg θ-μcos θILθ+μsin θ≤B ≤mg θ+μcos θIL θ-μsin θ.(1分)答案:mg θ-μcos θILθ+μsin θ≤B ≤mg θ+μcos θILθ-μsin θ10.如图所示,在平面直角坐标系xOy 内,第Ⅰ象限的等腰直角三角形MNP 区域内存在垂直于坐标平面向外的匀强磁场,y <0的区域内存在着沿y 轴正方向的匀强电场,一质量为m 、电荷量为q 的带电粒子从电场中Q (-2h ,-h )点以速度v 0水平向右射出,经坐标原点O处射入第Ⅰ象限,最后以垂直于PN 的方向射出磁场.已知MN 平行于x 轴,N 点的坐标为(2h,2h ),不计粒子的重力,求:(1)电场强度的大小E ; (2)磁感应强度的大小B ; (3)粒子在磁场中运动的时间t . 解析:(1)粒子运动轨迹如图所示,粒子在电场中运动的过程中,由平抛运动规律及牛顿运动定律得:2h =v 0t (2分)h =12at 2(1分) qE =ma (1分) 解得E =mv 202qh(1分)(2)粒子到达O 点时,沿y 轴正方向的分速度v y =at =qE m ·2hv 0=v 0(2分)则速度方向与x 轴正方向的夹角α满足:tan α=v y v x=1(1分) 即α=45°(1分)粒子从MP 的中点垂直于MP 进入磁场,垂直于NP 射出磁场,粒子在磁场中的速度为:v =2v 0(1分)轨道半径R =2h (1分)又由qvB =m v 2R(2分)得B =mv 0qh(1分) (3)由T =2πmBq,(1分)且由几何关系可知小粒子在磁场中运动的圆心角为45°(1分) 故粒子在磁场中的运动时间t =18·2πm qB =πh4v 0(2分) 答案:(1)mv 202qh (2)mv 0qh (3)πh 4v 011.如图所示,在竖直平面内,水平x 轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x 轴上方的匀强磁场磁感应强度大小为B 1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x 轴的匀强电场,电场强度大小为E 1,已知一质量为m 的带电小球从y 轴上的A (0,L )位置斜向下与y 轴负半轴成60°角射入第一象限,恰能做匀速直线运动.(1)判定带电小球的电性,并求出所带电荷量q 及入射的速度大小;(2)为使得带电小球在x 轴下方的磁场中能做匀速圆周运动,需要在x 轴下方空间加一匀强电场,试求所加匀强电场的方向和电场强度的大小;(3)在满足第(2)问的基础上,若在x 轴上安装有一绝缘弹性薄板,并且调节x 轴下方的磁场强弱,使带电小球恰好与绝缘弹性板碰撞两次从x 轴上的某一位置返回到x 轴的上方(带电小球与弹性板碰撞时,既无电荷转移,也无能量损失,并且入射方向和反射方向与弹性板的夹角相同),然后恰能做匀速直线运动至y 轴上的A (0,L )位置,则:弹性板至少多长?带电小球从A 位置出发到返回至A 位置过程所经历的时间为多少?解析:(1)小球在第一象限中的受力分析如图所示,所以带电小球带负电.mg =qE 1tan 60°(2分)q =3mg3E 1(1分) 又qE 1=qvB 1cos 60°(2分) 得v =2E 1B 1(1分)(2)小球若在x 轴下方的磁场中做匀速圆周运动,必须使得电场力与重力二力平衡,即应施加一竖直向下的匀强电场,且电场强度大小满足qE =mg ,即E =3E 1.(3分)(3)要想让小球恰好与弹性板发生两次碰撞,并且碰撞后返回x 轴上方空间匀速运动到A 点,则其轨迹应该如图所示,且由几何关系可知3PD =2ON ,ON OA =ON L=tan 60°(2分) 联立上述方程解得PD =DN =233L ,(2分) R =233L .(1分) 设x 轴下方的磁感应强度为B ,则满足qvB =m v 2R ,T =2πm qB(2分)从N 点运动到C 点的时间为t =3×360°-60°360°T (1分)联立上式解得t =53πB 1L3E 1(1分)由几何关系可知L AN=cos 60°在第一象限运动的时间t 1和第二象限中的运动的时间t 2相等,且t 1=t 2=AN v=2L v=B 1LE 1(1分)所以带电小球从A 点出发至回到A 点的过程中所经历的总时间为t 总=t +t 1+t 2 联立上述方程解得t 总=53πB 1L 3E 1+2B 1L E 1(1分)答案:(1)负电 q =3mg 3E 1 v =2E 1B 1(2)竖直向下 3E 1 (3)233L 53πB 1L 3E 1+2B 1LE 1。
第九章 45分钟章末检测卷满分100分一、选择题(1~5题只有一项符合题目要求,6~9题有多项符合题目要求,每小题6分,共54分)1.下列装置中,没有利用带电粒子在磁场中发生偏转的物理原理的是( )解析:洗衣机将电能转化为机械能,不是利用带电粒子在磁场中的偏转制成的,所以选项D符合题意.答案:D2.(2018·江苏模拟)如图所示,A、B两点是通电导线左右两侧的点,这两点处磁感应强度的方向( )A.均垂直于纸面向里B.均垂直于纸面向外C.A点垂直于纸面向里,B点垂直于纸面向外D.A点垂直于纸面向外,B点垂直于纸面向里解析:利用安培定则可以判断出通电直导线周围的磁场线分布情况,题图中电流方向向上,则导线右侧的磁场方向垂直于纸面向里,左侧的磁场方向垂直于纸面向外,即A点垂直于纸面向外,B点垂直于纸面向里,故D正确,A、B、C错误.答案:D3.如图所示,均匀绕制的螺线管水平固定在可转动的圆盘上,在其正中心的上方有一固定的环形电流A,A与螺线管垂直.A中电流方向为顺时针方向,开关S闭合瞬间.关于圆盘的运动情况(从上向下观察),下列说法正确的是( )A.静止不动B.顺时针转动C.逆时针转动 D.无法确定解析:环形电流可等效为里面的N极、外面为S极的小磁针,通电螺线管可等效为右边为N板,左边为S极的条形磁铁,根据磁极间的相互作用,圆盘将顺时针转动,选项B正确.则该点的磁感应强度方向可能为图中的( ).B1,由安培定则,I1在H点产生的磁感应强度方向垂直于点产生的磁感应强度方向垂直于点产生的磁感应强度大,H点磁感应强度为两磁场的叠加,3,选项B正确.两平行的粗糙金属导轨水平固定在匀强磁场中,一端与电源连接.一质量为m并接触良好,金属棒与导轨间的动摩擦因数为μ=33,在安培力的作用下,金属棒以本题考查通电导体棒在磁场中的平衡问题.由题意对棒受力分析,如图所示,含有11H(处射入速度选择器,沿直线O1O2运动的粒子在小孔( )粒子只受磁场力的作用,其它力不计)( ).若粒子的初始位置在a 处,在t =3T8时给粒子一个沿切线方向水平向右的初速度.若粒子的初始位置在f 处,在t =T2时给粒子一个沿切线方向竖直向下的初速度11子,速度方向与边界垂直,且N 点为正方形边长的中点,则下列说法正确的是不会大于在正方形磁场中的,故A、B、D正确.如图所示,空间中存在方向垂直纸面向里的匀强磁场,纸面A点有甲、乙、丙三个质量相同的粒子以相同的速度点、BC的中点D、AC.甲粒子带正电,乙粒子不带电,丙粒子带负电46分)如图所示,一段金属棒abcd用两个完全相同的轻质弹簧悬挂在倾角为θ=30°的光滑绝缘斜面上,=∠bcd=135°.磁场方向垂直斜面向上,磁感应强度大,弹簧上端固定,下端与金属导线绝缘,金属棒通过开关与一电动势为,已知开关断开时两弹簧的伸长量均为系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了kg分)(2018·陕西铁一中模拟)如图所示,将带电荷量的滑块放在小车的水平绝缘板的右端,小车的质量M,小车的绝缘板足够长,它们所在的空间存在磁感应强度.开始时小车静止在光滑水平面上,一摆长在竖直平面内建立直角坐标系电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.的微粒从原点出发沿与x轴正方向的夹角为,l)时,电场方向突然变为竖直向上,粒子继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:粒子在复合场中的运动时间.之前做匀速直线运动,对微粒受力分析如图甲,所以,微粒所受重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动,。
2019高考物理单元综合测试题第9章电磁感应本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.(2018·北京海淀模拟)如下图,矩形导线框abcd与无限长通电直导线MN在同一平面内,直导线中的电流方向由M到N,导线框的ab边与直导线平行.若直导线中的电流增大,导线框中将产生感应电流,导线框会受到安培力的作用,则以下关于导线框受到的安培力的判断正确的选项是()A.导线框有两条边所受安培力的方向相同B.导线框有两条边所受安培力的大小相同C.导线框所受的安培力的合力向左D.导线框所受的安培力的合力向右[答案]BD[解析]根据左手定则,四条边的安培力的方向都不相同,A错;在某一瞬间,导线框的感应电流大小是相同的,ab边和cd边所处的磁场强度不同,所以安培力的大小不同,bc边和ad边所处的磁场情况相同,所以安培力的大小相同,B对;直导线中的电流增大,穿过导线框的磁通量要变大,根据楞次定律,导线框所受的安培力的合力向右,C错,D对.2.(2018·哈尔滨模拟)矩形导线框abcd放在匀强磁场中,在外力控制下处于静止状态,如图甲所示.磁感应强度方向与导线框所在平面垂直,磁感应强度B随时间变化的图象如图乙所示.t=0时刻,磁感应强度的方向垂直导线框平面向里,在0~4s时间内,导线框ad边所受安培力随时间变化的图象(规定以向左为安培力正方向)可能是以下选项中的()[答案] D[解析]由图象可知0~1s时间内磁场均匀向里减小,根据楞次定律及左手定则可知ad边受到的安培力向左,再由I=ΔBSRΔt可得回路中电流不变,而F=BIL,故F均匀减小,选项AB错误;1~2s内感应电流方向仍不变,但安培力方向向右,且均匀增大,应选项C 错误,D正确.3.(2018·南昌模拟)如下图,在粗糙绝缘水平面上有一正方形闭合金属线框abcd,其边长为l、质量为m,金属线框与水平面的动摩擦因数为μ.虚线框a′b′c′d′内有一匀强磁场,磁场方向竖直向下.开始时金属线框的ab边与磁场的d′c′边重合.现使金属线框以初速度v0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc边与磁场。
《磁场》综合检测(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~7小题只有一个选项正确,第8~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)1.地球的地理两极与地磁两极并不完全重合,它们之间存在磁偏角,首先观测到磁偏角的是( D )A.意大利航海家哥伦布B.葡萄牙航海家麦哲伦C.我国的航海家郑和D.中国古代科学家沈括解析:世界上第一个清楚地、准确地论述磁偏角的是沈括.沈括是中国历史上最卓越的科学家之一,他发现了地磁偏角的存在,比欧洲发现地磁偏角早了四百多年,选项D正确.2.如图,一个环形电流的中心有一根通电直导线,则环受到的磁场力( D )A.沿环半径向外B.沿环半径向内C.沿通电直导线水平向左D.等于零解析:通电直导线产生的磁场是以导线上各点为圆心的同心圆,而环形电流的方向与磁场方向平行,即B平行I,所以通电圆环不受磁场力的作用,即F=0,选项D正确,A,B,C错误.3.在匀强磁场中,一个原来静止的原子核,由于放出射线,结果得到一张两个相切圆的径迹照片(如图所示),今测得两个相切圆半径之比R1∶R2=a,新核与射线质量之比为b,则下列说法正确的是( B )A.放出的射线为高速电子流B.半径为r2的圆为放出射线的运动轨迹C.射线与新核动能之比为aD.射线与新核质子数之比为b解析:根据动量守恒可以知道,放出射线后的粒子动量大小相等,方向相反,则根据左手定则可以知道,放出的粒子均带正电,选项A错误;放射出粒子在磁场中做匀速圆周运动,则即由于动量守恒,而且放出的粒子电荷量小,则半径R大,故半径为r2的圆为放出射线的运动轨迹,选项B正确;根据动量与动能的关系E k则动能之比等于质量的反比,故射线与新核动能之比为b,选项C错误;射线与新核质子数之比即为电荷量之比,由于则即射线与新核质子数之比等于半径的反比,射线与新核质子数之比为a,选项D错误.4.如图所示,用两根相同的细绳水平悬挂一段均匀载流直导线MN,电流I方向从M到N,绳子的拉力均为F.为使F=0,可能达到要求的方法是( C )A.加水平向右的磁场B.加水平向左的磁场C.加垂直纸面向里的磁场D.加垂直纸面向外的磁场解析:根据左手定则可知,在MN中通入电流,在空间加上垂直于纸面向里的磁场,可以使MN受到向上的安培力,这样可以使MN受到绳子拉力为零,选项A,B,D错误,C正确.5.将一块长方体形状的半导体材料样品的表面垂直磁场方向置于磁场中,当此半导体材料中通有与磁场方向垂直的电流时,在半导体材料与电流和磁场方向垂直的两个侧面会出现一定的电压,这种现象称为霍尔效应,产生的电压称为霍尔电压,相应的将具有这样性质的半导体材料样品就称为霍尔元件.如图所示,利用电磁铁产生磁场,毫安表检测输入霍尔元件的电流,毫伏表检测霍尔元件输出的霍尔电压.已知图中的霍尔元件是P型半导体,与金属导体不同,它内部形成电流的“载流子”是空穴(空穴可视为能自由移动带正电的粒子).图中的1,2,3,4是霍尔元件上的四个接线端.当开关S1,S2闭合后,电流表A和电表B,C都有明显示数,下列说法中正确的是( C )A.电表B为毫伏表,电表C为毫安表B.接线端4的电势高于接线端2的电势C.若调整电路,使通过电磁铁和霍尔元件的电流与原电流方向相反,但大小不变,则毫伏表的示数将保持不变D.若适当减小R1、增大R2,则毫伏表示数一定增大解析:由题图可知,电表B串联在电源E2的电路中,故它是电流表,即毫安表,而电表C是并联在2,4两端的,它是测量霍尔电压的,故它是电压表即毫伏表,选项A错误;由于霍尔元件的载流子是带正电的粒子,磁场方向向下,电流方向由1到3,由左手定则可知,带正电的粒子受到的洛伦兹力的方向指向极板2,即接线端2的电势高于接线端4的电势,选项B错误;稳定时,粒子受到的洛伦兹力与电场力相平衡,即解得U=Bvd,当电流方向都相反,但大小不变时,粒子的偏转方向与原来相同,但仍存在如上的平衡关系式,由于电流的大小不变,由电流的微观表达式I=neSv可知,其粒子的定向移动速度也不变,故霍尔电压的大小不变,即毫伏表的示数将保持不变,选项C正确;若减小R1,则会让B增大,若增大R2,会让电流I减小,粒子的定向移动速率v也变小,则不能确定霍尔电压的变化情况,故毫伏表的示数不一定增大,选项D错误.6.如图(甲)所示,a,b两平行直导线中通有相同的电流,当两通电导线垂直圆平面放置于圆周上,且两导线与圆心连线的夹角为60°时,圆心处的磁感应强度大小为B.如图(乙)所示,c 导线中通有与a,b导线完全相同的电流,a,b,c垂直圆平面放置在圆周上,且a,b两导线与圆心连线的夹角为120°,b,c两导线与圆心连线的夹角为30°,则此时圆心处的磁感应强度大小为( A )B.BC.0D.B解析:当a,b两导线与圆心连线的夹角为60°时,它们在圆心处的磁感应强度如图(甲)所示,设B a=B b=B1,则有B=B1.当a,b两导线与圆心连线夹角为120°时,如图(乙)所示,它们在圆心处的磁感应强度矢量和为B′=B1,再与c导线在圆心处产生的磁场叠加后磁感应强度矢量和为B1,选项A正确.7.如图所示为一种质谱仪的工作原理示意图,此质谱仪由以下几部分构成:离子源、加速电场、静电分析器、磁分析器、收集器.静电分析器通道中心线半径为R,通道内有均匀辐射电场,在中心线处的电场强度大小为E;磁分析器中分布着方向垂直于纸面,磁感应强度为B的匀强磁场,其左边界与静电分析器的右边界平行.由离子源发出一个质量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后进入静电分析器,沿中心线MN做匀速圆周运动,而后由P点进入磁分析器中,最终经过Q点进入收集器.下列说法中正确的是( B )A.磁分析器中匀强磁场方向垂直于纸面向内B.加速电场中的加速电压C.磁分析器中圆心O2到Q点的距离D.任何离子若能到达P点,则一定能进入收集器解析:进入静电分析器后,正离子顺时针转动,所受洛伦兹力指向圆心,根据左手定则,磁分析器中匀强磁场方向垂直于纸面向外,选项A错误;离子在静电分析器中做匀速圆周运动,根据牛顿第二定律有设离子进入静电分析器时的速度为v,离子在加速电场中加速的过程中,由动能定理有qU=2,解得选项B正确;由B项解析可知与离子质量、电荷量无关.离子在磁分析器中做匀速圆周运动,由牛顿第二定律有得即选项C错误;圆周运动的轨道半径与电荷的质量和电荷量有关,能够到达P点的不同离子,半径不一定都等于d,不一定都能进入收集器,选项D错误.8.如图所示,回旋加速器D形盒的半径为R,所加磁场的磁感应强度为B,被加速的质子从D形盒中央由静止出发,经交变电场加速后进入磁场.设质子在磁场中做匀速圆周运动的周期为T,若忽略质子在电场中的加速时间,则下列说法正确的是( AD )A.如果只增大交变电压U,则质子在加速器中运行时间将变短B.如果只增大交变电压U,则电荷的最大动能会变大C.质子在电场中加速的次数越多,其最大动能越大D.交变电流的周期应为T解析:如果只增大交变电压U,则质子在加速器中加速次数减少,因此质子的运行时间将变短,选项A正确;根据qv m得v m电荷的最大动能与加速的电压和加速的次数无关,选项B,C错误.回旋加速器粒子在磁场中运动的周期和高频交变电流的周期相等,选项D正确.9.如图所示,一个带正电荷的小球从a点出发水平进入正交垂直的匀强电场和匀强磁场区域,电场方向竖直向上,某时刻小球运动到了b点,则下列说法正确的是( CD )A.从a到b,小球可能做匀速直线运动B.从a到b,小球可能做匀加速直线运动C.从a到b,小球动能可能不变D.从a到b,小球机械能增加解析:带电小球的初速度是水平的,从a运动到b点的过程中小球在竖直方向上发生位移,说明小球做的是曲线运动,所以小球受力不为零,即小球不可能做匀速直线运动,选项A错误;从以上分析可知小球做曲线运动,即变速运动,故小球受到磁场的洛伦兹力也是变化的,故小球受到的合力是变力,所以小球不可能做匀加速直线运动,选项B错误;当小球的重力和电场力平衡时,小球受到的洛伦兹力只改变小球的速度方向,小球的动能不变,选项C正确;从a 到b,电场方向竖直向上,电场力一定做正功,故机械能增加,选项D正确.10.如图所示,在一个等腰直角三角形ACD区域内有垂直纸面向外的匀强磁场,磁场的磁感应强度大小为B.一质量为m、电荷量为q的带正电粒子(不计重力)从AC边的中点O垂直于AC 边射入该匀强磁场区域,若该三角形的两直角边长均为2l,则下列关于粒子运动的说法中正确的是( ACD )A.若该粒子的入射速度为则粒子一定从CD边射出磁场,且距点C的距离为lB.若要使粒子从CD边射出,则该粒子从O点入射的最大速度应为C.若要使粒子从AC边射出,则该粒子从OD.该粒子以大小不同的速度入射时,在磁场中运动的最长时间为解析:当,根据洛伦兹力充当向心力可知解得R=l,根据几何关系可知,粒子一定从距C点为l的位置离开磁场,选项A正确;根据洛伦兹力充当向心力可知因此半径越大,速度越大;根据几何关系可知,使粒子与AD边相切时速度最大,由于AD=2l,则由几何关系可知,最大半径一定大于l,则若要使粒子从CD边射出,则该粒子从O点入射的最选项B错误;若要使粒子从AC边射出,则该粒子从O点入射的最大半径因此最大速度应为选项C正确;根据几何关系可知,粒子在磁场中最大圆心角为180°,选项D正确.11.如图所示,等腰直角三角形abc区域内存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B.三个相同的带电粒子从b点沿bc方向分别以速度v1,v2,v3射入磁场,在磁场中运动的时间分别为t1,t2,t3,且t1∶t2∶t3=3∶3∶1.直角边bc的长度为L,不计粒子的重力,下列说法正确的是( BD )A.三个粒子的速度大小关系可能是v1=v2>v3B.三个粒子的速度大小关系可能是v1<v2<v3C.D.解析:速度为v1,v2的粒子从ab边穿出,则偏转角为90°,但两者的速度大小关系不定,但其半径一定比速度为v3的粒子半径小,由半径公式则v3一定大于v1,v2,选项A错误,B正确;由于速度为v1的粒子偏转90°,则t1,于是选项D正确;对速度为v3的粒子偏转30°,画出运动轨迹如图所示,由几何关系知R3tan 15°+R3tan 15°cos 30°=L,所以R3而R3联立得到选项C错误.12.图中的虚线为半径为R、磁感应强度大小为B的圆形匀强磁场的边界,磁场的方向垂直圆平面向里.A向圆平面内的不同方向以相同的速度v0射入磁场,粒子在磁场中做半径为r的圆周运动,经一段时间的偏转,所有的粒子均由圆边界离开,粒子在圆形磁场中运行的最长时间用t m表示,0为已知量,其余的量均为未知量,忽略粒子的重力以及粒子间的相互作用.则下列表达式正确的是( ACD )D.t m=解析:设从A点射入的粒子与磁场边界的最远交点为B,则B点是轨迹圆的直径与磁场边界圆的交点,则∠AOB=120°,sin 60°得,粒子在磁场中运动时,洛伦兹力提供向心力,有qv0所以选项A,C正确,B错误;粒子在磁场中运动的最长时间为t m==,选项D正确.二、非选择题(共52分)13.(4分)某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且与两导轨垂直.(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:A.适当增加两导轨间的距离B.换一根更长的金属棒C.适当增大金属棒中的电流其中正确的是(填入正确选项前的标号).解析:(1)实验电路连线如图所示.(2)为使金属棒离开导轨时具有更大的速度,则金属棒运动时需要更大的加速度,即应受到更大的安培力,根据F=ILB可知,应使I,L变大,即选项A,C正确.答案:(1)见解析(2)AC评分标准:每问2分.14.(8分)物体的带电荷量是一个不易测得的物理量,某同学设计了如下实验来测量带电物体所带电荷量.如图(a)所示,他将一由绝缘材料制成的小物块A放在足够长的木板上,打点计时器固定在长木板末端,物块靠近打点计时器,一纸带穿过打点计时器与物块相连,操作步骤如下,请结合操作步骤完成以下问题.(1)为消除摩擦力的影响,他将长木板一端垫起一定倾角,接通打点计时器,轻轻推一下小物块,使其沿着长木板向下运动.多次调整倾角θ,直至打出的纸带上点迹,测出此时木板与水平面间的倾角,记为θ0.(2)如图(b)所示,在该装置处加上一范围足够大的垂直纸面向里的匀强磁场,用细绳通过一轻小定滑轮将物块A与物块B相连,绳与滑轮摩擦不计.给物块A带上一定量的正电荷,保持倾角θ0不变,接通打点计时器,由静止释放小物块A,该过程可近似认为物块A带电荷量不变,下列关于纸带上点迹的分析正确的是.A.纸带上的点迹间距先增加后减小至零B.纸带上的点迹间距先增加后减小至一不为零的定值C.纸带上的点迹间距逐渐增加,且相邻两点间的距离之差不变D.纸带上的点迹间距逐渐增加,且相邻两点间的距离之差逐渐减少,直至间距不变(3)为了测定物体所带电荷量q,除θ0、磁感应强度B外,本实验还必须测量的物理量有.A.物块A的质量MB.物块B的质量mC.物块A与木板间的动摩擦因数μD.两物块最终的速度v(4)用重力加速度g,磁感应强度B,θ0和所测得的物理量可得出q的表达式为q=.解析:(1)此实验平衡摩擦力后,确定滑块做匀速直线运动的依据是,看打点计时器在纸带上所打出点的分布应该是等间距的.(2)设A的质量为M,B的质量为m,没有磁场时,对A受力分析,A受到重力Mg、支持力、摩擦力.根据平衡条件可知f=Mgsin θ0,F N=Mgcos θ0,又因为f=μF N,所以μθ0;当存在磁场时,以A,B整体为研究对象,由牛顿第二定律可得(mg+Mgsin θ0)-μ(Bqv+Mgcos θ0)=(M+m)a由此式可知,v和a是变量,其他都是不变的量,所以A,B一起做加速度减小的加速运动,直到加速度减为零后做匀速运动,即速度在增大,加速度在减小,最后速度不变.所以纸带上的点迹间距逐渐增加,说明速度增大;根据Δx=at2,可知,加速度减小,则相邻两点间的距离之差逐渐减小;匀速运动时,间距不变,选项D正确,A,B,C错误.(3)(4)根据(mg+Mgsin θ0)-μ(Bqv+Mgcos θ0)=(M+m)a,可得当加速度减为零时,速度最大,设最大速度为v,则(mg+Mgsin θ0)-μ(Bqv+Mgcos θ0)=0化简得把μ=tan θ0代入,得由此可知为了测定物体所带电荷量q,除θ0、磁感应强度B外,本实验还必须测量的物理量有物块B的质量m和两物块最终的速度v.答案:(1)间距相等(或均匀) (2)D (3)BD评分标准:每问2分.15.(7分)如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m、带电荷量为q,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图(甲)所示,设粒子在磁场中的轨道半径为R1,则由几何关系得R1分)又qv1得v1分)(2)如图(乙)所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R2,则由几何关系有(2r-R2)2=+r2,(1分)可得R2分)又qv2B=m分)可得v2分)故要使粒子不穿出环形区域,答案16.(8分)如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场,一粒子源固定在x轴上的A点,A点坐标为(-L,0).粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L),电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15°角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用).求:(1)第二象限内电场强度E的大小;(2)电子离开电场时的速度方向与y轴正方向的夹角θ;(3)圆形磁场的最小半径R min.解析:(1)从A到C的过程中,电子做类平抛运动,有2(1分)2L=vt,(1分)联立解得分)(2)设电子到达C点的速度大小为v C,方向与y轴正方向的夹角为θ.由动能定理,有2=eEL(1分)解得v C=v,cos θ解得θ=45°.(1分)(3)电子的运动轨迹图如图,电子在磁场中做匀速圆周运动的半径分)电子在磁场中偏转120°后垂直于ON射出,则磁场圆最小半径R min°(1分)由以上两式可得R min分)答案(2)45°17.(11分)如图(甲)所示,在平行边界MN,PQ之间存在宽度为d的匀强电场,电场周期性变化的规律如图(乙)所示,取竖直向下为电场正方向;在平行边界PQ右侧和MN左侧存在如图(甲)所示的两个长为2d、宽为d的匀强磁场区域Ⅰ和Ⅱ,其边界点分别为PQCD和MNFE.已知区域Ⅱ内匀强磁场的磁感应强度大小是区域Ⅰ内匀强磁场的磁感应强度大小的3倍.在区域Ⅰ右边界中点A处,有一质量为m、电荷量为q、重力不计的带正电粒子以初速度v0沿竖直方向从磁场区域Ⅰ开始运动,以此作为计时起点,再经过一段时间粒子又恰好回到A点,如此循环,粒子循环一周,电场恰好变化一个周期,已知粒子离开区域Ⅰ进入电场时,速度恰好与电场方向垂直,sin 53°=0.8,cos 53°=0.6.求:(1)区域Ⅰ的磁感应强度大小B;(2)电场强度大小E及电场的周期T.解析:(1)粒子在区域Ⅰ做圆周运动的半径r=d,(1分)由洛伦兹力提供向心力知qv0联立得B=分)(2)画出粒子运动的轨迹示意图如图所示,粒子在区域Ⅰ做匀速圆周运动,圆心为O1,粒子从区域Ⅰ进入电场,在电场中做类平抛运动,在区域Ⅱ做匀速圆周运动,圆心为O2,半径记为R,在区域Ⅱ做匀速圆周运动圆心O2与区域Ⅰ做匀速圆周运动的圆心O1的连线必须与边界垂直才能完成上述运动.粒子从区域Ⅰ进入电场做类平抛运动,水平方向d=v0t(1分)竖直方向22(1分)离开电场时沿电场方向的速度v y离开电场时速度方向与边界MN的夹角为θ,离开电场时速度为v,v0=vsin θ粒子在区域Ⅱ做匀速圆周运动由洛伦兹力提供向心力,知分)由几何关系有2y+2Rsin θ=2d(1分)联立以上各式得分)由tan θ=,得θ=37°粒子在区域Ⅰ中运动的时间t1分)粒子在区域Ⅱ中运动的时间t2分)粒子在电场中运动的时间t3分)电场变化的周期等于粒子运动的周期,所以电场周期T=t1+t2+t3分)答案18.(14分)aa′,bb′,cc′为足够长的匀强磁场分界线,相邻两分界线间距均为d,磁场方向如图所示,Ⅰ,Ⅱ区域磁感应强度分别为B和2B,边界aa′上有一粒子源P,平行于纸面向各个方向发射速率为,Q为边界bb′上一点,PQ连线与磁场边界垂直,已知粒子质量为m,电荷量为q,不计粒子重力和粒子间相互作用力,求:(1)沿PQ方向发射的粒子飞出Ⅰ区时经过bb′的位置;(2)粒子第一次通过边界bb′的位置范围;(3)进入Ⅱ区的粒子第一次在磁场Ⅱ区中运动的最长时间和最短时间.解析:(1)由洛伦兹力充当向心力得分)1把v=代入得R1=2d(1分)如图(甲)所示sin θθ=30°(1分)PM=QN=2d-2dcos θ=(2-)d(1分)则经过bb′的位置为Q下方(2-)d处.(2)当带正电粒子速度竖直向上进入磁场Ⅰ,距离Q点上方最远,如图(乙)所示,由几何关系得cos α1α1=60°(1分)QH1=2dsin α1=d(1分)当带正电粒子进入磁场Ⅰ后与bb′相切时,距离Q点下方最远,如图(丙)所示,由几何关系得cos α2α2=60°(1分)QH2=2dsin α2=d(1分)粒子通过的范围长度为L=2d.(1分)(3)R2分)=轨迹圆所对应的弦越长,在磁场Ⅱ中运动的时间越长.如图(丁)所示,当轨迹圆的弦长为直径时,所对应的时间最长为t max分)当轨迹圆的弦长为磁场Ⅱ的宽度时,从cc′飞出,所对应的时间最短为t min分)当粒子从Q最上方进入Ⅱ区时,如图(戊)所示,从bb′飞出所对应的时间最短为t min分)所以粒子第一次在磁场Ⅱ中运动的最短时间为t min分)答案:见解析。