2015年甘肃省中考数学试卷解析整理版
- 格式:doc
- 大小:565.74 KB
- 文档页数:23
为O 21122y x y =,将1x =AP AB 1(2a =1(2MN QN c = ,P Q ,在反比例函数的图象上,【提示】解题关键在于根据矩形面积与三角形面积间的关系进行计算【考点】反比例函数的性质【解析】O 是ABC △OBC 为等边三角形,所以上时,易得)解:212(x -=1)2(x -=3)=0-22.【答案】【解析】解:作出角平分线,作出P,∴P就是所求作的圆。
【考点】尺规作图,线段垂直平分线的性质,角平分线的性质23.【答案】(1)1【解析】(1)根据题意画出树状图如下:(2)连接AE,延长AE交BF的延长线于点M,连接CG,延长CG交DH的延长线于点N。
//EF MF MFAB EF即10MF=5MF∴=在()tanND tan CND DH HN CAD∠=+∠// AB CDAC BM∴=BD AC=在BDC△BC AD∴=E H,为同理FG=BC AD=EF∴与GH【考点】全等三角形的判定及性质,特殊平行四边形的判定及性质等1=2=2b b,,解得1=25=2k b ⎧⎪⎪⎨⎪⎪⎩,, —次函数解析式为1522y x =+ 2),代入my x=,得m =)如图,设P 点坐标为1 22t (,PCA △和22解得t =-与O 相切 【解析】(1)连接ODOA OD =BAC ∠的角平分线CAD ∠=ODB ∴∠=与O 相切OAOD r ==中,30B ∠=过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,ACO ∠=,又+AOC BOD ∠过点A作AC x⊥轴于点C,过点B作BD x⊥轴于点D,1⎧2221=164x16OC OD AC BD==∴,又=ACO∠AOC OBD=∠,AOC∴∠∠+AOB△为直角三角形。
第2题图第4题图第5题图2015年兰州市初中毕业生学业考试数 学(A )注意事项:1.全卷共150分,考试时间120分钟.2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是A .31y x =-B .2y ax bx c =++C .2221s t t =-+D .21y x x=+2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是A .左视图与俯视图相同B .左视图与主视图相同C .主视图与俯视图相同D .三种视图都相同3.在下列二次函数中,其图象的对称轴为2x =-的是A .2(2)y x =+B .222y x =-C .222y x =--D .22(2)y x =-4.如图,△ABC 中,∠B = 90º,BC = 2AB ,则cos A = AB .12C D 5.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 的坐标为(5,0),则点A 的坐标为 A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)6.一元二次方程2810x x --=配方后可变形为A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=7.下列命题错误..的是 A .对角线互相垂直平分的四边形是菱形 B .平行四边形的对角线互相平分 C .矩形的对角线相等D .对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y kx k =-与反比例函数(0)ky k x=≠的图象大致是9.如图,经过原点O 的⊙P 与x 、y 轴分别交于A 、B 两点,点C 是劣弧OB 上一点,则∠ACB =A .80°B .90°C .100°D .无法确定10.如图,菱形ABCD 中,AB = 4,∠B = 60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则△AEF 的面积是 A .B .C .D 11.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A .211(1)10x +=B .210(1)9x +=C .111210x +=D .10129x +=12.若点111(,)P x y ,222(,)P x y 在反比例函数(0)ky k x=>的图象上,且x x =-12,则 A .y y <12B .y y =12C .y y >12D .y y =-12第9题图 第13题图ABD EF C第10题图ABCD13.二次函数2y ax bx c =++的图象如图,点C 在y 轴的正半轴上,且OA = OC ,则A .ac + 1= bB .ab + 1= cC . bc + 1= aD .以上都不是14. 二次函数y x x c =++2的图象与x 轴有两个交点A 1(,0)x ,B 2(,0)x ,且x x <12,点P (,)m n是图象上一点,那么下列判断正确的是A .当n <0时,m <0B .当n >0时,m x >2C .当n <0时,x m x <<12D .当n >0时,m x <115.如图,⊙O 的半径为2,AB 、CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A 、B 、C 、D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为A .π4B .π2C .π6D .π3二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程220150ax bx --=有一根为x =-1,则a b += .17.如果a c ek b d f===(0)b d f ++≠,且3()a c e b d f ++=++,那么k = . 18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数ky x=图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连接PB 、QM ,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC = 4cm ,⊙O 是其外接圆,且半径也为4cm ,则∠A 的度数是 .第19题图第15题图三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分)(1)计算:12-tan60+1π20152-+-();(2)解方程:212(1)xx-=+.22.(本小题满分5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)第22题图ABNM O23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况; (2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD ,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH 的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是 投影的有关知识进行计算的. (2)试计算出电线杆的高度,并写出计算的过程.墙面 GHFE DC地面A B旗杆电线杆第24题图25.(本小题满分9分)如图,四边形ABCD 中,AB ∥CD ,AB ≠ CD ,BD = AC . (1)求证:AD = BC ;(2)若E 、F 、G 、H 分别是AB 、CD 、AC 、BD 的中点,求证:线段EF 与线段GH 互相垂直平分.26.(本小题满分10分)如图,A 4-(,12),B 1-(,2)是一次函数1y ax b =+与反比例函数2my x=图象的两个交点,AC ⊥ x 轴于点C ,BD ⊥ y 轴于点D . (1)根据图象直接回答:在第二象限内,当x 取何值时,120y y ->? (2)求一次函数解析式及m 的值;(3)P 是线段AB 上一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.FCD 第25题图第26题图27.(本小题满分10分)如图,在Rt△ABC中,∠C = 90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC = 3,∠B = 30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的DC B第27题图28.(本小题满分12分)已知二次函数y = ax2的图象经过点(2,1).(1)求二次函数y = ax2的解析式;(2)一次函数y = mx+4的图象与二次函数y = ax2的图象交于A(x1、y1)、B(x2、y2)两点.①当32m=时(图①),求证:△AOB为直角三角形;②试判断当32m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)第28题图图①图②2015年兰州市初中毕业生学业考试 数学(A )参考答案及评分参考本答案仅供参考,阅卷时会制定具体的评分细则和评分标准. 一、选择题:本题15小题,每小题4分,共60分.二、填空题:本题5小题,每小题4分,共20分.16.2015 17.3 18.10 19.= 20.30°或150° 三、解答题:本题8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤. 21.(本小题满分10分,每题5分)解:(1)原式=11122+ ……………………………………………………… 4分 =-1.……………………………………………………………………… 5分(2)∵212(1)x x -=+,∴(1)(1)2(1)x x x +-=+, ……………………………………………………… 6分 ∴(1)(3)0x x +-=,………………………………………………………8分∴1213x x ,=-=.…………………………………………………………………10分 22.(本小题满分5分)解:作出角平分线; ………………… 1分作出垂直平分线; ………………… 2分 作出⊙P ; ……………… 4分 ∴⊙P 就是所求作的圆.…………… 5分 23.(本小题满分6分)解:(1)根据题意画出树状图如下:……………………… 4分(2)由(l )可知:三次传球有8种等可能结果,其中传回甲脚下的有2种.所以P (传球三次回到甲脚下)=2184=. …………………………………………… 5分 (3)由(l )可知:甲传球三次后球传回自己脚下的概率为14,传到乙脚下的概率为38,所以球传到乙脚下的概率大. ………………………………………………… 6分24.(本小题满分8分) 解:(l )平行………………………………………………………………………2分(2)连接AE ,延长AE 交BF 的延长线于点M ,连结CG ,延长CG 交DH 的延长线于点N∵AB ∥EF ∴EF MF MF AB MB MF FB ==+,即21010MFMF =+ ………………………3分∴52MF =……………………………………………………………4分 ∴1042552AB tan AMBBM?== …………………………………………………5分由平行投影的知识可以知道∠AMB =∠CND ∴在Rt △NHG 中,45CD tan CNDND ?= ∴315445GH HN tan HNG ===Ð ………6分∵在Rt △CDN 中,45CD tan CNDND ?= ∴CD ND tan CND =仔=()DH HN +?354745tan CND ??(米)………………8分所以,电线杆长为7米25.(本小题满分9分)证明:(1)做BM ∥AC ,BM 交DC 的延长线于点M ,则∠ACD =∠BMD…………1分墙面 GH FE DC 地面 A BMN旗杆电线杆甲甲甲甲 甲 乙乙乙 乙 乙 丙 丙丙丙丙第一次第二次第三次∵AB ∥CD BM ∥AC∴四边形ABMC 为平行四边形…………………………………………………2分∴AC = BM ∵BD = AC ∴BM = BD ∴∠BDM = ∠BMD ∴∠BDC = ∠ACD 在△BDC 和△ACD 中 BD AC BDC= ACD DC=CD =⎧⎪∠∠⎨⎪⎩∴△BDC ≌ △ACD………………………………………………………4分∴BC = AD ……………………………………………………………………………5分(2)连接EG 、GF 、FH 、HE…………………………………………………6分∵E 、H 为AB 、BD 的中点 ∴12EH AD = 同理12FG AD =,12EG BC =,12FH BC = ∵BC = AD ∴EG = FG = FH = EH …………………………………………………8分 ∴四边形EGFH 为菱形∴EF 与GH 互相垂直平分 ………………………………………………………………9分 26.(本小题满分10分)解:(1)当41x -<<-时,120y y ->;(2)把A (-4,12),B (-1,2)代入y=kx+b 得, 1422k+b=k+b=⎧-⎪⎨⎪-⎩,解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以一次函数解析式为1522y x =+; 把B (-1,2)代入my x=,得m =-1×2=-2; …………………………………6分 F CD(3)如图,设P 点坐标为15()22t t ,+. …………………………………………………7分∵△PCA 和△PDB 面积相等, ∴()1111541(2)22222t t ⨯⨯+=⨯⨯--, 解得52t =-, ………………………………………………………………………………9分∴P 点坐标为55()24,-. …………………………………………………………………10分 27.(本小题满分10分)解:(1)直线BC 与⊙O 相切;……………………1分连结OD ,………………………………………2分 ∵OA = OD ∴∠OAD = ∠ODA ∵∠BAC 的角平分线AD 交BC 边于D ∴∠CAD = ∠OAD ∴∠CAD = ∠ODA ∴OD ∥AC……………………………………3分∴∠ODB = ∠C = 90°即OD ⊥BC . ………………………………………………………………………………4分 ∴直线BC 与⊙O 相切.(2)①设OA = OD = r ,在Rt △BDO 中,∠B = 30°,∴OB = 2r ………………………………………………………………………………5分 在Rt △ACB 中,∠B = 30° ∴AB = 2AC = 6∴3r = 6 …………………………………………………………………………………6分 解得r = 2. ……………………………………………………………………7分 ②在Rt △ACB 中,∠B = 30°,∴∠BOD = 60°. …………………………………………………………………………8分∴S扇形ODE =260223603ππ⨯==. ……………………………………………………………9分 ∴所求图形面积为:S △BOD - S 扇形ODE23π=.……………………………………10分28.(本小题满分12分)DCB解:(1)由条件得1 = 4a ,14a =,所以二次函数的解析式是214y x =…………………1分(2)①由214342y x y x ⎧=⎪⎪⎨⎪=+⎪⎩得1121x y =-⎧⎨=⎩,22816x y =⎧⎨=⎩,即A (-2,1),B (8,16) (3)过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,则AC = 1,OC = 2,OD = 8,BD = 16, ∴1AC OC OD BD ==8又∵∠ACO =∠ODB = 90º∴△ACO ∽ △ODB ………………………………4分 ∴∠AOC = ∠OBD ∴∠AOC +∠BOD = 90º ∴∠AOB = 90º∴△AOB 为直角三角形 …………………………………………………………5分 ②△AOB 为直角三角形, ………………………………………………………………6分 证明如下:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D由2144y x y mx ⎧=⎪⎨⎪=+⎩得x 2-4mx -16 = 0 解得12x m =-22x m =+∴124(16x x m m ==- ∴221212111644y y x x =⋅=……………………………9分 ∴OC •OD = AC •BD = 16∴AC OCOD BD=………………………………………………………………………10分 又∵∠ACO =∠ODB = 90º,∴△ACO ∽△ODB ………………………………11分 ∴∠AOC =∠OBD∴∠AOC +∠BOD =90º ∴∠AOB =90º ∴△AOB 为直角三角形. (3)可能的结论为…………………………………………………………………12分图①图②如果过定点(0,4)的直线与抛物线214y x =交于A 、B 两点,O 为抛物线的顶点,那么△AOB 必为直角三角形.如果过定点(0,a 1)的直线与抛物线2y ax =交于A 、B 两点,O 为抛物线的顶点,那么△AOB 必为直角三角形.。
2015年甘肃省中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2015•酒泉)64的立方根是()A.4B.±4 C.8D.±82.(3分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1023.(3分)(2015•酒泉)若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°4.(3分)(2015•酒泉)下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a65.(3分)(2015•酒泉)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.6.(3分)(2015•酒泉)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y7.(3分)(2015•酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35008.(3分)(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°9.(3分)(2015•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.10.(3分)(2015•酒泉)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•酒泉)分解因式:x3y﹣2x2y+xy=.12.(3分)(2015•酒泉)分式方程的解是.13.(3分)(2015•酒泉)在函数y=中,自变量x的取值范围是.14.(3分)(2015•酒泉)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为.15.(3分)(2015•酒泉)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=.16.(3分)(2015•酒泉)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.17.(3分)(2015•酒泉)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.18.(3分)(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.三、解答题(本题共5小题,共26分)19.(4分)(2015•酒泉)计算:()0++(﹣1)2015﹣tan60°.20.(4分)(2015•酒泉)先化简,再求值:÷(1﹣),其中x=0.21.(6分)(2015•酒泉)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.(6分)(2015•酒泉)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.四、解答题(本题共5小题,共40分)24.(7分)(2015•酒泉)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从进球数8 7 6 5 4 3(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.25.(7分)(2015•酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)26.(8分)(2015•酒泉)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.27.(8分)(2015•酒泉)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2015年甘肃省酒泉市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2015•酒泉)64的立方根是()A.4B.±4 C.8D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•酒泉)若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°考点:余角和补角.分析:根据互补的两角之和为180°,可得出答案.解答:解:∵∠A=34°,∴∠A的补角=180°﹣34°=146°.故选B.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.4.(3分)(2015•酒泉)下列运算正确的是()C.(﹣a2)3=﹣a6 D.3a2•2a3=6a6A.x2+x2=x4B.(a﹣b)2=a2﹣b2考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.D、3a2•2a3=6a5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.5.(3分)(2015•酒泉)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)(2015•酒泉)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.分析:根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.解答:解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.点评:本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7.(3分)(2015•酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.解答:解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.(3分)(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.9.(3分)(2015•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.考点:相似三角形的判定与性质.分析:证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC ==,故选D.点评:本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.(3分)(2015•酒泉)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:证明△BPE∽△CDP,根据相似三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出判断.解答:解:∵∠CPD=∠FPD,∠BPE=∠FPE,又∵∠CPD+∠FPD+∠BPE+∠FPE=180°,∴∠CPD+∠BPE=90°,又∵直角△BPE中,∠BPE+∠BEP=90°,∴∠BEP=∠CPD,又∵∠B=∠C,∴△BPE∽△CDP,∴,即,则y=﹣x2+,y是x的二次函数,且开口向下.故选C.点评:本题考查了动点问题的函数图象,求函数的解析式,就是把自变量当作已知数值,然后求函数变量y的值,即求线段长的问题,正确证明△BPE∽△CDP是关键.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•酒泉)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2015•酒泉)分式方程的解是x=2.考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.(3分)(2015•酒泉)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.点评:考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2015•酒泉)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x >﹣1.考点:一元一次不等式的应用.专题:新定义.分析:根据运算的定义列出不等式,然后解不等式求得不等式的解集即可.解答:解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.点评:此题考查一元一次不等式解集的求法,理解运算的方法,改为不等式是解决问题的关键.15.(3分)(2015•酒泉)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.(3分)(2015•酒泉)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.考点:根的判别式;一元一次方程的解.分析:由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.解答:解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.点评:本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.17.(3分)(2015•酒泉)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.考点:扇形面积的计算.分析:根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.解答:解:∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.点评:本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.18.(3分)(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(本题共5小题,共26分)19.(4分)(2015•酒泉)计算:()0++(﹣1)2015﹣tan60°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用乘方的意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+2﹣1﹣×=2﹣3=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(4分)(2015•酒泉)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(6分)(2015•酒泉)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.考点:作图—复杂作图;切线的性质.分析:(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.解答:解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.点评:本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.(6分)(2015•酒泉)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形.分析:(1)先根据直角三角形的两锐角互为求出∠CDG的度数,再根据两直线平行,同位角相等求出∠DEF,然后根据三角形的一个外角等于与它不相邻的两个内角的和即可求出∠EFA;(2)根据度数求出HB的长度,再根据∠CBH=∠CGD=42°,利用42°的余弦值进求解.解答:解:(1)∵∠CGD=42°,∠C=90°,∴∠CDG=90°﹣42°=48°,∵DG∥EF,∴∠CEF=∠CDG=48°;(2)∵点H,B的读数分别为4,13.4,∴HB=13.4﹣4=9.4(m),∴BC=HBcos42°≈9.4×0.74≈6.96(m).答:BC的长为6.96m.点评:本题考查了解直角三角形与平行线的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,综合性较强,但难度不大,仔细分析图形并认真计算即可.23.(6分)(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B ,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.考点:列表法与树状图法;分式的定义.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:列表:第一次第二次x2+1 ﹣x2﹣2 3 x2+1﹣x2﹣23(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.四、解答题(本题共5小题,共40分)24.(7分)(2015•酒泉)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表进球数(个)8 7 6 5 4 3人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为5个;(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.考点:扇形统计图;一元一次方程的应用;统计表.分析:(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.解答:解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得x=4.即参加训练之前的人均进球数是4个.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(7分)(2015•酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)考点:平行四边形的判定与性质;菱形的判定;矩形的判定.专题:动点型.分析:(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.点评:本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.26.(8分)(2015•酒泉)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.考点:反比例函数综合题.分析:(1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.解答:解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为.点评:此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.27.(8分)(2015•酒泉)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.考点:切线的判定.分析:(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.解答:解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.点评:本题考查了圆周角定理,切线的判定的应用,主要考查学生运用定理进行推理的能力,注意:经过半径的外端,并且垂直于半径的直线是圆的切线.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连。
2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是( )A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是( )A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=( )A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为( )A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是( )9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则( )A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( )A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是( )A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.26.(本小题满分10分)如图,A(-4,12),B(-1,2)是一次函数y1=ax+b与反比例函数y2=mx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连结PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C 根据二次函数的定义:形如y=ax 2+bx+c(a 、b 、c 为常数,且a ≠0)的函数叫做二次函数,结合各选项知,选C.2.B 左视图为,主视图为,俯视图为,故选B.评析 本题主要考查物体的三视图,属容易题.3.A 根据二次函数y=a(x-h)2+k(a ≠0)的图象的对称轴为直线x=h,知只有A 选项符合题意. 4.D 设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB 2+BC 2=√5k,∴cos A=ABAC =√5k =√55,故选D.5.B 设点A 的坐标为(x,y),由位似图形的性质知,x 1=y 2=52,得x=2.5,y=5,则点A 的坐标为(2.5,5).故选B.6.C 变形得x 2-8x=1,x 2-8x+16=1+16,(x-4)2=17,故选C. 7.D 对角线相等的平行四边形是矩形,故D 错误,选D.8.A 分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A. 9.B 根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B 连结AC,在菱形ABCD 中,AB=BC,∵∠B=60°,∴△ABC 是等边三角形,∵AE ⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF 为等边三角形,∴S △AEF =√34×(2√3)2=3√3.故选B.11.B 设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=109,故选B.12.D 由题意,得xy=k,因为k 是定值,所以当x 1=-x 2时,y 1=-y 2,故选D. 13.A 由题意得点C 的坐标为(0,c), ∵OA=OC,∴点A 的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac 2-bc+c=0, ∵c ≠0,∴ac -b+1=0, 即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO=S矩形BONQ.同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.三、解答题21.解析 (1)2-1-√3tan 60°+(π-2 015)0+|-1| =1-3+1+1=1-3+1 =-1.(2)x 2-1=2(x+1)可化为x 2-2x-3=0,解得x 1=-1,x 2=3.22.解析☉P 为所求作的圆. 23.解析 (1)如图:(2)P(三次传球后,球回到甲脚下)=28=14. (3)P(三次传球后,球回到甲脚下)=28, P(三次传球后,球传到乙脚下)=38, 因为38>28,所以球传到乙脚下的概率大.24.解析 (1)平行.(2)如图,连结CG,AE,过点E 作EM ⊥AB 于M,过点G 作GN ⊥CD 于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5. 所以AM=10-2=8,由平行投影可知AM ME =CNNG ,即810=CD -35, 解得CD=7,即电线杆的高度为7米.25.证明 (1)过点B 作BM ∥AC 交DC 的延长线于点M, ∵AB ∥CD,∴四边形ABMC 为平行四边形. ∴AC=BM=BD,∴∠BDC=∠M=∠ACD. 在△ACD 和△BDC 中,{AC =BD,∠ACD =∠BDC,CD =DC,∴△ACD ≌△BDC, ∴AD=BC.(2)连结EH,HF,FG,GE,∵E,F,G,H 分别是AB,CD,AC,BD 的中点,∴HE ∥AD,且HE=12AD,FG ∥AD,且FG=12AD,EH=12AD,EG=12BC, ∴HE ∥FG 且HE=FG,∴四边形HFGE 为平行四边形. 由(1)知,AD=BC, ∴HE=EG,∴▱HFGE 为菱形,∴线段EF 与线段GH 互相垂直平分.26.解析 (1)在第二象限内,当-4<x<-1时,y 1-y 2>0. (2)∵反比例函数y 2=mx 的图象过A (-4,12), ∴m=-4×12=-2,∵一次函数y 1=ax+b 的图象过A (-4,12),B(-1,2),∴{-4a +b =12,-a +b =2,解得{a =12,b =52, ∴y 1=12x+52. (3)设P (t,12t +52),过P 作PM ⊥x 轴,PN ⊥y 轴,∴PM=12t+52,PN=-t,∵S △PCA =S △PDB ,∴12AC ·CM=12BD ·DN,即12×12(t+4)=12×1×(2-12t -52),解得t=-52, ∴P (-52,54).27.解析 (1)相切.理由如下:如图,连结OD,∵AD 平分∠BAC,∴∠1=∠2,∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD ∥AC.又∠C=90°,∴OD ⊥BC,∴BC 与☉O 相切.(2)①∵AC=3,∠B=30°,∴AB=6.设OA=OD=r,∴OB=2r.∴2r+r=6,解得r=2,即☉O 的半径是2.②由①得OD=2,OB=4,∴BD=2√3.S 阴影=12×2√3×2-60π×22360=2√3-2π3. 28.解析 (1)∵二次函数y=ax 2的图象过点(2,1),∴1=4a,∴a=1,∴二次函数的解析式为y=14x 2.(2)①证明:当m=32时,{y =32x +4,y =14x 2,解得{x 1=-2,y 1=1,{x 2=8,y 2=16,∴A(-2,1),B(8,16).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=1,OC=2,OD=8,BD=16.∴AC OC =OD BD =12,又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.②△AOB 为直角三角形,证明如下:当m ≠3时,{y =mx +4,y =14x 2,解得{x 1=2m -2√m 2+4,y 1=(m -√m 2+4)2,{x 2=2m +2√m 2+4,y 2=(m +√m 2+4)2,∴A(2m -2√m 2+4,(m-√m 2+4)2),B(2m+2√m 2+4,(m+√m 2+4)2).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=(m -√m 2+4)2,OC=-(2m-2√m 2+4),BD=(m+√m 2+4)2,OD=2m+2√m 2+4, ∴AC OC =OD BD =-m -√m 2+42, 又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.(3)如:一次函数y=mx+4的图象与二次函数y=ax2的图象的交点为A,B,则△AOB恒为直角三角形等.。
2015年兰州市中考数学试卷-解析版一、选择题(共15小题,每小题4分,满分60分)1.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+不是二次函数,故2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()4.如图,△ABC中,∠B=90°,BC=2AB,则cosA=()BcosA=5.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()28.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()B9.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF 的面积是()4,EF=AE=2的面积是:AM=×3=311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股1+2x=1+2x=,12.若点P1(x1,y1),P2(x2,y2)在反比例函数y=(k>0)的图象上,且x1=﹣x2,则(),==,从而(,,=y=(13.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()14.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图﹣﹣=15.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()B=.二、填空题(共5小题,每小题4分,满分20分)16.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=2015.17.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.==3==k=.18.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模的值是n=10.=0.519.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1=S2.(填“>”或“<”或“=”)AP a=﹣MN mn,20.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是30°或150°.三、解答题(共8小题,满分70分)21.(10分)(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;(2)解方程:x2﹣1=2(x+1).﹣×+1+22.(5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?,传到乙脚下的概率,24.(8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.=,即=,由此求得由平行投影可知,=,即,25.(9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.AD,26.(10分)如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1﹣y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.y=,),利用三角形面积公式可得到••m),从而可确定图象的上面,,,,解得y=,m+m+,,(﹣,27.(10分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O 为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)∴所求图形面积为28.(12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明),x时,联立直线和抛物线解析式可得,解得或==时,联立直线和抛物线解析式可得,解得或﹣m+﹣OD=2m+2==参与本试卷答题和审题的老师有:2300680618;HJJ;1286697702;放飞梦想;sd2011;sks;sdwdmahongye;dbz1018;zcx;sjzx;守拙;gsls;fangcao;caicl;yangwy;王学峰;522286788(排名不分先后)菁优网2015年7月21日。
2015年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)2.(4分)(2015•天水)如图是某几何体的三视图,该几何体是()3.(4分)(2015•天水)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示5.(4分)(2015•天水)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的6.(4分)(2015•天水)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱B或或7.(4分)(2015•天水)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()8.(4分)(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD 的距离为,则点P的个数为()9.(4分)(2015•天水)如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C点与A点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()B10.(4分)(2015•天水)定义运算:a⊗b=a(1﹣b).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最简结果)11.(4分)(2015•天水)相切两圆的半径分别是5和3,则该两圆的圆心距是.12.(4分)(2015•天水)不等式组的所有整数解是.13.(4分)(2015•天水)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.14.(4分)(2015•天水)一元二次方程x2+3﹣2x=0的解是.15.(4分)(2015•天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD 是米.16.(4分)(2015•天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(4分)(2015•天水)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.18.(4分)(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.三、解答题(本大题共3小题,共28分。
2015年甘肃省甘南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)每小题给出的四个选项中,只有一项是符合题目要求的1.(4分)(2015•甘南州)2的相反数是( ) A .2 B . ﹣2 C . D . 2.(4分)(2015•甘南州)下列运算中,结果正确的是( )A . x 3•x 3=x 6B . 3x 2+2x 2=5x 4C . (x 2)3=x 5D . (x+y )2=x 2+y 23.(4分)(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为( )A . 2.7×105B . 2.7×106C . 2.7×107D . 2.7×1084.(4分)(2015•甘南州)下列交通标志中,是中心对称图形的是( ) A . B . C . D .5.(4分)(2015•甘南州)⊙O 过点B ,C ,圆心O 在等腰直角△ABC 内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为( ) A . B . 2 C . D . 3 6.(4分)(2015•甘南州)有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( ) A . 4.8,6,6 B . 5,5,5 C . 4.8,6,5 D . 5,6,6 7.(4分)(2015•甘南州)如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,设△OCD 的面积为m ,△OEB 的面积为,则下列结论中正确的是( )A . m =5B . m =4C . m =3D .m =108.(4分)(2015•甘南州)若函数,则当函数值y=8时,自变量x 的值是( ) A . ±B .4 C . ±或4D . 4或﹣9.(4分)(2015•甘南州)如图,直线y=kx+b 经过A (2,1),B (﹣1,﹣2)两点,则不等式x >kx+b >﹣2的解集为( )A . x <2B . x >﹣1C . x <1或x >2D . ﹣1<x <210.(4分)(2015•甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,A.B.C.D.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2015•甘南州)分解因式:ax2﹣ay2=.12.(4分)(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是.13.(4分)(2015•甘南州)如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.14.(4分)(2015•甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.三、解答题(本大题共6小题,共44分)15.(6分)(2015•甘南州)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.16.(6分)(2015•甘南州)解不等式组:,并把解集在数轴上表示出来.17.(7分)(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.18.(7分)(2015•甘南州)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.19.(8分)(2015•甘南州)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.20.(10分)(2015•甘南州)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB 与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.四、填空题(每小题4分,共20分)21.(4分)(2015•甘南州)已知若分式的值为0,则x的值为.22.(4分)(2015•甘南州)在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x 轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为.23.(4分)(2015•甘南州)已知a2﹣a﹣1=0,则a3﹣a2﹣a+2015=.24.(4分)(2015•甘南州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.25.(4分)(2015•甘南州)如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.五、解答题(本大题共3小题,共30分)26.(8分)(2015•甘南州)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;27.(10分)(2015•甘南州)如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.(1)当AC=2时,求⊙O的半径;(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.28.(12分)(2015•甘南州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B (x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.2015年甘肃省甘南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)每小题给出的四个选项中,只有一项是符合题目要求的3.(4分)(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将C5.(4分)(2015•甘南州)⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,=()7.(4分)(2015•甘南州)如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m=4C.m=3D.m=10考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质求出△OCD∽△OEB,再根据相似三角形的性质解答即可.解答:解:∵AB∥CD,∴△OCD∽△OEB,又∵E是AB的中点,∴2EB=AB=CD,∴=()2,即=()2,解得m=4.故选B.点评:本题考查的是相似三角形的判定与性质,涉及到平行四边形的性质等知识,难度适中.8.(4分)(2015•甘南州)若函数,则当函数值y=8时,自变量x的值是()A.±B.4C.±或4 D.4或﹣考点:函数值.专题:计算题.分析:把y=8直接代入函数即可求出自变量的值.解答:解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.点评:本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.9.(4分)(2015•甘南州)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b >﹣2的解集为()A.x<2 B.x>﹣1 C.x<1或x>2 D.﹣1<x<2入y=kx+b,用待定系数法求出k、b的值,然后解不等式组x>kx+b>﹣2,即可求,.解不等式组:x>x﹣1>﹣2,10.(4分)(2015•甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,C=.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2015•甘南州)分解因式:ax2﹣ay2=a(x+y)(x﹣y).12.(4分)(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是(2,4).13.(4分)(2015•甘南州)如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为x>﹣2.14.(4分)(2015•甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是6.==3三、解答题(本大题共6小题,共44分)15.(6分)(2015•甘南州)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据绝对值的概念、零指数幂、负整数指数幂的法则,以及特殊三角函数值计算即可.解答:解:原式=﹣1+1﹣(﹣3)﹣3×=+3﹣=3.点评:本题考查了实数的运算,解题的关键是掌握有关运算的法则.16.(6分)(2015•甘南州)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:将不等式组的两不等式分别记作①和②,由不等式①移项,将x的系数化为1,求出x的范围,由不等式②左边去括号后,移项并将x的系数化为1求出解集,找出两解集的公共部分,确定出原不等式组的解集,并将此解集表示在数轴上即可.解答:解:,由不等式①移项得:4x+x>1﹣6,整理得:5x>﹣5,解得:x>﹣1,…(1分)由不等式②去括号得:3x﹣3≤x+5,移项得:3x﹣x≤5+3,合并得:2x≤8,解得:x≤4,…(2分)则不等式组的解集为﹣1<x≤4.…(4分)在数轴上表示不等式组的解集如图所示,…(6分)点评:此题考查了一元一出不等式组的解法,以及在数轴上表示不等式的解集,分别求出不等式组中两不等式的解集,然后利用取解集的方法(同大取大,同小取小,大小小大取中间,大大小小无解)来找出不等式组的解集.17.(7分)(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.考点:分式的化简求值.专题:计算题.分析:首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.解答:解:=(2分)=;(4分)当x﹣3y=0时,x=3y;(6分).18.(7分)(2015•甘南州)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.求和即可.tanA=×=90在Rt△BCD中,∠CDB=90°,tanB=,=30AB=AD+BD=90+30=120米.19.(8分)(2015•甘南州)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.:反比例函数与一次函数的交点问题.分析:(1)求出OA=BC=2,将y=2代入y=﹣x+3求出x=2,得出M的坐标,把M的坐﹣y=∴反比例函数的解析式是y=;y=得:BMON=S OABC△AOM△CON=4×2﹣×2×2﹣×4×1=4,由题意得:|OP|20.(10分)(2015•甘南州)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB 与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.AC=CD判断出四边形ACDM是菱形.在△BCF和△ECH中,,四、填空题(每小题4分,共20分)21.(4分)(2015•甘南州)已知若分式的值为0,则x的值为3.解:∵分式∴解得x=3,即x的值为3.故答案为:3.点评:(1)此题主要考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.(2)此题还考查了因式分解法解一元二次方程问题,要熟练掌握,解答此题的关键是要明确因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.22.(4分)(2015•甘南州)在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为.考点:反比例函数系数k的几何意义.分析:由于点P(2,3)在双曲线y=(k≠0)上,首先利用待定系数法求出k的值,得到反比例函数的解析式,把y=2代入,求出a的值,得到点M的坐标,然后利用待定系数法求出直线OM的解析式,把x=2代入,求出对应的y值即为点C的纵坐标,最后根据三角形的面积公式求出△OAC的面积.解答:解:∵点P(2,3)在双曲线y=(k≠0)上,∴k=2×3=6,∴y=,当y=2时,x=3,即M(3,2).∴直线OM的解析式为y=x,当x=2时,y=,即C(2,).∴△OAC的面积=×2×=.故答案为:.点评:本题考查了反比例函数系数k的几何意义,解题的关键是了解:在反比例函数y=xk 图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.23.(4分)(2015•甘南州)已知a2﹣a﹣1=0,则a3﹣a2﹣a+2015=2015.考点:因式分解的应用.分析:首先根据a2﹣a﹣1=0得到a2﹣a=1,从而利用a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015代入求值即可.解答:解:∵a2﹣a﹣1=0,∴a2﹣a=1,∴a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015=a﹣a+2015=2015,24.(4分)(2015•甘南州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是8<AB≤10.相交有两个公共点,此时AB最大,由此可以确定所以AB的取值范围.解答:25.(4分)(2015•甘南州)如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.在双曲线上,且点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y五、解答题(本大题共3小题,共30分)26.(8分)(2015•甘南州)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;27.(10分)(2015•甘南州)如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.(1)当AC=2时,求⊙O的半径;(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.(2)由题意可知,OD∥BC,∠AOD=∠B,则两角正切值相等,进而列出关系式.AOD==,解得,;tanB==,==,x28.(12分)(2015•甘南州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B (x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.断是否为正方形即可.x是方程﹣x=b∴b2﹣24=25±时,抛物线与∴b=﹣.x x﹣),∴抛物线的顶点(﹣,)即为所求的点D.x x××。
2015年甘肃省甘南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)每小题给出的四个选项中,只有一项是符合题目要求的3.(4分)(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个 B5.(4分)(2015•甘南州)⊙O 过点B ,C ,圆心O 在等腰直角△ABC 内部,∠BAC=90°,OA=1,BC=6,则 B)7.(4分)(2015•甘南州)如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,设△OCD 的面积为m ,△OEB 的面积为,则下列结论中正确的是( )8.(4分)(2015•甘南州)若函数,则当函数值y=8时,自变量x 的值是( ) ±±或﹣9.(4分)(2015•甘南州)如图,直线y=kx+b 经过A (2,1),B (﹣1,﹣2)两点,则不等式x >kx+b >﹣2的解集为( )10.(4分)(2015•甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把B二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2015•甘南州)分解因式:ax2﹣ay2=.12.(4分)(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是.13.(4分)(2015•甘南州)如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.14.(4分)(2015•甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.三、解答题(本大题共6小题,共44分)15.(6分)(2015•甘南州)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.16.(6分)(2015•甘南州)解不等式组:,并把解集在数轴上表示出来.17.(7分)(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.18.(7分)(2015•甘南州)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.19.(8分)(2015•甘南州)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.20.(10分)(2015•甘南州)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.四、填空题(每小题4分,共20分)21.(4分)(2015•甘南州)已知若分式的值为0,则x的值为.22.(4分)(2015•甘南州)在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为.23.(4分)(2015•甘南州)已知a2﹣a﹣1=0,则a3﹣a2﹣a+2015=.24.(4分)(2015•甘南州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.25.(4分)(2015•甘南州)如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.五、解答题(本大题共3小题,共30分)26.(8分)(2015•甘南州)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;27.(10分)(2015•甘南州)如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.(1)当AC=2时,求⊙O的半径;(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.28.(12分)(2015•甘南州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.2015年甘肃省甘南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)每小题给出的四个选项中,只有一项是符合题目要求的3.(4分)(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个B5.(4分)(2015•甘南州)⊙O 过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则B=)7.(4分)(2015•甘南州)如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD 的面积为m,△OEB的面积为,则下列结论中正确的是()()=).8.(4分)(2015•甘南州)若函数,则当函数值y=8时,自变量x的值是()±±或﹣直接代入函数即可求出自变量的值.代入函数,x=﹣或﹣9.(4分)(2015•甘南州)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为()的值,然后解不等式组x,.x10.(4分)(2015•甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把B=.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2015•甘南州)分解因式:ax2﹣ay2=a(x+y)(x﹣y).12.(4分)(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是(2,4).13.(4分)(2015•甘南州)如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为x>﹣2.14.(4分)(2015•甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是6.==3三、解答题(本大题共6小题,共44分)15.(6分)(2015•甘南州)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.×=16.(6分)(2015•甘南州)解不等式组:,并把解集在数轴上表示出来.,17.(7分)(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.=(;.18.(7分)(2015•甘南州)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.,×=90tanB=,=30AB=AD+BD=90+30=12012019.(8分)(2015•甘南州)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.x+3x+3得:y=;y=得:××由题意得:|OP|,0).20.(10分)(2015•甘南州)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.中,,(全等三角形的对应边相等);BCE=45°,四、填空题(每小题4分,共20分)21.(4分)(2015•甘南州)已知若分式的值为0,则x的值为3.解:∵分式22.(4分)(2015•甘南州)在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为.y=((,y=,即,=×=.故答案为:.原点所构成的三角形的面积是,且保持不变.23.(4分)(2015•甘南州)已知a2﹣a﹣1=0,则a3﹣a2﹣a+2015=2015.24.(4分)(2015•甘南州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是8<AB≤10.解答:25.(4分)(2015•甘南州)如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形E,在双曲线上,且x轴,为矩形,则它的面积为3﹣1=2.五、解答题(本大题共3小题,共30分)26.(8分)(2015•甘南州)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?27.(10分)(2015•甘南州)如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.(1)当AC=2时,求⊙O的半径;(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.==,解得,;tanB==AOD=tanB===,﹣28.(12分)(2015•甘南州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.x是方程﹣xbbb±,当b=时,抛物线与.﹣﹣x﹣x+)2+,∴抛物线的顶点(﹣,)即为所求的点D.为对角线的菱形,点B的坐标为(﹣x x的交点,×﹣×(﹣3)﹣4=4,),使得四边形BPOH为菱形.不能成为正方形,因为如果四边形BPOH为正方形,点。
2015年甘肃兰州中考数学试题及答案第7页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
省市2015年中考数学试题一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.64的立方根是()A.4B.±4C.8D.±82.中国航空母舰“号”的满载排水量为67500吨,将数67500用科学记数法可表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1023.若∠A=34°,则∠A的补角为()A.56°B.146°C. 156°D.166°4.下列运算正确的是()A.x2+x2=x4B. (a-b)2=a2-b2C. (-a2)3=-a6D.3a2·2a3=6a65.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()6.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机抽样,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y7.近年来某县加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600B.2500(1+x)2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=36008.△ABC为⊙O的接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°9.如图,D、E分别是△ABC的边AB、BC上的点,且DE//AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.31 B.41 C. 91D.16110.如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E.设BP=x ,BE=y,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题:本大题共8小题,每小题3分,共24分.11.分解因式:x 3y-2x 2y+xy= 12.分式方程352+=x x 的解是 13.在函数y=xx 1+中,自变量x 的取值围是 14.定义新运算:对于任意实数a,b 都有:a ⊕b=a (a-b)+1,其中等式右边是通常的加法、减法及乘法运算,如2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x<13的解集是15.已知α、β均为锐角,且满足|sin α-21|+()21tan -β=0,则α+β=16.关于x 的方程kx 2-4x-32=0有实数根,则k 的取值围是 17.如图,半圆O 的直径AE=4,点B ,C ,D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,那么第9个三角形数是 ,2016是第 个三角形数.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)计算:(π-5)0+4+(-1)2015-3tan60°.20.(4分)先化简,再求值:⎪⎭⎫⎝⎛+-÷-+-13111222x x x x ,其中x=0.21.(6分)如图,已知在△ABC 中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P 的面积.22.(6分)如图①所示,将直尺摆放在三角板ABC 上,使直尺与三角板的边分别交于点D ,E ,F ,G ,量得∠CGD=42°。
2015年甘肃省中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2015•酒泉)64的立方根是()A.4B.±4 C.8D.±82.(3分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1023.(3分)(2015•酒泉)若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°4.(3分)(2015•酒泉)下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a65.(3分)(2015•酒泉)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.6.(3分)(2015•酒泉)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y7.(3分)(2015•酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35008.(3分)(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°9.(3分)(2015•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.10.(3分)(2015•酒泉)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•酒泉)分解因式:x3y﹣2x2y+xy=.12.(3分)(2015•酒泉)分式方程的解是.13.(3分)(2015•酒泉)在函数y=中,自变量x的取值范围是.14.(3分)(2015•酒泉)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为.15.(3分)(2015•酒泉)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=.16.(3分)(2015•酒泉)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.17.(3分)(2015•酒泉)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.18.(3分)(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.三、解答题(本题共5小题,共26分)19.(4分)(2015•酒泉)计算:()0++(﹣1)2015﹣tan60°.20.(4分)(2015•酒泉)先化简,再求值:÷(1﹣),其中x=0.21.(6分)(2015•酒泉)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.(6分)(2015•酒泉)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.四、解答题(本题共5小题,共40分)24.(7分)(2015•酒泉)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从进球数8 7 6 5 4 3(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.25.(7分)(2015•酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)26.(8分)(2015•酒泉)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.27.(8分)(2015•酒泉)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2015年甘肃省酒泉市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2015•酒泉)64的立方根是()A.4B.±4 C.8D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•酒泉)若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°考点:余角和补角.分析:根据互补的两角之和为180°,可得出答案.解答:解:∵∠A=34°,∴∠A的补角=180°﹣34°=146°.故选B.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.4.(3分)(2015•酒泉)下列运算正确的是()C.(﹣a2)3=﹣a6 D.3a2•2a3=6a6A.x2+x2=x4B.(a﹣b)2=a2﹣b2考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.D、3a2•2a3=6a5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.5.(3分)(2015•酒泉)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)(2015•酒泉)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.分析:根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.解答:解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.点评:本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7.(3分)(2015•酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.解答:解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.(3分)(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.9.(3分)(2015•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.考点:相似三角形的判定与性质.分析:证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC ==,故选D.点评:本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.(3分)(2015•酒泉)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:证明△BPE∽△CDP,根据相似三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出判断.解答:解:∵∠CPD=∠FPD,∠BPE=∠FPE,又∵∠CPD+∠FPD+∠BPE+∠FPE=180°,∴∠CPD+∠BPE=90°,又∵直角△BPE中,∠BPE+∠BEP=90°,∴∠BEP=∠CPD,又∵∠B=∠C,∴△BPE∽△CDP,∴,即,则y=﹣x2+,y是x的二次函数,且开口向下.故选C.点评:本题考查了动点问题的函数图象,求函数的解析式,就是把自变量当作已知数值,然后求函数变量y的值,即求线段长的问题,正确证明△BPE∽△CDP是关键.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•酒泉)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2015•酒泉)分式方程的解是x=2.考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.(3分)(2015•酒泉)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.点评:考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2015•酒泉)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x >﹣1.考点:一元一次不等式的应用.专题:新定义.分析:根据运算的定义列出不等式,然后解不等式求得不等式的解集即可.解答:解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.点评:此题考查一元一次不等式解集的求法,理解运算的方法,改为不等式是解决问题的关键.15.(3分)(2015•酒泉)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.(3分)(2015•酒泉)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.考点:根的判别式;一元一次方程的解.分析:由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.解答:解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.点评:本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.17.(3分)(2015•酒泉)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.考点:扇形面积的计算.分析:根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.解答:解:∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.点评:本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.18.(3分)(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(本题共5小题,共26分)19.(4分)(2015•酒泉)计算:()0++(﹣1)2015﹣tan60°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用乘方的意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+2﹣1﹣×=2﹣3=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(4分)(2015•酒泉)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(6分)(2015•酒泉)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.考点:作图—复杂作图;切线的性质.分析:(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.解答:解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.点评:本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.(6分)(2015•酒泉)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形.分析:(1)先根据直角三角形的两锐角互为求出∠CDG的度数,再根据两直线平行,同位角相等求出∠DEF,然后根据三角形的一个外角等于与它不相邻的两个内角的和即可求出∠EFA;(2)根据度数求出HB的长度,再根据∠CBH=∠CGD=42°,利用42°的余弦值进求解.解答:解:(1)∵∠CGD=42°,∠C=90°,∴∠CDG=90°﹣42°=48°,∵DG∥EF,∴∠CEF=∠CDG=48°;(2)∵点H,B的读数分别为4,13.4,∴HB=13.4﹣4=9.4(m),∴BC=HBcos42°≈9.4×0.74≈6.96(m).答:BC的长为6.96m.点评:本题考查了解直角三角形与平行线的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,综合性较强,但难度不大,仔细分析图形并认真计算即可.23.(6分)(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B ,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.考点:列表法与树状图法;分式的定义.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:列表:第一次第二次x2+1 ﹣x2﹣2 3 x2+1﹣x2﹣23(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.四、解答题(本题共5小题,共40分)24.(7分)(2015•酒泉)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表进球数(个)8 7 6 5 4 3人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为5个;(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.考点:扇形统计图;一元一次方程的应用;统计表.分析:(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.解答:解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得x=4.即参加训练之前的人均进球数是4个.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(7分)(2015•酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)考点:平行四边形的判定与性质;菱形的判定;矩形的判定.专题:动点型.分析:(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.点评:本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.26.(8分)(2015•酒泉)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.考点:反比例函数综合题.分析:(1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.解答:解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为.点评:此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.27.(8分)(2015•酒泉)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.考点:切线的判定.分析:(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.解答:解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.点评:本题考查了圆周角定理,切线的判定的应用,主要考查学生运用定理进行推理的能力,注意:经过半径的外端,并且垂直于半径的直线是圆的切线.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连。