拉普拉斯变换的运用
- 格式:pdf
- 大小:282.22 KB
- 文档页数:4
毕业设计(论文)题目:拉普拉斯变换的应用院(系)数学科学学院专业信息与计算科学届别学号姓名指导老师摘要拉普拉斯变换是重要的定理.本文首先叙述拉普拉斯变换的相关定理及其推广,然后通过了举例子的方法来列举了拉普拉斯变换在广义积分、微分方程求解中应用, 以及拉普拉斯变换的延迟性质的应用关键词:拉普拉斯变换; 拉普拉斯变换应用;拉普拉斯变换的推广.ABSTRACTThe theorem of Laplace transform is important.This paper described the related theorem and its extension of the Laplace transformation, then an example through the way of enumerating the Laplace transformation applied in the generalized integral, differential equation, and delay the nature of the application of Laplace transformKeywords:Laplace transform; Laplace transform application; A generalization of Laplace transform.目录第一章拉普拉斯变换的概念及存在定理 (4)引言 (4)1.拉普拉斯变换的定义 (4)2.拉普拉斯变换的存在定理 (4)3.拉普拉斯变换的基本性质 (6)第二章拉普拉斯变换的推广及其逆变换 (7)1.拉普拉斯变换的推广 (7)2.拉普拉斯逆变换 (7)第三章拉普拉斯变换的应用 (9)1.利用拉普拉斯变换解微分方程(组) (9)2.用拉普拉斯变换解积分方程 (12)第四章利用拉普拉斯变换求解广义积分 (13)1.主要方法及证明 (13)2.计算⎰∞0)(dtttf型积分 (15)3.计算⎰∞>)0(),(tdxxtf型积分 (16)第五章延迟性质在拉普拉斯变换中的应用 (18)结语 (20)参考文献 (21)后记 (22)第一章 拉普拉斯变换的概念及存在定理引 言复变函数论产生于18世纪,它是数论、代数、方程等理论研究中的重要方法之一,以其完美的理论与精湛的技巧成为数学的一个重要组成部分.在数学中为了把较复杂的运算转化为较简单的运算,常常采取一种变换手法,如数量乘积或商通过对数变换变成和或者差然后再作指数变换即得原来数量的乘积和商.所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变换,一般是化为含参数的积分.积分变换理论和方法不仅在数学许多分支中,而且在其他自然科学和各种工程技术领域中有广泛应用,已经成为不可缺少的运算工具 ,本论文主要总结归纳了拉普拉斯的变换几个重要方面的应用.通过本论文,不仅能使你对拉普拉斯的变换有更加深入的了解,而且能掌握其运用,增强自身的实际运用能力,使得自己对于拉普拉斯的变换有了真正意义上的掌握,而不是仅仅是停留在课本上的认识.1.拉普拉斯变换的定义:设函数ƒ(t)在[0,∞]上有定义,如果对于复参变量jw s +=β,积分dt e t f s F st -+∞⎰=0)()(在复平面s 的某一个区域内收敛,则称)(s F 为函数)(t f 的拉普拉斯变换,记为)]([£)(s f s F =;对应地,称函数)(s f 为)(s F 的拉普拉斯逆变换,记为)]([£)(-1s F t f =.同时,)(s F 和)(s f 分别被称为像函数和原函数.2.拉普拉斯变换的存在定理:若函数)(t f )满足下列条件:(1)在0≥t 的任一有限区间上连续或者分段连续;(2)当∞→t 时,)(t f 具有有限的增长性,即存在常数0>M 及0≥c ,使得 ct Me t f ≤)( )0(∞<≤x (1) 成立(其中c 称为)(t f 的增长指数,或者称)(t f 的增长是不超过指数级的).则)(t f 的拉普拉斯变换F(s)在半平面c s >)Re(上一定存在,拉普拉斯积分在c c >≥1Re 上绝对收敛而且一致收敛,并且)(s F 在c s >)Re(的半平面内解析.证 设jw s +=β,则t st e e β--=,由不等式(1),可得dt e M dt e t f s F t c st ⎰⎰+∞--+∞-≤=0)(0)()(β 又由c s >=β)Re(,即0>-c β,可知上式右端积分收敛,因此)(s F 在半平面c s >)Re(上存在.注1 上述拉普拉斯变换存在定理证明表明,一个函数即使它的绝对值随着t 的增大而增大,但只要不比某个指数函数增长得快,则它的拉普拉斯变换就存在,这一点可以从拉普拉斯的变换与傅里叶变换的关系中得到一种直观的解释.大多数物理和工程技术中常见的函数都满足存在定理的条件,因而拉普拉斯变换的应用范围较傅里叶更广泛.注2 存在定理中的条件是充分而非必要条件.例如,对于函数m t t f =)(来说,当1->m 时,拉普拉斯变换是存在的;但当21=m 时,t t f 1)(=却不满足存在定理中的条件(1),因为这时)(t f 在0=t 时为无穷大,不满足在0≥t 的任一有限区间上连续或者分段连续的要求.同理,单位脉冲函数)(t δ也不满足定理中的条件,但)(t δ的拉普拉斯变换是存在的.注3 当满足拉普拉斯变换存在定理条件的函数)(t f 在0=t 处有界时,积分dt e t f t f st ⎰+∞-=0)()]([ψ中的下限取+0或者-0不会影响其结果。
拉普拉斯变换在电路中的应用在电路中,拉普拉斯变换是一种非常重要的数学工具,它在分析电路的动态行为、求解电路的传递函数和时域响应等方面起着至关重要的作用。
拉普拉斯变换可以帮助我们将微分方程转化为代数方程,从而简化了电路分析的复杂性,使得我们能够更加方便地理解电路的工作原理和性能特性。
1. 拉普拉斯变换的基本概念和原理拉普拉斯变换是一种对函数进行积分变换的数学工具,它可以将一个时域函数转化为复频域函数,从而方便进行系统的动态分析和响应预测。
在电路分析中,我们经常会遇到包含电压、电流随时间变化的问题,通过应用拉普拉斯变换,我们可以将这些时域函数转化为复频域函数,更好地理解电路的行为和响应。
2. 拉普拉斯变换在电路分析中的应用通过拉普拉斯变换,我们可以方便地求解电路的传递函数,从而可以预测电路的动态响应和稳态性能。
这对于电路的设计和优化至关重要,因为我们可以通过分析传递函数,预测电路在不同频率下的响应特性,从而更好地进行电路参数选择和性能优化。
3. 拉普拉斯变换在滤波器设计中的应用滤波器是电子系统中常见的一个功能模块,它可以对信号进行滤波和频率选择,通过应用拉普拉斯变换,我们可以方便地分析滤波器的频率响应和频率特性。
这对于滤波器的设计和性能评估非常重要,因为我们可以通过分析频率响应,选择合适的滤波器类型和参数,从而满足系统对信号处理的要求。
4. 拉普拉斯变换在控制系统中的应用控制系统是现代工程技术中一个重要的方向,通过应用拉普拉斯变换,我们可以将控制系统的微分方程转化为代数方程,从而方便进行控制系统的分析和设计。
拉普拉斯变换在控制系统中的应用,可以帮助我们更好地理解控制系统的稳定性、性能和鲁棒性,从而更好地设计和优化控制系统。
5. 总结与展望通过对拉普拉斯变换在电路分析中的应用进行深入探讨,我们可以看到,在电路设计、滤波器设计和控制系统设计中,拉普拉斯变换都扮演着非常重要的角色。
它为我们提供了一种方便、高效的数学工具,帮助我们更好地理解电路的动态行为和系统的频率特性。
.拉普拉斯变换的应用一·拉普拉斯变换的应用在工程学上应用拉普拉拉普拉斯变换在许多领域中都有着重要的作用,使问题得以解决。
可以将微分方程化为代数方程,斯变换解常变量齐次微分方程,转换为复频拉普拉斯变换的重大意义在于:将一个信号从时域上,在工程学上,域)上来表示;在线性系统,控制自动化上都有广泛的应用。
在计算机图域(s上的拉普拉斯算子在图像处理上有很强的像处理方面,拉普拉斯变换在Matlab应用性,例如:在图像的边缘检测、对图像进行拉普拉斯锐化、对图像进行滤波等。
二·拉普拉斯变换在图像处理方面的应用计算机进行图像处理一般有两个目的: (1)产生更适合人观察和识别的图像。
(2)希望能由计算机自动识别和理解图像。
数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。
物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。
图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。
根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。
首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。
前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。
早期的经典算法有边缘算子法、曲面拟合法、 ..模版匹配法等。
经典的边缘检测算法是对原始图像中像素的某小领域米构造边缘检测算子,常用的边缘检测算子有Roberts算子、Sobel算子、Laplacian算子、Canny算子等。
三·应用步骤用拉普拉斯变换进行数字图像处理,需要借用计算机上的Matlab软件去进行程序编码和运行来实现。
下边是应用步骤:(一)、选好需要进行处理的照片,用拉普拉斯算子实现数字图像的边缘检测。
拉普拉斯变换在电路中的应用10071051朱海云 应用拉普拉斯变换求解线性电路的方法称为运算法。
运算法的思想是:首先找出电压、电流的像函数表示式,而后找出R、L、C 单个元件的电压电流关系的像函数表示式,以及基尔霍夫定律的像函数表示式,得到用像函数和运算阻抗表示的运算电路图,列出复频域的代数方程,最后求解出电路变量的象函数形式,通过拉普拉斯反变换,得到所求电路变量的时域形式。
显然运算法与相量法的基本思想类似,因此,用相量法分析计算正弦稳态电路的那些方法和定理在形式上均可用于运算法。
1.电路定律的运算形式 基尔霍夫定律的时域表示: 把时间函数变换为对应的象函数: 得基尔霍夫定律的运算形式:2.电路元件的运算形式 根据元件电压、电流的时域关系,可以推导出各元件电压电流关系的运算形式。
图1(a)1)电阻R的运算形式 图1(a)所示电阻元件的电压电流关系为:u =Ri ,两边取拉普拉斯变换,得电阻元件VCR 的运算形式: 或 根据上式得电阻R 的运算电路如图(b )所示。
图1(b )图2(a)图2(b)2)电感L 的运算形式 图2(a)所示电感元件的电压电流关系为 两边取拉普拉斯变换并根据拉氏变换的微分性质,得电感元件VCR 的运算形式: 或 根据上式得电感L 的运算电路如图(b)和图(c)所示。
图中表示附加电压源的电压,表示附加电流源的电流。
式中图2(c )分别称为电感的运算阻抗和运算导纳。
图3(a)图3(b)3)电容C 的运算形式 图3(a)所示电容元件的电压电流关系为: 两边取拉普拉斯变换并根据拉氏变换的微分性质,得电容元件VCR 的运算形式: 或 根据上式得电容C 的运算电路如图(b)和图(c)所示。
图中表示附加电流源的电流,表示附加电压源的电压。
式中分别为电容的运算阻抗和运算导纳。
图3(c)4)耦合电感的运算形式 图4(a )所示耦合电感的电压电流关系为: 图4(a ) 两边取拉普拉斯变换,得耦合电感VCR的运算形式: 根据上式得耦合电感的运算电路如图(b)所示。
拉普拉斯变换的应用一·拉普拉斯变换的应用拉普拉斯变换在许多领域中都有着重要的作用,在工程学上应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。
在计算机图像处理方面,拉普拉斯变换在Matlab上的拉普拉斯算子在图像处理上有很强的应用性,例如:在图像的边缘检测、对图像进行拉普拉斯锐化、对图像进行滤波等。
二·拉普拉斯变换在图像处理方面的应用计算机进行图像处理一般有两个目的: (1)产生更适合人观察和识别的图像。
(2)希望能由计算机自动识别和理解图像。
数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。
物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。
图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。
根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。
首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。
前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。
早期的经典算法有边缘算子法、曲面拟合法、模版匹配法等。
经典的边缘检测算法是对原始图像中像素的某小领域米构造边缘检测算子,常用的边缘检测算子有Roberts算子、Sobel算子、Laplacian算子、Canny算子等。
三·应用步骤用拉普拉斯变换进行数字图像处理,需要借用计算机上的Matlab软件去进行程序编码和运行来实现。
下边是应用步骤:(一)、选好需要进行处理的照片,用拉普拉斯算子实现数字图像的边缘检测。
拉普拉斯变换的使用方法拉普拉斯变换是 Fourier 变换的一种推广,常用于处理时域信号的频率特性或者复杂微分方程。
一、拉普拉斯变换的定义在复平面上,有一个以原点为极点的复函数:$F(s)=\int_{0}^{\infty}f(t)e^{-st}$ dt,其中 $s=x+jy$,$f(t)$ 是一段时间内的信号。
这个复函数 $F(s)$ 叫做 $f(t)$ 的拉普拉斯变换,通常用$\mathcal{L}\{f(t)\}$ 表示。
在掌握了拉普拉斯变换一些基本的性质之后,我们就可以利用这种变换来简化复杂的微分方程和求解系统的稳定性等问题。
二、拉普拉斯变换的基本性质1. 线性性质:$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{ g(t)\}$,其中 $a$ 和 $b$ 是常数。
2. 移位性质:$\mathcal{L}\{f(t-a)u(t-a)\}=e^{-as}\mathcal{L}\{f(t)\}$,其中$u(t-a)$ 是单位阶跃函数。
3. 放缩性质:$\mathcal{L}\{f(at)\}=\frac{1}{a}\mathcal{L}\{f(t)\}$,其中$a$ 是常数。
4. 差分性质:$\mathcal{L}\{\frac{df(t)}{dt}\}=s\mathcal{L}\{f(t)\}-f(0)$。
5. 积分性质:$\mathcal{L}\{\int_{0}^{t}f(\tau)d\tau\}=\frac{1}{s}\mathcal{L}\ {f(t)\}$。
三、拉普拉斯变换的应用1. 求解微分方程:考虑一个一阶微分方程 $y'+ay=f(t)$,我们可以在两边同时做拉普拉斯变换,得到:$sY(s)-y(0)+aY(s)=F(s)$于是,我们就可以直接求出 $Y(s)$ :$Y(s)=\frac{1}{s+a}\cdot F(s)+\frac{y(0)}{s+a}$然后再做逆变换,就可以得到原方程的解 $y(t)$。