陀螺罗经
- 格式:ppt
- 大小:799.00 KB
- 文档页数:40
船用陀螺罗经
的崛起推动了现代航海的发展,使得航海变得更加准确和安全。
陀螺罗经是一种可以测量地球自转的装置,通过维持稳定的转动
状态实现自身定位。
在航海中具有非常重要的作用,它们不仅能
够提高船舶航行的精度,还可以克服坏天气等不良气象状况对航
行的影响。
陀螺罗经是一种非常重要的仪器,它们通过利用陀螺效应来测
量和记录数据。
陀螺罗经的基本原理是在其内部产生一个有恒定
转速的陀螺,然后利用陀螺的保角动量来确定罗经朝向。
这样,
在船只进行航行的同时,陀螺罗经就可以精确地记录下飞行的相
关信息。
通过这些记录,船长和船员就可以进行更加准确的地位
计算和航行规划,从而提高航行的安全性和精确度。
陀螺罗经的出现使得航海不再依赖天文学的方法,而是采用了
更加现代化的技术手段。
在船只进行航行时,它们能够在任何天
气和海况下保持精确和稳定的工作状态,而不被各种不利因素影响。
这体现了现代化技术的优越性,同时也为船舶的工作和运营
带来了显著的进展。
虽然在航海中发挥着巨大的作用,但也需要注意它们的正确使
用和维护。
如果陀螺罗经操作失误或损坏,就有可能导致船只在
航行过程中出现位置偏差,从而给船员们带来巨大的安全风险。
因此,在检验时,必须非常小心并确保其正常使用。
总之,是现代船只航行中不可缺少的设备,它们通过利用高级
技术来解决船只航行中的难题,并有效提高航海的精度和安全性。
随着科技的进步,还将继续发展趋势,使得未来的船只航行更加
安全、精确和可靠。
20世纪70年代,伴随着光纤通信技术的发展,光纤传感技术也迅速发展起来。
该技术是以光波为载体,光纤为媒质,感应和传输外界被测量信号的新型传感技术,以独特的优良性能赢得极大的重视,并在各个领域中广泛应用。
光纤陀螺技术是光纤传感技术的一个特例,是利用光学传输特性而非转动部件来感应角速率和角偏差的惯性传感技术。
1 光纤陀螺的结构按照元器件类型,光纤陀螺分为分立元件型、集成光学型和全光纤型。
由于分立元件型光纤陀螺存在体积较大、可靠性较差、误差较大等缺点,现在世界各国都已停止发展。
集成光学型光纤陀螺将主要光学元件如耦合器、偏振器、调制器都集成在一块芯片上,将光纤线圈、光源、检测器接在芯片适当的位置,就构成了实用的集成光学型光纤陀螺。
从光纤陀螺的发展方向来看,集成光学型光纤陀螺是最有发展前途的光纤陀螺形式。
全光纤陀螺是将主要的光学元件都加工在一条保偏光纤上,从而可以避免因元器件连接造成的误差。
目前,全光纤陀螺技术比较成熟,其性能在三种中最好,适合在现阶段研制实用的商品光纤陀螺。
根据干涉型光纤陀螺的信号检测方式的不同,可以分为开环式和闭环式两大类。
开环式光纤陀螺直接检测干涉条纹的相移,因而动态范围较窄,检测精度较低。
闭环式系统采取相位补偿的方法,实时抵消萨格奈克相移,使陀螺始终工作在零相移状态,通过检测补偿相位移来测量角速度,其动态范围大,检测精度高。
此外,闭环式光纤陀螺对环境尤其是对振动不敏感,是研制高精度光纤陀螺仪的理想形式。
开环式全光纤陀螺是中低精度、低成本光纤陀螺中比较流行的结构。
目前,在中高精度光纤陀螺仪领域,最为流行的设计结构为全数字闭环式光纤陀螺仪。
光纤陀螺示意图2 光纤陀螺的特点光纤陀螺的主要特点是:①无运动部件,仪器牢固稳定,耐冲击且对加速度不敏感;②结构简单,零部件少,价格低廉;③启动时间短(原理上可瞬间启动);④检测灵敏度和分辨率极高;⑤可直接用数字输出并与计算机接口联网;⑥动态范围极宽;⑦寿命长,信号稳定可靠;⑧易于采用集成光路技术;⑨克服了因激光陀螺闭锁现象带来的负效应;⑩可与环形激光陀螺一起集成捷联式惯性系统传感器。
陀螺罗经的指北原理
陀螺罗经是一种用来确定地理位置和方向的仪器,它可以通过测量地球上的自转轴方向来确定真北方向。
陀螺罗经是一项高精度的仪器,在航海、航空和科学研究中被广泛应用。
指北原理是陀螺罗经的核心原理,指北就是确定方向,即确定真北、磁北或者其他方向。
陀螺罗经在使用时,需要在水平位置下安装,通过自身的旋转来保持仪器的稳定性,并通过内置的陀螺仪来测量地球自转的轴线方向和速度。
在此基础上,陀螺罗经可以确定航向、速度、位置等信息。
陀螺罗经指北的原理就是利用陀螺仪的转动轴线与地球自转轴线之间的关系来确定真北方向,从而实现导航。
这是因为,地球自转的轴线是地球两端的南北极所连接的轴线,而陀螺仪的转动轴线与地球自转轴线相同,指向北极,因此可以用陀螺罗经来确定真北方向。
陀螺罗经的原理是基于惯性导航的,而惯性导航的基本原理是牛顿第一定律,也就是物体在没有受到力的作用下会保持静止或匀速直线运动的原理。
陀螺仪本身就具有惯性,它的转动惯性可以保证其稳定性,从而有效地测量地球的自转角速度。
因此,陀螺罗经可以准确地测量船舶或飞机在运动状态下的航向,为导航和飞行提供可靠的指引。
需要指出的是,陀螺罗经的指北原理只能确定真北方向,而不能确定磁北方向,
因为磁场的方向受到环境因素的影响,可能会发生变化。
因此,在实际应用中,需要将陀螺罗经的测量结果与其他仪器测量的磁场值进行比较,以确保导航的准确性。
总之,陀螺罗经的指北原理是基于惯性导航和地球自转的原理,通过测量陀螺仪的转动轴线来确定真北方向。
陀螺罗经在航海、航空等领域的应用,对于提高导航和飞行的精度和安全性具有重要意义。
陀螺罗经第一章 陀螺罗经指北原理陀螺罗经是船舶上指示方向的航海仪器。
其基本原理是把陀螺仪的特性和地球自转运动联系起来,自动地找北和指北。
描述陀螺罗经指北原理所涉及的内容用式(1-1)表示:陀螺罗经=陀螺仪+地球自转+控制设备+阻尼设备 (1-1)第一节 陀螺仪及其特性一. 陀螺仪的定义与结构凡是能绕回转体的对称轴高速旋转的刚体都可称为陀螺。
所谓回转体是物体相对于对称轴的质量分布有一定的规律,是对称的。
常见的陀螺是一个高速旋转的转子。
回转体的对称轴叫做陀螺转子主轴,或称极轴。
转子绕这个轴的旋转称为陀螺转子的自转。
陀螺转子主轴相当于一个指示方向的指针,如果这个指针能够稳定地指示真北,陀螺仪就成为了陀螺罗经。
如图1-1所示,一个陀螺用一个内环(视其水平放置,也可称水平环)支承起来,在自转轴(主轴)水平面内,与主轴相垂直的方向上,用水平轴将内环支承在外环(垂直环)上,而外环则用与水平轴相垂直的垂直轴支承在固定环及基座上。
把高速旋转的陀螺安装在这样一个悬挂装置上,使陀螺主轴在空间具有一个或两个转动自由度,就构成了陀螺仪。
可以看出高速旋转的转子及其支承系统是构成陀螺仪的两个要素。
实用罗经中,陀螺仪转子的转速都是每分钟几千转到每分钟几万转。
陀螺仪的支承系统应具有这样的特点,即它应保证主轴在方位上指任何方向,在高度上指示任何高度,总之,能指空间任何方向。
由此,我们可以将陀螺仪概述为:陀螺转子借助于悬挂装置可使其主轴指空间任意方向,这种仪器就叫陀螺仪。
实用陀螺仪,其转子、内环及外环等相对主轴、水平轴以及垂直轴都是对称的,无论几何形体或质量都是对称的。
重心与几何中心相重合的陀螺仪称为平衡陀螺仪。
不受任何外力矩作用的陀螺仪称为自由陀螺仪。
工程上应用的都是自由陀螺仪。
陀螺仪的转子能绕一个轴旋转,它就具备了一个旋转自由,也就是具有一个自由度。
像图1-1所示的陀螺仪,1-转子;2-内环;3-外环;4-固定环;5-基座图1-1具有三个自由度,一是转子绕O X轴作自转运动,一是转子连同内环绕OY轴(水平轴)转动,一是转子连同内环和外环绕OZ轴(垂直轴)转动。