2018湖北鄂州有关中考数学试题解析版
- 格式:pdf
- 大小:275.20 KB
- 文档页数:10
数学试卷 第1页(共18页)数学试卷 第2页(共10页)机密★启用前鄂州市2018年初中毕业生学业考试数 学(本试卷满分120分,考试时间120分钟)注意事项:1.本试题卷共8页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.–0.2的倒数是( ) A .–2B .–5C .5D .0.22.下列运算正确的是( ) A .2549x x x += B .()()2211241x x x -=-+C .()236–36x x =D .826÷a a a =3.由四个相同的小正方体组成的立体图形,它的三视图如图所示,则这个立体图形可能是( )(第3题图)ABCD4.截止2018年5月底,我国的外汇储备约为31 100亿元,将31 100亿用科学记数法表示为( ) A .120.31110⨯B .123.1110⨯C .133.1110⨯D .113.1110⨯5.一副三角板如图放置,则AOD ∠的度数为( ) A .75 B .100 C .105 D .120(第5题图)6.一袋中装有形状、大小都相同的五个小球,每个小球上各标有一个数字,分别是2,3,4,5,6.现从袋中任意摸出一个小球,则摸出的小球上的数恰好是方程25 6 =0x x --的解的概率是( )A.15B .25C .35D .457.如图,已知矩形ABCD 中,4cm AB =,8cm BC =.动点P 在边BC 上从点B 向C 运动,速度为1cm /s ;同时动点Q 从点C 出发,沿折线C D A →→运动,速度为2cm/s .当一个点到达终点时,另一个点随之停止运动.设点P 运动的时间为()s t ,BPQ 的面积为2()cm S ,则描述2()cm S 与时间()s t 的函数关系的图象大致是( )ABCD-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效------------毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________(第7题图)数学试卷 第3页(共18页)数学试卷 第4页(共18页)8.如图,PA ,PB 是O 的切线,切点为A ,B .AC 是O 的直径,OP 与AB 交于点D ,连接BC .下列结论:①2APB BAC ∠=∠ ②OP BC ∥③若3tanC =,则5OP BC = ④24AC OD OP =⋅其中正确结论的个数为( ) A .4个B .3个C .2个D .1个9.如图,抛物线()20y ax bx c a =≠++与x 轴交于点()1,0A 和B ,与y 轴的正半轴交于点C .下列结论: ①0abc ﹥ ②420a b c -+﹥ ③20a b -﹥ ④30a c +﹥其中正确结论的个数为( ) A .1个B .2个C .3个D .4个10.如图,在平面直角坐标系xOy 中,直线113–33y x =+分别与x 轴、y 轴交于点P ,Q ,在Rt OPQ 中从左向右依次作正方形1112A B C C ,2223A B C C ,3334A B C C …,1n n n n A B C C +,点123n A A A A ⋯,,,在x 轴上,点1B 在y 轴上,点1231n C C C C +⋯,,,在直线PQ 上;再将每个正方形分割成四个全等的直角三角形和一个小正方形,其中每个小正方形的边都与坐标轴平行,从左至右的小正方形(阴影部分)的面积分别记为123n S S S S ⋯,,,,则n S 可表示为( )(第10题图)A .222334n n --B .1234n n --C .134nn -D .22134nn -第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)11.因式分解:231212a a -+= .12.关于x 的不等式组1222(2)35x x x x -⎧+>⎪⎨⎪--⎩≤的所有整数解之和为 .13.一圆锥的侧面展开图是一个圆心角为120的扇形,若该圆锥的底面圆的半径为4cm ,则圆锥的母线长为 .14.已知一次函数y kx b =+与反比例函数y mx=的图象相交于()2A n ,和()16B -,-,如图所示。
2018年湖北省各市中考数学试题汇编(含参考答案与试题解析)目录1.湖北省武汉市中考数学试题及参考答案与试题解析 (2)2.湖北省黄冈市中考数学试题及参考答案与试题解析 (23)3.湖北省襄阳市中考数学试题及参考答案与试题解析 (42)4.湖北省咸宁市中考数学试题及参考答案与试题解析 (64)5.湖北省随州市中考数学试题及参考答案与试题解析 (87)6.湖北省恩施州中考数学试题及参考答案与试题解析 (114)7.湖北省孝感市中考数学试题及参考答案与试题解析 (135)8.湖北省荆州市中考数学试题及参考答案与试题解析 (159)9.湖北省十堰市中考数学试题及参考答案与试题解析 (180)10.湖北省宜昌市中考数学试题及参考答案与试题解析 (205)11.湖北省荆门市中考数学试题及参考答案与试题解析 (226)12.湖北省黄石市中考数学试题及参考答案与试题解析 (249)13.湖北省仙桃市、潜江市、天门市、江汉油田中考数学试题及参考答案与试题解析 (272)2018年湖北省武汉市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃2.若分式12x在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣23.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x24.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、405.计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+66.点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.569.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.201310.如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D.若⊙O的AB=4,则BC 的长是( )A .B .CD 二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果是12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 900014000成活数m3251336320363358073 12628成活的频率(精确到0.01) 0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1) 13.计算22111m m m---的结果是 . 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是 .15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是23602y t t =-.在飞机着陆滑行中,最后4s 滑行的距离是 m .16.如图.在△ABC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是 .三、解答题(本大题共8小题,共72分)17.(本题8分)解方程组:10216x y x y +=⎧⎨+=⎩.18.(本题8分)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(本题8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求PECE的值.22.(本题10分)已知点A(a,m)在双曲线8yx=上且m<0,过点A作x轴的垂线,垂足为B(1) 如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C①若t=1,直接写出点C的坐标.②若双曲线8yx=经过点C,求t的值.(2) 如图2,将图1中的双曲线8yx=(x>0)沿y轴折叠得到双曲线8yx=-(x<0),将线段OA绕点O旋转,点A刚好落在双曲线8yx=-(x<0)上的点D(d,n)处,求m和n的数量关系.23.(本题10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=35,25ADAC=,直接写出tan∠CEB的值.24.(本题12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃【知识考点】有理数的加法.【思路分析】根据题意列出算式,再利用加法法则计算可得.【解答过程】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【总结归纳】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.若分式12x+在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【知识考点】分式有意义的条件.【思路分析】直接利用分式有意义的条件分析得出答案.【解答过程】解:∵代数式12x+在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【总结归纳】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【知识考点】合并同类项.【思路分析】根据合并同类项解答即可.【解答过程】解:3x2﹣x2=2x2,故选:B.【总结归纳】此题考查合并同类项,关键是根据合并同类项的法则解答.4.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【知识考点】众数;中位数.【思路分析】根据众数和中位数的定义求解.【解答过程】解:这组数据的众数和中位数分别42,38.故选:B.【总结归纳】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【知识考点】多项式乘多项式.【思路分析】根据多项式的乘法解答即可.【解答过程】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.【总结归纳】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答过程】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【总结归纳】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【知识考点】由三视图判断几何体.【思路分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答过程】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【总结归纳】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.56【知识考点】列表法与树状图法.【思路分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的。
2018湖北鄂州有关中考数学试题-解析版 湖北鄂州市2011年初中毕业生学业水平考试一、填空题(共8道题,每小题3分,共24分)1.(2011湖北鄂州,1,3分)12-的倒数是________. 【解题思路】: 12-的倒数是:1212=--,。
【答案】-2【点评】本题考查了倒数的概念,即当a ≠0时,a 与1a互为倒数。
特别要注意的是:负数的倒数还是负数,此题难度较小。
2.(2011湖北鄂州,2,3分)分解因式8a 2-2=____________________________.【解题思路】本题要先提取公因式2,再运用平方差公式将2(41)a -写成(21)(21)a a +-,即原式可分解为:8a 2-222(41)2(21)(21)a a a =-=+- 【答案】2(2a +1)(2a -1) 【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.利用相应的公式和分解因式的先后顺序即可得到答案。
(分解因式即将一个多项式写成几个因式的乘积的形式)。
难度中等。
3.(2011湖北鄂州,3,3分)要使式子2a a+有意义,则a 的取值范围为_________________. 【解题思路】:此式子要有意义首先分母不为0,分子中的二次根式中的被开方数≥0,所以a+200a ≥≠且时,才有意义。
【答案】a ≥-2且a ≠0【点评】本题考查分式有意义分母不为0,二次根式有意义被开方数≥0,同时还涉及解不等式的知识,综合性较强。
难度中等4.(2011湖北鄂州,4,3分)如图:点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=____.【解题思路】:由反比例函数解析式可知:系数k x y =⋅, ∵S △AOB =2即122k x y =⋅=,∴224k xy ==⨯=; 又由双曲线在二、四象限k <0,∴k=-4 【答案】-4【点评】本题考查反比例函数k 值的确定,结合三角形面积的2倍即是k 的绝对值,再观察反比例函数图像所在的象限,从而确定k 的符号。
孝感市2018年高中阶段学校招生考试数学答案解析一、精心选一选,相信自己的判断! 1.【答案】B【解析】分析:根据乘积是1的两个数互为倒数解答.详解:∵1(4)14-⨯-=,∴14-的倒数是4-.故选:B .点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数. 2.【答案】C【解析】分析:依据三角形内角和定理,即可得到60ABC ∠=︒,再根据AD BC ∥,即可得出260ABC ∠=∠=︒. 详解:∵142∠=︒,78BAC ∠=︒, ∴60ABC ∠=︒, 又∵AD BC ∥, ∴260ABC ∠=∠=︒, 故选:C .点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等. 3.【答案】B【解析】分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.详解:A 、此不等式组的解集为2x <,不符合题意; B 、此不等式组的解集为24x <<,符合题意; C 、此不等式组的解集为4x >,不符合题意; D 、此不等式组的无解,不符合题意; 故选:B .点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点. 4.【答案】A________________ _____________【解析】分析:先根据勾股定理求得6BC =,再由正弦函数的定义求解可得. 详解:在Rt ABC △中,∵10AB =、8AC =,∴6BC =, ∴63sin 105BC A AB ===. 故选:A .点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义. 5.【答案】D【解析】分析:根据随机事件的概念以及概率的意义结合选项可得答案.详解:A 、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误; B 、甲乙两人跳绳各10次,其成绩的平均数相等,22S S 乙甲>,则乙的成绩比甲稳定,此选项错误; C 、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是23,此选项错误; D 、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确. 故选:D .点睛:此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别. 6.【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a -÷=,正确;B 、222(2)a b a ab b +=++,故此选项错误;C 、2D 、326()a a =,故此选项错误; 故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键. 7.【答案】A【解析】分析:由勾股定理即可求得AB 的长,继而求得菱形ABCD 的周长. 详解:∵菱形ABCD 中,24BD =,10AC =, ∴12OB =,5OA =,在Rt ABO △中,13AB =, ∴菱形ABCD 的周长452AB ==, 故选:A .点睛:此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质 8.【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:44xy xy x y x y x y x y ⎛⎫⎛⎫-++- ⎪⎪-+⎝⎭⎝⎭2222()4()4()()()()x y xyy x y xyx y x y x yx y x y x y x y x y -++-=-++-=-+=+-=当x y +=,x y -12==, 故选:D .点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键. 9.【答案】C【解析】分析:根据题意表示出PBQ △的面积S 与t 的关系式,进而得出答案. 详解:由题意可得:3PB t =-,2BQ t =, 则PBQ △的面积211(3)2322S PB BQ t t t t ==-⨯=-+, 故PBQ △的面积S 随出发时间t 的函数关系图象大致是二次函数图象,开口向下. 故选:C .点睛:此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键. 10.【答案】B【解析】分析:①由等边三角形与等腰直角三角形知CAD △是等腰三角形且顶角150CAD ∠=︒,据此可判断;②求出AFP ∠和FAG ∠度数,从而得出AGF ∠度数,据此可判断;③证ADF BAH △≌△即可判断;④由60AFG CBG ∠=∠=︒、AGF CGB ∠=∠即可得证;⑤设PF x =,则2AF x =、AP ,设EF a =,由A D F B A H △≌△知2BH AF x ==,根据ABE △是等腰直角三角形之2BE AE a x ==+,据此得出EH a =,证PAF EAH △∽△得PF APEH AE=,从而得出a 与x 的关系即可判断. 详解:∵ABC △为等边三角形,ABD △为等腰直角三角形,∴60BAC ∠=︒、90BAD ∠=︒、AC AB AD ==,45ADB ABD ∠=∠=︒, ∴CAD △是等腰三角形,且顶角150CAD ∠=︒, ∴15ADC ∠=︒,故①正确; ∵AE BD ⊥,即90AED ∠=︒, ∴45DAE ∠=︒,∴60AFG ADC DAE ∠=∠+∠=︒,45FAG ∠=︒, ∴75AGF ∠=︒,由AFG AGF ∠≠∠知AF AG ≠,故②错误; 记AH 与CD 的交点为P ,由AH CD ⊥且60AFG ∠=︒知30FAP ∠=︒, 则15BAH ADC ∠=∠=︒, 在ADF △和BAH △中,∵,,45,ADF BAH DA AB DAF ABH ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴ASA ADF BAH △≌△(), ∴DF AH =,故③正确;∵60AFG CBG ∠=∠=︒,AGF CGB ∠=∠, ∴AFG CBG △∽△,故④正确;在Rt APF △中,设PF x =,则2AF x =、AP , 设EF a =,∵ADF BAH △≌△,∴2BH AF x ==,ABE △中, ∵90AEB ∠=︒、45ABE ∠=︒, ∴2BE AE AF EF a x ==+=+, ∴22EH BE BH a x x a =-=+-=, ∵90APF AEH ∠=∠=︒,FAP HAE ∠=∠, ∴PAF EAH △∽△, ∴PF APEH AE=,即x a =整理,得:221)x ax =,由0x ≠得21)x a =,即1)AF EF =,故⑤正确; 故选:B .点睛:本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点. 二、细心填一填,试试自己的身手! 11.【答案】81.49610⨯【解析】试题分析:科学技术是指10n a ⨯,110a ≤<,n 为原数的整数位数减一. 12.【答案】16π【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥; 根据三视图知:该圆锥的母线长为6 cm ,底面半径为2 cm , 故表面积222πππ26π216π(cm )rl r =+=⨯⨯+⨯=. 故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 13.【答案】12x =-,21x =【解析】分析:根据二次函数图象与一次函数图象的交点问题得到方程组2,,y ax y bx c ⎧=⎨=+⎩的解为112,4,x y =-⎧⎨=⎩221,1,x y =⎧⎨=⎩于是易得关于x 的方程20ax bx c --=的解.详解:∵抛物线2y ax =与直线y bx c =+的两个交点坐标分别为(24)A -,,(11)B ,, ∴方程组2,,y ax y bx c ⎧=⎨=+⎩的解为112,4,x y =-⎧⎨=⎩221,1,x y =⎧⎨=⎩ 即关于x 的方程20ax bx c --=的解为12x =-,21x =. 所以方程2ax bx c =+的解是12x =-,21x = 故答案为12x =-,21x =.点睛:本题考查抛物线与x 轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题 14.【答案】2或14【解析】分析:分两种情况进行讨论:①弦AB 和CD 在圆心同侧;②弦AB 和CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可. 详解:①当弦AB 和CD 在圆心同侧时,如图,∵16cm AB =,12cm CD =, ∴8cm AE =,6cm CF =, ∵10cm OA OC ==, ∴6cm EO =,8cm OF =, ∴2cm EF OF OE =-=;②当弦AB 和CD 在圆心异侧时,如图,∵16cm AB =,12cm CD =, ∴8cm AF =,6cm CE =, ∵10cm OA OC ==, ∴6cm OF =,8cm OE =, ∴14cm EF OF OE =+=.∴AB 与CD 之间的距离为14 cm 或2 cm .故答案为:2或14.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解. 15.【答案】11【解析】分析:由已知数列得出(1)1232n n n a n +=++++=,再求出10a 、11a 的值,代入计算可得. 详解:由11a =,23a =,36a =,410a =,,知(1)1232n n n a n +=++++=,∴9910452a ⨯==、101011552a ⨯==、111112662a ⨯==, 则1911021045662551011a a a +-+=+-⨯+=, 故答案为:11.点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出(1)1232n n n a n +=++++=. 16.【答案】7【解析】分析:作辅助线,构建全等三角形:过D 作GH x ⊥轴,过A 作AG GH ⊥,过B 作BM HC ⊥于M ,证明AGD DHC CMB △≌△≌△,根据点D 的坐标表示:1G DH x ==--,由DG BM =,列方程可得x 的值,表示D 和E 的坐标,根据三角形面积公式可得结论. 详解:过D 作GH x ⊥轴,过A 作AG GH ⊥,过B 作BM HC ⊥于M ,设6D x x ⎛⎫ ⎪⎝⎭,,∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC DCB ∠=∠=︒, 易得AGD DHC CMB △≌△≌△, ∴1AG DH x ==--, ∴DG BM =,∴6611x x x-=---,2x =-, ∴(23)D --,,6142CH DG BM ===-=-, ∵11AG DH x ==--=, ∴点E 的纵坐标为4-, 当4y =-时,32x =-, ∴342E ⎛⎫-- ⎪⎝⎭,,∴31222EH =-=, ∴17422CE CH HE =-=-=, ∴117•47222CEBS CE BM ==⨯⨯=△. 故答案为:7.点睛:本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题. 三、用心做一做,显显自己的能力!17.【答案】解:原式=9442++⨯=13+=13【解析】分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果. 点睛:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18.【答案】证明:∵AB DE ∥,AC DF ∥, ∴B DEF ∠=∠,ACB F ∠=∠. ∵BE CF =,∴BE CE CF CE +=+, ∴BC EF =.在ABC △和DEF △中,B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ASA ABC DEF △≌△(),∴AB DE =. 又∵AB DE ∥,∴四边形ABED 是平行四边形.点睛:本题考查了平行线的性质、平行四边形的判定以及全等三角形的判定与性质,利用全等三角形的性质找出AB DE =是解题的关键.【解析】分析:由AB DE ∥、AC DF ∥利用平行线的性质可得出B DEF ∠=∠、ACB F ∠=∠,由B E C F=可得出BC EF =,进而可证出ASA ABC DEF △≌△(),根据全等三角形的性质可得出AB DE =,再结合AB DE ∥,即可证出四边形ABED 是平行四边形.19.【答案】(1)72C补全条形图如下:由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,∴恰好选到1名男生和1名女生的概率为82123=. 【解析】分析:(1)首先用C 类别的学生人数除以C 类别的人数占的百分率,求出共有多少名学生;然后根据B 类别百分比求得其人数,由各类别人数和等于总人数求得D 的人数,最后用360°乘以样本中D 类别人数所占比例可得其圆心角度数,根据中位数定义求得答案. 详解:∵被调查的总人数为3030%100÷=人, 则B 类别人数为10040%40⨯=人,所以D 类别人数为100(440306)20-+++=人, 则D 类所对应的圆心角是2036072100︒⨯=︒, 中位数是第50、51个数据的平均数,而第50、51个数据均落在C 类, 所以中位数落在C 类, 补全条形图如下:(2)若A 等级的4名学生中有2名男生2名女生,现从中任意选取2名担任校园广播“孝心伴我行”节目主持人,应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.点睛:此题考查了扇形统计图、条形统计图和列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】(1)PA PB PC ==(或相等) (2)解:∵AB AC =, ∴70ABC ACB ∠=∠=︒, ∴18027040BAC ∠=︒-⨯︒=︒, ∵AM 平分BAC ∠, ∴20BAD CAD ∠=∠=︒, ∵PA PB PC ==,∴20ABP BAP ACP ∠=∠=∠=︒,∴20402080BPC ABP BAC ACP ∠=∠+∠+∠=︒+︒+︒=︒.【解析】(1)根据线段的垂直平分线的性质可得:PA PB PC ==;详解:如图,PA PB PC ==,理由是:∵AB AC =,AM 平分BAC ∠,∴AD 是BC 的垂直平分线,∴PB PC =,∵EP 是AB 的垂直平分线,∴PA PB =,∴PA PB PC ==;故答案为:PA PB PC ==;(2)根据等腰三角形的性质得:70ABC ACB ∠=∠=︒,由三角形的内角和得:18027040BAC ∠=︒-⨯︒=︒,由角平分线定义得:20BAD CAD ∠=∠=︒,最后利用三角形外角的性质可得结论.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.21.【答案】(1)证明:原方程可变形为22560x x p p -+--=.∵22222(5)4(6)252444441(21)0p p p p p p p ∆=----=-++=++=+≥,∴无论p 取何值此方程总有两个实数根.(2)解:∵原方程的两根为1x 、2x ,∴125x x +=,2126x x p p =--.又∵222121231x x x x p +-=+,∴221212()331x x x x p +-=+,∴22253(6)31p p p ---=+,∴2225183331p p p -++=+,∴36p =-,∴2p =-.【解析】(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出2(21)0p ∆=+≥,由此即可证出:无论p 取何值此方程总有两个实数根;(2)根据根与系数的关系可得出125x x +=、2126x x p p =--,结合222121231x x x x p +-=+,即可求出p 值.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0∆≥时,方程有两个实数根”;(2)根据根与系数的关系结合222121231x x x x p +-=+,求出p 值.22.【答案】(1)设A 型净水器每台的进价为m 元,则B 型净水器每台的进价为(200)m -元, 根据题意得:5000045000200m m =-, 解得:2000m =,经检验,2000m =是分式方程的解,∴2001800m -=.答:A 型净水器每台的进价为2 000元,B 型净水器每台的进价为1 800元.(2)根据题意得:2000180(50)98000x x +-≤,解得:40x ≤.(25002000)(21801800)(50)(120)19000W x x ax a x =-+---=-+,∵当7080a <<时,1200a ->,∴W 随x 增大而增大,∴当40x =时,W 取最大值,最大值为(120)40190002380040a a -⨯+=-,∴W 的最大值是(2380040)a -元.【解析】(1)设A 型净水器每台的进价为m 元,则B 型净水器每台的进价为(200)m -元,根据数量=总价÷单价结合用5万元购进A 型净水器与用4.5万元购进B 型净水器的数量相等,即可得出关于m 的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A 型净水器的进价×购进数量+B 型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,由总利润=每台A 型净水器的利润×购进数量+每台B 型净水器的利润×购进数量a -⨯购进A 型净水器的数量,即可得出W 关于x 的函数关系式,再利用一次函数的性质即可解决最值问题.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W 关于x 的函数关系式.23.【答案】(1)证明:连接OD ,AD ,∵AB 为O 的直径,∴90ADB ∠=︒,即AD BC ⊥,∵AB AC =,∴BD CD =,又∵OA OB =,∴OD AC ∥,∵DG AC ⊥,∴OD FG ⊥,∴直线FG 与O 相切.(2)解:连接BE .∵BD =∴CD BD ==∵2CF =,∴4DF =,∴28BE DF ==,∵cos cos C ABC ∠=∠, ∴CFBDCD AB =,=∴10AB =,∴6AE ,∵BE AC ⊥,DF AC ⊥∴BE GF ∥,∴AEB AFG △∽△,∴AB AE AG AF=, ∴1061026BG =++, ∴103BG =. 【解析】(1)连接OD ,AD ,由圆周角定理可得AD BC ⊥,结合等腰三角形的性质知BD CD =,再根据OA OB =知OD AC ∥,从而由DG AC ⊥可得OD FG ⊥,即可得证;(2)连接BE .BE GF ∥,推出AEB AFG △∽△,可得AB AE AG AF=,由此构建方程即可解决问题; 点睛:本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质及中位线定理等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.24.【答案】(1)(60)C -,(20)E ,211C :462y x x =--- 221C :262y x x =--+ (2)①若点P 在x 轴上方,PCA ABO ∠=∠时,则1CA 与抛物线1C 的交点即为点P .设直线1CA 的解析式为:1y k x b =+∴11106,2,b b k =-+⎧⎨=⎩解得111,32.b k ⎧=⎪⎨⎪=⎩∴直线1CA 的解析式为:321y x =+ 联立:2146,212,3y x x y x ⎧=--⎪⎪⎨⎪=+⎪⎩解得118,310,9x y ⎧=-⎪⎪⎨⎪=⎪⎩或226,0.x y =-⎧⎨=⎩ ∴41439P ⎛⎫- ⎪⎝⎭,-; ∴符合条件的点P 的坐标为81039P ⎛⎫- ⎪⎝⎭,或41439P ⎛⎫- ⎪⎝⎭,-.②设直线BC 的解析式为:y kx b =+,∴06,6,k b b =-+⎧⎨-=⎩解得1,6,k b =-⎧⎨=-⎩ ∴直线BC 的解析式为:6y x =--,过点B 作BD MN ⊥于点D ,则BM =,22BD x ==,h PM NM =+()()2P M N M y y y y x =-+-+22P N M y y y x --=+221146262622()2x x x x x x =--------+- 2612x x =--+,2612h x x =--+,2(3)21h x =-++,当3x =-时,h 的最大值为21.∵52x --≤≤,当=5x -时,2(53)2117h =--++=;当=2x -时,2(23)2120h =--++=;当52x --≤≤时,h 的取值范围是1721h ≤≤.【解析】(1)根据旋转的性质,可得C ,E ,F 的坐标,根据待定系数法求解析式;详解:由旋转可知,6OC =,2OE =,则点C 坐标为(60)-,,E 点坐标为(20),, 分别利用待定系数法求1C 解析式为:21462y x x =---, 2C 解析式为:21262y x x -=-+. (2)①根据P 点关于直线CA 或关于x 轴对称直线与抛物线交点坐标,求出解析式,联立方程组求解; ②根据图象上的点满足函数解析式,可得P 、N 、M 纵坐标,根据平行于y 轴直线上两点间的距离是较大的纵坐标间较小的纵坐标,可得二次函数,根据x 取值范围讨论h 范围.点睛:本题考查二次函数综合题,解(1)的关键是利用旋转的性质得出C ,E 的坐标,又利用了待定系数法;解(2)①的关键是利用解方程组,要分类讨论,以防遗漏;解(2)②的关键是利用平行于y 轴直线上两点间的距离是较大的纵坐标间较小的纵坐标得出二次函数,又利用了二次函数的性质.。
鄂州市2018年初中毕业生学业水平考试数学试题学校:________考生姓名:________ 准考证号:注意事项:1.本试卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分)1.2018的相反数是( )A .12013-B .12013C .3102D .-20182.下列计算正确的是( )A .4312a a a ? B3 C .20(1)0x += D .若x 2=x ,则x =1 3.如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( )(第3题图) A B C D4.一副三角板有两个直角三角形,如图叠放在一起,则Ð的度数是( )A .165°B .120°C .150°D .135° (第4题图)5.下列命题正确的个数是( )有意义,则x 的取值范围为x ≤1且x ≠0. ②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个 有效数字用科学计数法表示为3.03×108元. ③若反比例函数m y x=(m 为常数),当x >0时,y 随x 增大而增大,则一次函数 y =-2 x + m 的图象一定不经过第一象限.④若函数的图象关于y 轴对称,则函数称为偶函数,下列三个函数:y =3,y =2x+1, y = x 2中偶函数的个数为2个. A .1 B .2 C .3 D .46.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
2018鄂州市中考数学试卷及答案解析听说2018届的鄂州市初三同学们,正在找这次考试的数学试卷?中考的备考过程就要多做一些数学试卷。
下面由店铺为大家提供关于2018鄂州市中考数学试卷及答案解析,希望对大家有帮助!2018鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.下列实数是无理数的是( )A. B. C.0 D.-1.010101【考点】无理数.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,0,-1.010101是有理数,是无理数,故选:B.2.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为( )A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2.3亿用科学记数法表示为:2.3⨯108 .故选:A.3.下列运算正确的是( )A. 5x -3x =2B. (x -1)2 = x2 -1C. (-2x2)3 = -6x6D. x6÷x2 = x4【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,完全平方公式【解答】解:A.合并同类项后得2x,故A错误。
B.完全平方和公式,前平方,后平方,前后乘2在中央,故B错误。
C.-2的3次方是-8,故C错误。
D.同底数幂的除法,低数不变,指数相减,故D正确。
【分析】根据同底数幂的除法底数不变指数相减;幂的乘方低数不变指数相乘;同底数幂的乘法,底数不变,指数相加。
2018年湖北省鄂州市五校中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)4的平方根是()A.2 B.﹣2 C.±2 D.±2.(3分)李阳同学在“百度”搜索引擎中输入“魅力襄阳”,能搜索到与之相关的结果个数约为236 000,这个数用科学记数法表示为()A.2.36×103B.236×103C.2.36×105D.2.36×1063.(3分)下列计算正确的是()A.a3﹣a=a2B.(﹣2a)2=4a2C.x3•x﹣2=x﹣6D.x6÷x2=x34.(3分)下面几何体中,其主视图与俯视图相同的是()A.B.C.D.5.(3分)若关于x的不等式组有实数解,则a的取值范围是()A.a<4 B.a≤4 C.a>4 D.a≥46.(3分)如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是()A.54°B.44°C.36°D.64°7.(3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.8.(3分)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个9.(3分)已知开口向上的抛物线y=ax2+bx+c,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc>0;③a﹣2b+4c<0;④8a+c >0.其中正确的有()A.3个 B.2个 C.1个 D.0个10.(3分)如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A.3 B.6 C.D.二、填空题:(每小题3分)11.(3分)分解因式:4x3﹣4x2y+xy2=.12.(3分)已知y=,则x y的值为.13.(3分)某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是.14.(3分)如图,AB是⊙O直径,CD切⊙O于E,BC⊥CD,AD⊥CD交⊙O于F,∠A=60°,AB=4,求阴影部分面积.15.(3分)如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数y=的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列五个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD;⑤tan∠BAO=a其中正确的结论是.(把你认为正确结论的序号都填上)16.(3分)抛物线C1:y=x2﹣1(﹣1≤x≤1)与x轴交于A、B两点,抛物线C2与抛物线C1关于点A中心对称,抛物线C3与抛物线C1关于点B中心对称.若直线y=﹣x+b与由C1、C2、C3组成的图形恰好有2个公共点,则b的取值或取值范围是.三、解答题:17.(8分)先化简,后求值:(﹣)÷,其中x满足x2﹣x﹣2=0.18.(8分)如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于F.求证:(1)△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.19.(8分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.20.(8分)已知关于x的二次函数y=x2﹣(2m+3)x+m2+(1)若二次函数y的图象与x轴有两个交点,求实数m的取值范围.(2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且满足x12+x22=31+|x1x2|,求实数m的值.21.(9分)在一次数学活动课上,老师带领学生测量一条南北流向的河的宽度,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行10米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(精确到1米,参考数值:tan31°≈,sin31°≈)22.(9分)如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=9,tan∠CDA=,求BE 的长.23.(10分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求出y关于x的函数表达式,并写出自变量x的取值范围;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队总人数的增加而增加,求m的取值范围.24.(12分)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE 恰好与坐标系中的△OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE 的中点),按顺时针方向旋转180°到△C′ED的位置.(1)求C′点的坐标;(2)求经过O、A、C′三点的抛物线的解析式;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解析式;(4)在(3)的条件下,抛物线上是否存在一点M,使得△BOF与△AOM相似?若存在,请求出点M的坐标;若不存在,请说明理由.2018年湖北省鄂州市五校中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)4的平方根是()A.2 B.﹣2 C.±2 D.±【分析】根据平方根的定义求解即可.【解答】解:4的平方根是±2.故选:C.2.(3分)李阳同学在“百度”搜索引擎中输入“魅力襄阳”,能搜索到与之相关的结果个数约为236 000,这个数用科学记数法表示为()A.2.36×103B.236×103C.2.36×105D.2.36×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:236 000=2.36×105,故选:C.3.(3分)下列计算正确的是()A.a3﹣a=a2B.(﹣2a)2=4a2C.x3•x﹣2=x﹣6D.x6÷x2=x3【分析】利用合并同类项、积的乘方、同底数幂的乘法与同底数幂的乘除法的运算法则求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、a3﹣a≠a2,故本选项错误;B、(﹣2a)2=4a2,故本选项正确;C、x3•x﹣2=x3﹣2=x,故本选项错误;D、x6÷x2=x4,故本选项错误.故选:B.4.(3分)下面几何体中,其主视图与俯视图相同的是()A.B.C.D.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:A、圆柱主视图是矩形,俯视图是圆;B、圆锥主视图是三角形,俯视图是圆;C、正方体的主视图与俯视图都是正方形;D、三棱柱的主视图是矩形与俯视图都是三角形;故选:C.5.(3分)若关于x的不等式组有实数解,则a的取值范围是()A.a<4 B.a≤4 C.a>4 D.a≥4【分析】分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a 的不等式,求出a的取值范围即可.【解答】解:解不等式2x>3x﹣3,得:x<3,解不等式3x﹣a>5,得:x>,∵不等式组有实数解,∴<3,解得:a<4,故选:A.6.(3分)如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是()A.54°B.44°C.36°D.64°【分析】过点C作CF∥a,由平行线的性质求出∠ACF的度数,再由余角的定义求出∠BCF的度数,进而可得出结论.【解答】解:过点C作CF∥a,∵∠1=36°,∴∠1=∠ACF=36°.∵∠C=90°,∴∠BCF=90°﹣36°=54°.∵直线a∥b,∴CF∥b,∴∠2=∠BCF=54°.故选:A.7.(3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF ﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF ﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.8.(3分)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③正确;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.故选:D.9.(3分)已知开口向上的抛物线y=ax2+bx+c,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc>0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个 B.2个 C.1个 D.0个【分析】首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴x=﹣,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出②的正误;利用a﹣b+c=0,求出a﹣2b+4c<0,即可判断出③的正误;利用当x=4时,y>0,则16a+4b+c>0,由①知,b=﹣2a,得出8a+c>0,即可判断出④的正误.【解答】解:根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②正确;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故③正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④正确;综上所述,正确的结论是:②③④共3个,故选:A.10.(3分)如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A.3 B.6 C.D.【分析】连接AO并延长,与圆O交于P点,当AF垂直于ED时,线段DE长最大,设圆O与AB相切于点M,连接OM,PD,由对称性得到AF为角平分线,得到∠FAD为30度,根据切线的性质得到OM垂直于AD,在直角三角形AOM 中,利用30度角所对的直角边等于斜边的一半求出AO的长,由AO+OP求出AP 的长,即为圆P的半径,由三角形AED为等边三角形,得到DP为角平分线,在直角三角形PFD中,利用30度所对的直角边等于斜边的一半求出PF的长,再利用勾股定理求出FD的长,由DE=2FD求出DE的长,即为DE的最大值.【解答】解:连接AO并延长,与ED交于F点,与圆O交于P点,此时线段ED 最大,连接OM,PD,可得F为ED的中点,∵∠BAC=60°,AE=AD,∴△AED为等边三角形,∴AF为角平分线,即∠FAD=30°,在Rt△AOM中,OM=1,∠OAM=30°,∴OA=2,∴PD=PA=AO+OP=3,在Rt△PDF中,∠FDP=30°,PD=3,∴PF=,根据勾股定理得:FD==,则DE=2FD=3.故选:D.二、填空题:(每小题3分)11.(3分)分解因式:4x3﹣4x2y+xy2=x(2x﹣y)2.【分析】首先提取公因式x,进而利用完全平方公式分解因式得出即可.【解答】解:4x3﹣4x2y+xy2=x(4x2﹣4xy+y2)=x(2x﹣y)2.故答案为:x(2x﹣y)2.12.(3分)已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.13.(3分)某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是10.【分析】根据中位数为9,可求出x的值,继而可判断出众数.【解答】解:由题意得,(8+x)÷2=9,解得:x=10,则这组数据中出现次数最多的是10,故众数为10.故答案为:10.14.(3分)如图,AB是⊙O直径,CD切⊙O于E,BC⊥CD,AD⊥CD交⊙O于F,∠A=60°,AB=4,求阴影部分面积3﹣π.【分析】连接OE、OF、BF,解直角三角形求出BF长,求出BC+AD=4,利用面积的和差即可求出答案.【解答】解:设AD交⊙O于F,连接OE、OF、BF,如图,∵AB为⊙O直径,AB=4,∴OE=AB=2,∠AFB=90°,∵∠A=60°,∴AF=AB=2,BF=AF=2,∵根据圆周角定理得:∠BOF=2∠A=120°,∴∠AOF=180°﹣120°=60°,∵CD切⊙O于E,BC⊥CD,AD⊥CD,∴∠C=∠OED=∠D=90°,∴OE∥BC∥AD,∵O为AB中点,∴CE=ED,∴BC+AD=2OE=AB=4,∴阴影部分的面积S=S梯形BCDF ﹣(S扇形AOF﹣S△BOF)=(BC+AD)×BF﹣+×2×1=×4×2﹣π﹣=3﹣π,故答案为:3﹣π.15.(3分)如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数y=的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列五个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD;⑤tan∠BAO=a其中正确的结论是①②④⑤.(把你认为正确结论的序号都填上)【分析】设D(x,),得出F(x,0),根据三角形的面积求出△DEF的面积,同法求出△CEF的面积,即可判断①;根据相似三角形的判定判断②即可;根据全等三角形的判定判断③即可;证出平行四边形BDFE和平行四边形ACEF,可推出AC=BD,判断④即可;由一次函数解析式求得点A、B的坐标,结合锐角三角函数的定义判断⑤即可.【解答】解:①设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DEF的面积是:××x=k,设C(a,),则E(0,),由图象可知:a>0,<0,△CEF的面积是:×|a|×||=|k|,∴△CEF的面积=△DEF的面积,故①正确;②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,∴EF∥CD,∴FE∥AB,∴△AOB∽△FOE,故②正确;③BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BE=DF,而只有当a=1时,才有CE=BE,即CE不一定等于DF,故△DCE≌△CDF不一定成立;故③错误;④∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,故④正确;⑤由一次函数y=ax+b的图象与x轴,y轴交于A,B两点,易得A(﹣,0),B(0,b),则OA=,OB=b,∴tan∠BAO==a,故⑤正确.正确的有4个:①②④⑤.故答案为:①②④⑤.16.(3分)抛物线C1:y=x2﹣1(﹣1≤x≤1)与x轴交于A、B两点,抛物线C2与抛物线C1关于点A中心对称,抛物线C3与抛物线C1关于点B中心对称.若直线y=﹣x+b与由C1、C2、C3组成的图形恰好有2个公共点,则b的取值或取值范围是b=﹣或﹣或3≤b<.【分析】根据对称性先求抛物线C2与抛物线C3的解析式,再分两种情况:①在y轴右侧时,从直线y=﹣x+b与C3相切时到直线过点D时,这些b值符合条件,计算出来即可;②在y轴的左侧,当y=﹣x+b与C1相切时和y=﹣x+b与C2相切时,都与C2有C1、C2、C3组成的图形恰好有2个公共点,分别计算出b的值.【解答】解:抛物线C1:y=x2﹣1(﹣1≤x≤1),顶点E(0,﹣1),当y=0时,x=±1,∴A(﹣1,0),B(1,0),当抛物线C2与抛物线C1关于点A中心对称,∴顶点E关于点A的对称点E′(﹣2,1),∴抛物线C2的解析式为:y=﹣(x+2)2+1=﹣x2﹣4x﹣3,当抛物线C3与抛物线C1关于点B中心对称,∴顶点E关于点B的对称点E′′(2,1),∴抛物线C3的解析式为:y=﹣(x﹣2)2+1=﹣x2+4x﹣3,①当y=﹣x+b过D(3,0)时,b=3,当y=﹣x+b与C3相切时,即与C3有一个公共点,则,﹣x2+4x﹣3=﹣x+b,x2﹣5x+b+3=0,△=25﹣4(b+3)=0,b=,∴当3≤b<时,直线y=﹣x+b与由C1、C2、C3组成的图形恰好有2个公共点,②当y=﹣x+b与C1相切时,即与C1有一个公共点,则,x2﹣1=﹣x+b,x2+x﹣1﹣b=0,△=1﹣4(﹣1﹣b)=0,b=﹣,当y=﹣x+b与C2相切时,即与C2有一个公共点,则,﹣x2﹣4x﹣3=﹣x+b,﹣x2﹣3x﹣3﹣b=0,△=9﹣4×(﹣1)×(﹣3﹣b)=0,b=﹣,∴当b=﹣或﹣时,直线y=﹣x+b与由C1、C2、C3组成的图形恰好有2个公共点,综上所述:当b=﹣或﹣或3≤b<时,直线y=﹣x+b与由C1、C2、C3组成的图形恰好有2个公共点.三、解答题:17.(8分)先化简,后求值:(﹣)÷,其中x满足x2﹣x﹣2=0.【分析】化简后代入计算即可.【解答】解:原式=×=x﹣1,∵满足x2﹣x﹣2=0,∴x=﹣1或2,∵x=2分式无意义,∴x=﹣1时,原式=﹣2.18.(8分)如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于F.求证:(1)△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【分析】(1)由平行四边形的性质得出AB=CD,AD=CB,AD∥CB,∠A=∠C,∠ABC=∠ADC,证出∠ABE=∠CDF,由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,得出DE=BF,证明四边形EBFD是平行四边形,由对角线互相垂直即可得出四边形EBFD是菱形.【解答】:∵四边形ABCD是平行四边形,∴AB=CD,AD=CB,AD∥CB,∠A=∠C,∠ABC=∠ADC,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠ABC,∠CDF=∠ADC,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∴AE=CF,∴DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形.∵BD⊥EF,∴四边形EBFD是菱形.19.(8分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:(1)在统计表中,m=30,n=20,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是90°.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.【分析】(1)根据B组有15人,所占的百分比是15%即可求得总人数,然后根据百分比的意义求解;(2)利用360度乘以对应的比例即可求解;(3)画树状图列出所有等可能结果,从中找到至少获得两位评委老师的“通过”结果数,利用概率公式计算可得.【解答】解:(1)∵总人数为15÷15%=100(人),∴D组人数m=100×30%=30,E组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,故答案为:90°;(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E组学生王云参加鄂州市“汉字听写”比赛的概率为.20.(8分)已知关于x的二次函数y=x2﹣(2m+3)x+m2+(1)若二次函数y的图象与x轴有两个交点,求实数m的取值范围.(2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且满足x12+x22=31+|x1x2|,求实数m的值.【分析】(1)利用一元二次方程根的判别式计算;(2)利用一元二次方程根与系数的关系列出方程,解方程即可.【解答】解:(1)由题意得,[﹣(2m+3)]2﹣4×1×(m2+2)>0,解得,m>﹣;(2)由根与系数的关系可知,x1+x2=2m+3,x1x2=m2+2,x12+x22=31+|x1x2|,(x1+x2)2﹣2x1x2=31+|x1x2|,(2m+3)2﹣2×(m2+2)=31+m2+2,整理得,m2+12m﹣28=0,解得,m1=2,m2=﹣14(舍去),当m=2时,满足x12+x22=31+|x1x2|.21.(9分)在一次数学活动课上,老师带领学生测量一条南北流向的河的宽度,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行10米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(精确到1米,参考数值:tan31°≈,sin31°≈)【分析】过点C作CD⊥AB于D,由题意知道∠DAC=31°,∠DBC=45°,设CD=BD=x 米,则AD=AB+BD=(10+x)米,在Rt△ACD中,tan∠DAC=,由此可以列出关于x的方程,解方程即可求解.【解答】解:过点C作CD⊥AB,垂足为D,设CD=x米,在Rt△BCD中,∠CBD=45°,∴BD=CD=x米.在Rt△ACD中,∠DAC=31°,AD=AB+BD=(10+x)米,CD=x米,∵tan∠DAC=,∴=,解得x=15.经检验x=15是原方程的解,且符合题意.答:这条河的宽度为15米.22.(9分)如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=9,tan∠CDA=,求BE 的长.【分析】(1)连OD,OE,根据圆周角定理得到∠ADO+∠1=90°,而∠CDA=∠CBD,∠CBD=∠1,于是∠CDA+∠ADO=90°;(2)根据切线的性质得到ED=EB,OE⊥BD,则∠ABD=∠OEB,得到tan∠CDA=tan∠OEB==,易证Rt△CDO∽Rt△CBE,得到===,求得CD,然后在Rt△CBE中,运用勾股定理可计算出BE的长.【解答】(1)证明:连OD,OE,如图,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;(2)解:∵EB为⊙O的切线,ED是切线,∴ED=EB,∵OB=OD,∴OE⊥DB,∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,∴∠ABD=∠OEB,∴∠CDA=∠OEB.而tan∠CDA=,∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,∴===,∴CD=×9=6,在Rt△CBE中,设BE=x,∴(x+6)2=x2+92,解得x=.即BE的长为.23.(10分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求出y关于x的函数表达式,并写出自变量x的取值范围;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队总人数的增加而增加,求m的取值范围.【分析】(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y 与x的关系即可.(2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,根据二次函数的性质即可解决问题.【解答】解:(1)y=,其中(30<m≤100).(2)由(1)可知当0<x≤30或x>m,函数值y都是随着x是增加而增加,当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,∵a=﹣1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75.24.(12分)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE 恰好与坐标系中的△OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE 的中点),按顺时针方向旋转180°到△C′ED的位置.(1)求C′点的坐标;(2)求经过O、A、C′三点的抛物线的解析式;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解析式;(4)在(3)的条件下,抛物线上是否存在一点M,使得△BOF与△AOM相似?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)作C′H⊥x轴,如图②,利用等边三角形和旋转的性质得到AC′=OA=2,∠OAB=∠BAC′=60°,则∠C′AH=60°,然后根据含30度的直角三角形三边的关系计算出AH=1,C′H=,从而得到C′点的坐标;(2)设抛物线解析式为y=ax(x﹣2),然后把C′点坐标代入求出a即可(3)利用切线的性质得AB⊥BF,则利用∠FAB=60°得到FA=2AB=4,所以F(﹣2,0),再判断四边形AOBC′为菱形,则可写出B(1,),然后利用待定系数法求直线BF的解析式;(4)先抛物线的对称轴为直线x=1,抛物线的顶点坐标为(1,﹣),再判断△OBF为顶角为120°的等腰三角形,讨论:当AM=AO=2时,点M与点C′重合,△BOF与△AOM相似,易得此时M点的坐标;当OM=OA时,点M与点C′关于直线x=1对称,△BOF与△AOM相似,易得此时M点坐标;当MA=MO时,点M为抛物线的顶点时,∠OAM=120°,可判断△BOF与△AOM相似,从而得到此时M点的坐标.【解答】解:(1)作C′H⊥x轴,如图②,而三角板CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°得到△C′ED,∴AC′=OA=2,∠OAB=∠BAC′=60°,∴∠C′AH=60°,∴AH=AC′=1,C′H=AH=,∴C′(3,);(2)设抛物线解析式为y=ax(x﹣2),把C′(3,)代入得a•3•1=,解得a=,∴抛物线解析式为y=x(x﹣2),即y=x2﹣x;(3)∵BF为⊙G的切线,∴AB⊥BF,而∠FAB=60°,∴FA=2AB=4,∴F(﹣2,0),∵OB=OA=AC′=BC′=2,∴四边形AOBC′为菱形,∴B(1,),设直线BF的解析式为y=kx+b,把F(﹣2,0),B(1,)代入得,解得,∴直线BF的解析式为y=x+;(4)存在.抛物线的对称轴为直线x=1,当x=1时,y=x2﹣x=﹣,则抛物线的顶点坐标为(1,﹣),∵OF=OB=2,当AM=AO=2时,点M与点C′重合,△BOF与△AOM相似,此时M(3,),当OM=OA时,点M与点C′关于直线x=1对称,△BOF与△AOM相似,此时M (﹣1,),当MA=MO时,点M为抛物线的顶点时,∠OAM=120°,△BOF与△AOM相似,此时M(1,﹣),综上所述,满足条件的M点的坐标为(3,)或(﹣1,)或(1,﹣).。
初中毕业升学考试(湖北鄂州卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】-的相反数是()A.- B.- C. D.【答案】C.【解析】试题分析:根据相反数的定义可得答案.-的相反数是.故答案选C.考点:相反数.【题文】下列运算正确的是()A.3a+2a=5a2 B.a6÷a2=a3C.(-3a3)2=9a6 D.(a+2)2=a2+4【答案】C.【解析】试题分析:选项A,根据同类项合并法则可得3a+2a=5 a,本选项错误;选项B,根据同底数幂的除法可得a6÷a2= a4,本选项错误;选项C,根据积的乘方可得(-3a3)2=9a6,本选项正确;选项D,根据完全平方式可得(a+2)2=a2+4a+4,本选项错误.故选C.考点:合并同类项;同底数幂的除法;积的乘方;完全平方式.【题文】钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,数据4400000用科学记数法表示为()A. 4.4×106B. 44×105C. 4×106D. 0.44×107【答案】A【解析】试题分析:根据科学记数法是把一个大于10的数表示成a×10n的形式(其中1≤a<10,n是正整数).确定a×10n(1≤|a|<10,n为整数),4400000有7位,所以可以确定n=7-1=6,再表示成a×10n 的形式即可,即4400000=4.4×106.故答案选A.考点:科学记数法.【题文】一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()【答案】B.【解析】试题分析:从物体的左面看是正六棱柱的两个侧面,因C项只有1个面,D项有3个面,故排除C,D;从俯视图可知,本题几何体是正六棱柱,所以棱应该在正中间,故排除A.故答案选B.考点:几何体的三视图.【题文】下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是10【答案】B.【解析】试题分析:选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;D.一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.考点:抽样调查、中位数、样本容量、方差.【题文】如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50° B.40° C.45° D.25°【答案】B.【解析】试题分析:已知AB∥CD,根据平行线的性质可得∠2=∠D;又因EF⊥BD,根据垂线的性质可得∠DEF=90°;在△DEF中,根据三角形的内角和定理可得∠D=180°―∠DEF―∠1=180°―90°―50°=40°,所以∠2=∠D=40°.故答案选B.考点:平行线的性质;三角形的内角和定理.【题文】如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图像可以是()【答案】A.【解析】试题分析:当点P在AB上分别运动时,围成的三角形面积为S(cm2)随着时间的增多不断增大,到达点B时,面积为整个正方形面积的四分之一,即4cm2;当点P在BM上分别运动时,点P的运动路径与OA、OP所围成的图形面积为S(cm2)随着时间的增多继续增大,S=4+S△OBP;动点P由A开始沿折线A—B—M方向匀速运动,故排除C,D;到达点M时,面积为4+2=6(cm2),故排除B.故答案选A.考点:动点函数的图像问题.【题文】如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E ,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9.以下结论:①⊙O的半径为②OD∥BE③PB=④tan∠CEP=其中正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B.【解析】试题分析:①连接OE,则OE⊥DC,易证明四边形ABCD是梯形,则其中位线长等于(4+9)=,而梯形ABCD的中位线平行于两底,显而易见,中位线的长(斜边)大于直角边(或运用垂线段最短判定),故可判断①错误;②先证明△AOD≌△EOD,得出∠AOD=∠EOD=∠AOE,再运用同弧所对的圆周角等于圆心角的一半证明∠AOD=∠ABE,从而得出OD∥BE,故②正确;③由①知OB=6,根据勾股定理,OC===3;易证△OPB∽△OBC,则,所PB===,③正确;④易知∠CEP>∠ECP,所以CP>PE,故tan∠CEP=错误.故答案选B.考点:圆的综合题.【题文】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为 -,其中正确的结论个数有_____________________ (填序号)【答案】C【解析】试题分析:由图象可知抛物线开口向下,可得a<0,由抛物线的对称轴在y轴的右侧,可得b>0,抛物线与y轴的交点在x轴下方,可得c<0,所以abc>0,即①正确;当x=3时,y=ax2+bx+c=9a+3b+c >0,所以②错误;已知C(0,c),OA=OC,可得A(﹣c,0),由图知,A在1的左边∴﹣c<1 ,即c>-1,即③正确;把-代入方程ax2+bx+c=“0”(a≠0),得ac﹣b+1=0,把A(﹣c,0)代入y=ax2+bx+c 得ac2﹣bc+c=0,即ac﹣b+1=0,所以关于x的方程ax2+bx+c=“0” (a≠0)有一个根为-,即④正确;故答案选C.考点:二次函数图象与系数的关系;数形结合思想.【题文】如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD 沿直线PQ折叠,A的对应点为A′,当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.【答案】B.【解析】试题分析:如图,过C作CH⊥AB,连接DH;因ABCD是菱形,∠B=60°,可判定△ABC为等边三角形;所以AH=HB=4;再由BP=3,可得HP=1.要使CA′的长度最小,则梯形APQD沿直线PQ折叠后A的对应点A′应落在CH上,且对称轴PQ应满足PQ∥DH;由作图知,DHPQ为平行四边形,可得DQ=HP= 1,CQ=CD-DQ=8-1=7.故答案选B.考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.【题文】方程x2-3=0的根是【答案】x1=,x2= -.【解析】试题分析:移项得x2=3,开方得x1=,x2= -.考点:解一元二次方程.【题文】不等式组的解集是【答案】﹣1<x≤2.【解析】试题分析:解不等式2x-3<3x-2,得:x>﹣1;解不等式2(x-2)≥3x-6,得:x≤2,所以不等式组的解集为﹣1<x≤2.考点:解一元一次不等式组.【题文】如图,扇形OAB中,∠AOB=60°,OA=6cm,则图中阴影部分的面积是.【答案】(6π-9)cm2.【解析】试题分析:由阴影部分面积=扇形的面积-三角形的面积可得S阴影=S扇=πnR2-S△AOB=π×60×62-×6×6×=6π-9.考点:扇形的面积.【题文】如图,已知直线与x轴、y轴相交于P、Q两点,与y=的图像相交于A(-2,m)、B(1,n)两点,连接OA、OB.给出下列结论:①k1k2<0;②m+n=0;③S△AOP= S△BOQ;④不等式k­1x+b>的解集是x<-2或0<x<1,其中正确的结论的序号是.【答案】②③④.【解析】试题分析:①由直线的图像在二、四象限,知k­1<0;y=的图像在二、四象限,知k­2<0;因此k­1k2>0,所以①错误;②A,B两点在y=的图像上,故将A(-2,m)、B(1,n)代入,得m=,n= k2;从而得出m+n=0,故②正确;③令x=0,则y=b,所以Q(0,b),则S△BOQ=×1×|b|= -b;将A(-2,m)、B(1,n)分别代入,解得k­1=,所以y=x+b;令y=0,则x=-b,所以P(-b,0),则S△AOP=×|-2|×|-b|= -b;所以S△­­­­­­­­­­­­­­­­­AOP= S△BOQ,故③正确;④由图像知,在A点左边,不等式k­1x+b的图像在的图像的上边,故满足k­1x+b>;在Q点与A点之间,不等式k­1x+b的图像在的图像的上边,故满足k­1x+b>;因此不等式k­1x+b>的解集是x<-2或0<x<1.故④正确.考点:反比例函数与一次函数的性质.【题文】如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点。