二元一次不等式(组)与简单的线性规划问题单元测试 Word版 含答案
- 格式:doc
- 大小:194.50 KB
- 文档页数:6
配餐作业(三十七)二元一次不等式(组)与简单的线性规划问题(时间:40分钟)一、选择题1.(2016·四川高考)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析 取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,故选A 。
答案 A2.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点。
故选C 。
答案 C3.(2017·郑州模拟)已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x -1,x +3y -5≤0,那么点P 到直线3x -4y -13=0的距离的最小值为( )A.115 B .2 C.95D .1解析 在坐标平面内画出题中的不等式组表示的平面区域及直线3x -4y -13=0。
结合图形可知,在该平面区域内所有的点中,到直线3x -4y -13=0的距离最近的点是(1,0)。
又点(1,0)到直线3x -4y -13=0的距离等于|3×1-4×0-13|5=2,即点P 到直线3x -4y -13=0的距离的最小值为2。
故选B 。
答案 B4.(2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解析 解法1:如图,已知约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,所表示的平面区域为图中所示的三角形区域ABC (包含边界),其中A (0,2),B (3,0),C (1,3)。
1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
二元一次不等式(组)与简单的线性规划问题、基本不等式第Ⅰ卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知x , y ∈R +, x+y ≤4 , 则下列不等式中恒成立的是 ( ) (A)411≤+yx (B) 2≥xy (C)11≥xy(D)111≥+yx【解析】利用基本不等式判断,因为4x y ≥+≥2≤,所以14xy ≥,又111212x y x y xyxy++=≥=≥⨯=,所以选D.【答案】D2. 已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( )A .4m ≥或2m ≤-B .2m ≥或4m ≤-C .24m -<<D .42m -<< 【解析】因为2142(2)1(2)()4448y x x y x y x y x y x y +=+⋅=+⋅+=++≥+=,因为222x y m m +>+恒成立,则2m in 2(2)m m x y +<+,即228m m +<,所以42m -<<。
【答案】D3. 若实数y x ,满足条件25024001x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩, 目标函数2z x y =-,则( )A .max 5z =B .m ax 1z =-C .m ax 2z =D .m in 0z =【解析】不等式表示的平面区域所围成的四边形区域,作辅助线,并平移,当直线移动到点(3,1)时,目标函数2z x y =-达到最大,最大为5,当直线移动到点(0,4)时,目标函数2z x y =-达到最小,最小为-4,选A 。
【答案】A 4. 已知函数()2x f x =的反函数为1()f x -,若11()()4f a f b --+=,则11a b+的最小值为( )A .12B .13C .14D .1【解析】函数()2xf x =的反函数为1()f x -为12()log f x x -=,所以11()()4fa fb --+=即为22log log 4a b +=,所以16ab =,所以1112a b +≥=,所以11a b+的最小值为12。
学案3.4 二元一次不等式(组)与简单的线性规划问题基础梳理知识点一.问题1:①ax +by +c =0;②ax +by +c >0;③ax +by +c <0. 问题2: Ax +By +C =0 不含 包含问题3:方法一:由于对直线Ax +By +C =0同一侧的所有点(x ,y ),把它的坐标(x ,y )代入Ax +By +C 所得到实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),由Ax 0+By 0+C 的符号即可判断Ax +By +C >0表示直线Ax +By +C =0哪一侧的平面区域.方法二:先看B的正负,正看是>号还是<号,>号看为正,<看为负,如果B 的正负与不等号的正负相乘是正则在直线上方区域,相反为正方区域。
如2x-3y+2>0,B 为负,”>”为正,则相乘为负,即为相应直线下方区域。
与A 的符号无关。
【小试身手】1. 解析 逐一代入得点(-1,3)不在x +y -1≤0表示的平面区域内.答案 C 2.C[解析] 由图可看出,阴影部分满足0≤y ≤1,-1≤x ≤0.∵点(0,0)在直线2x -y +2=0的下方,且(0,0)点坐标代入方程左端有2×0-0+2>0, ∴阴影部分符合2x -y +2≥0.3.解析:作出可行域为如图所示的三角形,∴S △=12×1×1=12.答案: A4.[答案] (-7,24)[解析] ∵点(-3,-1),和(4,-6)在直线3x -2y -a =0的两侧, ∴(-9+2-a )(12+12-a )<0. ∴(a +7)(a -24)<0.∴-7<a <24.知识点二.线性规划相关概念线性约束条件可行解5.[解析] 设购买A ,B 两种矿石各x 万吨和y 万吨,最少费用为z 百万元,由题意知⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9x +0.5y ≤2x ≥0,y ≥0,目标函数为z =3x +6y ,作出可行域求解可得z min =15.6. 解析:令b =2x -y ,则y =2x -b ,如图所示,作斜率为2的平行线y =2x -b ,当经过点A 时,直线在y 轴上的截距最大,为-b ,此时b =2x -y 取得最小值,为b =2×1-1=1. 答案:17.(文)B [解析] 本题考查二元一次不等式组表示平面区域,线性目标函数最值.由⎩⎪⎨⎪⎧2x +y -2≥0x -2y +4≥0x -1≤0得可行域如图.令z =x +2y ,画出可行域为图中阴影部分. 作直线l :x +2y =0,在可行域内平移l , 当移至A (0,1)z 取最大值是x +2y =2, 当移至B (0,-1)z 取最小值x +2y =-2.(理)[解析] 本题主要考查线性规划问题.不等式|x |+|y |≤1表示的平面区域如图所示,当目标函数z =x +2y过点(0,-1),(0,1)时,分别取最小和最大值,所以x +2y 的最大值和最小值分别为2,-2,故选B.8.[解析] (1)先画直线3x +2y +6=0(画成虚线),取原点(0,0)代入, ∵3×0+2×0+6>0,∴(0,0)在3x +2y +6>0表示的平面区域内,如图所示.(2)不等式x <3表示x =3左侧点的集合,不等式2y ≥x 表示x -2y =0上及其左上方点的集合.不等式3x +2y ≥6表示直线3x +2y -6=0上及右上方点的集合.不等式3y <x +9表示直线3y -x -9=0右下方点的集合.综上可得:不等式组表示的平面区域如图所示.考向一 二元一次不等式(组)表示的平面区域【例1】(1) [解析] 由两点式得直线AB 、BC 、CA 的方程并化简为:直线AB :x +2y -2=0,直线BC :x -y +4=0,直线CA :5x -2y +2=0. ∴原点(0,0)不在各直线上,将原点坐标代入到各直线方程左端,结合式子的符号可得不等式组为⎩⎪⎨⎪⎧x +2y -2≥0,x -y +4≥0,5x -2y +2≤0.(2)[解析] 如图画出不等式组所表示的平面区域, 不等式组表示的平面区域的面积即△ABC 的面积.又A (-3,3),B (3,-3),C (3,9),∴|BC |=12.∴S △ABC =12|BC |×6=36.二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.【训练1】解析 其中平面区域kx -y +2≥0是含有坐标原点的半平面.直线kx -y +2=0又过定点(0,2),这样就可以根据平面区域的面积为4,确定一个封闭的区域,作出平面区域即可求解. 平面区域如图所示,根据区域面积为4,得A (2,4),代入直线方程,得k =1. 答案 A考向二 求线性目标函数的最值【例2】[审题视点] 作出平行域D ,然后解出目标函数z 的表达式,用截距法求z 的最大值.解析 画出区域D ,如图中阴影部分所示,而z =OM →·O A →=2x +y ,∴y =-2x +z ,令l 0:y =-2x ,将l 0平移到过点(2,2)时,截距z有最大值,故z max =2×2+2= 4. 答案 B若本例条件不变,试求z =2x -y 的最小值.解:因z =2x -y 变为y =2x -z ,目标函数的图象过点(0,2)时,z 最小,∴z 的最小值为-2.求目标函数的最大值或最小值,必须先求出准确的可行域,令目标函数等于0,将其对应的直线平行移动,最先通过或最后通过的顶点便是最优解.如果可行域是一个多边形,那么目标函数一般在某顶点处取得最大值或最小值,最优解就是该点的坐标,到底哪个顶点为最优解,只要将目标函数的直线平行移动,最先通过或最后通过的顶点便是.特别地,当表示线性目标函数的直线与可行域的某条边平行时(k =k 1),其最优解可能有无数个.整数解问题:若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),这时应作适当的调整,其方法是在线性目标函数的直线的附近寻求与此直线距离最近的整点,也可以在用图解法所得到的近似解附近寻找.【训练2】 (文)A[解析] 本题考查了线性规划的基础知识及数形结合的思想.根据约束条件,画出可行域如图,作直线3x -y =0,将直线平移至点(2,0)处有最大值,点(12,3)处有最小值,即-32≤z ≤6.(理)解析 画出x 、y 满足条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.答案 D考向三 求非线性目标函数的最值【例3】[解析]由约束条件⎩⎨⎧x -4y +3≤03x +5y -25≤0x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =13x +5y -25=0,解得A ⎝⎛⎭⎫1,225. 由⎩⎪⎨⎪⎧x =1x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=03x +5y -25=0,解得B (5,2). (1)由z =4x -3y ,得y =43x -z 3.求z =4x -3y 的最大值,相当于求直线y =43x -z 3在y 轴上的截距-z 3的最小值.平移直线y=43x 知, 当直线y =43x -z 3过点B 时,-z 3最小,z 最大.∴z max =4×5-3×2=14.(2)∵z =y x =y -0x -0.∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.(3)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29,∴2≤z ≤29.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb 的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a. 注意转化的等价性及几何意义.【训练3】(文)[答案] [35,3][解析] 画出可行域如图,z 表示可行域内的点(x ,y )与点E (-3,-3)连线的斜率,则由图形可知,连线过点C 时斜率最小,过点B 时斜率最大.k EC =0+32+3=35,k EB =3+3-1+3=3,所以z 的取值范围是[35,3].(理)解析 如图,当P 取点⎝⎛⎭⎫0,12,Q 取点(0,-1)时,|PQ |有最小值为32. 答案 A考向四 线性规划的实际应用【例4】[审题视点] 题目的设问是“该企业如何安排生产,才能获得最大利润”,这个利润是由两种产品的利润所决定的,因此A ,B 两种产品的生产数量决定着该企业的总利润,这里两种产品的生产数量是问题的主要变量,故可以设出A ,B 两种产品的生产数量,列不等式组和建立目标函数.解 设生产A ,B 两种产品分别为x 吨,y 吨,利润为z 万元,依题意,得 ⎩⎪⎨⎪⎧3x +10y ≤300,9x +4y ≤360,4x +5y ≤200,x ≥0,y ≥0.目标函数为z =7x +12y . 作出可行域,如图阴影所示.当直线7x +12y =0向右上方平行移动时,经过M (20,24)时z 取最大值. ∴该企业生产A ,B 两种产品分别为20吨和24吨时,才能获得最大利润.线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题.【训练4】[解析] 本题考查线性规划以及数形结合思想.设生产甲产品x 桶,乙产品y 桶,则公司利润z =300x +400y ,x ,y 满足关系为⎩⎨⎧x ≥0y ≥0x +2y ≤122x +y ≤12,画出可行域如图阴影,由图可知z =100(3x +4y ),经过A 时取得最大值,由⎩⎪⎨⎪⎧x +2y =122x +y =12得A (4,4),∴x =4,y =4时, z 取最大值100(3×4+4×4)=2 800(元).。
二元一次不等式(组)与简单的线性规划问题练习题
1、画出下列二元不等式所表示的平面区域:21
03
x y x y +-≤-+
2、已知二次函数()f x 的图象过原点,且1(1)2(1)4f f -≤-≤≤≤,求(2)f -的取值范围。
3、求函数23z x y =+的最大值,式中的,x y 满足约束条件23240700
x y x y x y +-≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩
4、某公司的A ,B 两仓库至多可以分别调运出某型号的机器14台,8台。
甲地需要10台,乙地需要8台。
已知从A 仓库将1台机器运到甲地的运费为400元,运到乙地的运费为800元;B 仓库将1台机器运到甲地的运费为300元,运到乙地的运费为500元.问怎样安排调运方案,可使运输费用最少?
5、某厂拟生产甲、乙两种适销产品,每件销售收入分别为3千元、2千元.甲、乙两种产品都需要在A ,B 两种机床上加工,A ,B 两种机床上每加工一件甲种产品所需时间分别为1小时、2小时;每加工一件乙种产品所需时间分别为2小时、1小时.如果A ,B 两种机床每月有效使用时数分别为400小时、500小时。
如何安排生产,才能使销售总收入最大?
6、要将两种大小不同的钢板截成A ,B ,C 三种规格的小钢板,每张钢板可截得三种规格的小钢板的块数如下表所示:
如果至少需要A ,B ,C 三种规格的小钢板各15块,18块,27块,问分别截这两种钢板各多少张可以满足需要,且使所用两种钢板的张数最少?
二元一次不等式(组)与简单的线性规划问题练习题 答案
1、 2、 3、24 4、 5、 6、
二元一次不等式(组)与简单的线性规划问题练习题 答案
1、
2、 3、24 4、 5、 6、。
二元一次不等式(组)与简单的线性规划问题(作业)1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧ x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1 D.715 2.若x 、y 满足约束条件⎩⎪⎨⎪⎧ x +y≥1,x -y≥-1,2x -y≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( ) A .(-1,2) B .(-4,2) C .(-4,0] D .(-2,4)3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元4.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z=x+ay取得最小值的最优解有无数个,则a 的一个可能值为( )A .-3B .3C .-1D .15.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z 等于( )A .4 650元B .4 700元C .4 900元D .5 000元6.实数x ,y 满足不等式组⎩⎪⎨⎪⎧ y≥0,x -y≥0,2x -y -2≤0,则ω=y -1x +1的取值范围是________. 7.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为____元.8.已知实数x ,y 满足⎩⎪⎨⎪⎧(x -y +6)(x +y -6)≥01≤x≤4. (1)求x 2+y 2-2的取值范围;(2)求y x -3的取值范围.9.两类药片有效成分如下表所示,若要求至少提供12毫克阿司匹林,70毫克小苏打,28毫克可待因,问10.某工厂要制造A 种电子装置45台,B 种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2 m 2,可做A 、B 的外壳分别为3个和5个,乙种薄钢板每张面积3 m 2,可做A 、B 的外壳分别为6个,求两种薄钢板各用多少张,才能使总的面积最小.答 案1.A 2.B 3.B 4.A 5.C6.⎣⎢⎡⎦⎥⎤-1,13 7.2 300 8.(1)[16,114](2)⎝⎛⎦⎥⎤-∞,-52∪[2,+∞) 9.解 设A ,B 两种药品分别为x 片和y 片,则有,两类药片的总数为z=x+y ,两类药片的价格和为k=0.1x+0.2y.如图所示,作直线l :x+y=0,将直线l 向右上方平移至l1位置时,直线经过可行域上一点A ,且与原点最近.解方程组,得交点A 坐标.由于A 不是整点,因此不是z 的最优解,结合图形可知,经过可行域内整点且与原点距离最近的直线是x+y=11,经过的整点是(1,10),(2,9),(3,8),因此z 的最小值为11.药片最小总数为11片.同理可得,当x=3,y=8时,k 取最小值1.9,因此当A 类药品3片、B 类药品8片时,药品价格最低.10.解 设用甲种薄钢板x 张,乙种薄钢板y 张,则可做A 种产品外壳3x+6y 个,B 种产品外壳5x +6y 个,由题意可得⎩⎪⎨⎪⎧ 3x +6y≥45,5x +6y≥55,x≥0,y≥0,所有的薄钢板的总面积是z =2x +3y.可行性区域如图所示的阴影部分,其中l1:3x+6y=45;l2:5x+6y=55,l1与l2的交点为A(5,5),因目标函数z=2x+3y 在可行域上的最小值在区域边界的A(5,5)处取得,此时z 的最小值为2×5+3×5=25.即甲、乙两种板各5张,能保证制造A 、B 的两种外壳的用量,同时又能使用料总面积最小.。
《二元一次不等式(组)与简单的线性规划问题》练习卷«二元一次不等式〔组〕与复杂的线性规划效果»练习卷知识点:1、二元一次不等式:含有两个未知数,并且未知数的次数是的不等式.2、二元一次不等式组:由几个二元一次不等式组成的不等式组.3、二元一次不等式〔组〕的解集:满足二元一次不等式组的和的取值构成有序数对,一切这样的有序数对构成的集合.4、在平面直角坐标系中,直线,坐标平面内的点.①假定,,那么点在直线的上方.②假定,,那么点在直线的下方.5、在平面直角坐标系中,直线.①假定,那么表示直线上方的区域;表示直线下方的区域.②假定,那么表示直线下方的区域;表示直线上方的区域.6、线性约束条件:由,的不等式〔或方程〕组成的不等式组,是,的线性约束条件.目的函数:欲到达最大值或最小值所触及的变量,的解析式.线性目的函数:目的函数为,的一次解析式.线性规划效果:求线性目的函数在线性约束条件下的最大值或最小值效果.可行解:满足线性约束条件的解.可行域:一切可行解组成的集合.最优解:使目的函数取得最大值或最小值的可行解.同步1、不等式表示的平面区域在直线的〔〕A.上方且包括坐标原点B.上方且不含坐标原点C.下方且包括坐标原点D.下方且不含坐标原点2、不在表示的平面区域内的点是〔〕A.B.C.D.3、不等式表示直线〔〕A.上方的平面区域B.下方的平面区域C.上方的平面区域〔包括直线自身〕D.下方的平面区域〔包括直线自身〕4、原点和点在直线两侧,那么的取值范围是〔〕A.或B.或C.D.5、不等式组,表示的区域为,点,点,那么〔〕A.,B.,C.,D.,6、表示的平面区域内整点的个数是〔〕A.个B.个C.个D.个7、不等式组,所表示的平面区域图形是〔〕A.四边形B.第二象限内的三角形C.第一象限内的三角形D.不能确定8、点和在直线的两侧,那么的取值范围是〔〕A.B.C.D.9、不等式表示的区域在直线的〔〕A.右上方B.左上方C.右下方D.左下方10、不等式组表示的平面区域的面积是〔〕A.B.C.D.无量大11、不等式组表示的平面区域是〔〕A.B.C.D.12、不等式组表示的平面区域是〔〕A.B.C.D.13、不等式组表示的平面区域是一个〔〕A.三角形B.直角三角形C.梯形D.矩形14、在直角坐标系中,满足不等式的点的集合〔用阴影局部来表示〕的是〔〕A.B.C.D.15、点和点在直线的异侧,那么〔〕A.B.C.D.16、、满足约束条件,那么的最小值是〔〕A.B.C.D.17、某电脑用户方案运用不超越元的资金购置单价为元、元的样片软件和盒装磁盘,依据需求软件至少买片,磁盘至少买盒,那么不同的选购方式共有〔〕A.种B.种C.种D.种18、设为平面上以,,为顶点的三角形区域〔包括边界〕,那么的最大值与最小值区分是〔〕A.最大值,最小值B.最大值,最小值C.最大值,最小值D.最大值,最小值19、目的函数,将其看成直线方程时,的意义是〔〕A.该直线的横截距B.该直线的纵截距C.该直线纵截距的一半的相反数D.该直线纵截距的两倍的相反数20、某公司招收男职员名,女职员名,和须满足约束条件,那么的最大值是〔〕A.B.C.D.21、在平面直角坐标系中,不等式组,表示的平面区域的面积是〔〕A.B.C.D.22、点在直线的上方,那么的取值范围是〔〕A.B.C.D.23、假定,,且,那么的最小值是〔〕A.B.C.D.24、非负实数,满足且,那么的最大值是〔〕A.B.C.D.25、假定、满足约束条件,那么的取值范围是〔〕A.B.C.D.26、枝玫瑰与枝康乃馨的价钱之和大于元,枝玫瑰与枝康乃馨的价钱之和小于元,那么枝玫瑰的价钱与3枝康乃馨的价钱比拟的结果是〔〕A.枝玫瑰价钱高B.枝康乃馨价钱高C.价钱相反D.不确定27、点和点在直线的两侧,那么的取值范围是_____________________.28、原点在直线的①左侧,②右侧,③上方,④下方,其中正确判别的序号是____________________.32、求的最大值和最小值,使式中、满足约束条件,那么的最大值是__________,最小值是____________.33、设,满足约束条件,那么的最大值是_______________.34、设式中变量,满足,那么的最大值是_______________.35、某厂运用两种零件,装配两种产品,.该厂月消费才干最多为个,最多为个.最多为个,最多为个.组装需求个,个,组装需求个,个.列出满足消费条件的数学关系式,并画出相应的平面区域.36、、满足约束条件,区分确定、的值,使取得最大值和最小值.37、某运输公司接受了向抗洪抢险地域每天至少运送吨援助物资的义务,该公司有辆载重为吨的型卡车和辆载重为吨的型卡车,有名驾驶员,每辆卡车每天往复的次数为型卡车次,型卡车次,每辆卡车每天往复的本钱费型卡车为元,型卡车为元,请你给该公司分配车辆,使公司所花的本钱费最低.。
二元一次不等式(组)与简单的线性规划问题一、选择题1.(2018·天津高考理科·T2)同 (2018·天津高考文科·T2)设变量x,y满足约束条件则目标函数z=3x+5y的最大值为()A.6B.19C.21D.45【命题意图】本题是线性规划问题,考查考生对含有二元一次不等式约束条件和线性目标函数的规划问题的理解和应用数学手段解决实际问题的能力,考查数形结合思想.【解析】选C.在平面直角坐标系中画出可行域ABCD以及直线l:3x+5y=0,平移直线l,可知:当直线l过点C(2,3)时,z取得最大值为3×2+5×3=21.2.(2018·北京高考理科·T8)同 (2018·北京高考文科·T8)设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤时,(2,1)∉A【命题意图】本小题主要考查集合与线性规划的综合应用,意在考查转化与分析能力,培养学生的逻辑思维能力与转化思想,体现了逻辑推理、数学运算的数学素养.【解析】选D.(2,1)∈A,等价于解得a>,即(2,1)∈A,当且仅当a>,所以当且仅当a≤时,(2,1)∉A.二、填空题3.(2018·北京高考文科·T13)若x,y满足x+1≤y≤2x,则2y-x的最小值是.【命题意图】本小题主要考查线性规划,属容易题,意在考查线性规划求最值,培养学生的逻辑思维能力与数形结合思想,体现了逻辑推理、数学建模、数学运算的数学素养.【解析】x+1≤y≤2x,等价于不等式组画出可行域如图,令z=2y-x,化为斜截式得y=x+z,直线斜率为,在y轴上的截距为z,直线越往下,z越小,z越小,由得最优解为(1,2),所以z=2y-x的最小值为3.答案:34.(2018·浙江高考T12)若x,y满足约束条件则z=x+3y的最小值是,最大值是.【命题意图】考查线性规划的基础知识.【解析】由线性约束条件得可行域如图所示,求得A点坐标为(4,-2),B点坐标为(2,2),所以z min=4+3×(-2)=-2, z max=2+3×2=8.答案:-285.(2018·全国卷I高考理科·T13)同(2018·全国卷I高考文科·T14)若x,y满足约束条件则z=3x+2y的最大值为.【解析】画出可行域如图阴影部分所示(含边界),可知目标函数过点(2,0)时取得最大值,z max=3×2+2×0=6.答案:66.(2018·全国卷II高考理科·T14)同 (2018·全国卷II高考文科·T14)若x,y满足约束条件则z=x+y的最大值为.【命题意图】本题考查了线性规划的知识及运用,重点考查了学生的作图和运算求解能力.【解析】画出可行域如图,由z=x+y得y=-x+z,作平行于y=-x的一系列平行线,可以得到过点A时,纵截距z最大,由x-2y+3=0与x=5解得A(5,4)代入z=x+y得其最大值为9.答案:97.(2018·全国Ⅲ高考文科·T15)若变量x,y满足约束条件则z =x+y的最大值是.【命题意图】本小题主要考查线性规划,属容易题,意在考查线性规划求最值,培养学生的逻辑思维能力与数形结合思想,体现了逻辑推理、数学建模、数学运算的数学素养.【解析】作出可行域由图可知目标函数在直线x-2y+4=0与x=2的交点(2,3)处取得最大值3.答案:38.(2018·北京高考理科·T12)若x,y满足x+1≤y≤2x,则2y-x的最小值是.【命题意图】本小题主要考查线性规划,属容易题,意在考查线性规划求最值,培养学生的逻辑思维能力与数形结合思想,体现了逻辑推理、数学建模、数学运算的数学素养.【解析】x+1≤y≤2x,等价于不等式组画出可行域如图,令z=2y-x,化为斜截式得y=x+z,直线斜率为,在y轴上的截距为z,直线越往下,z越小,z越小,由得最优解为(1,2),所以z=2y-x的最小值为3.答案:3。
一、选择题1.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤1,2x +y ≤5,x ≥1,则z =3x +y 的最大值为( )A .4B .5C .6D .7解析:在坐标平面内画出题中的不等式组表示的平面区域及直线3x +y =0,平移该直线,当平移到经过该平面区域内的点B (2,1)时,相应直线在x 轴上的截距达到最大,此时z =3x +y 取得最大值,最大值是7.答案:D2.(2011·山东高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y+1的最大值为( )A .11B .10C .9D .8.5解析:作出不等式组表示的可行域,如图阴影部分所示. 又z =2x +3y +1可化为y =-23x +z 3-13,结合图形可知z =2x +3y +1在点A 处取得最大值.由⎩⎪⎨⎪⎧ x +2y -5=0,x -y -2=0,得⎩⎪⎨⎪⎧x =3,y =1,故A (3,1). 此时z =2×3+3×1+1=10. 答案:B3.若z =mx +y 在平面区域⎩⎪⎨⎪⎧y -2x ≤0,2y -x ≥0,x +y -3≤0上取得最小值时的最优解有无穷多个,则z的最小值是( )A .-1B .1C .0D .0或±1解析:画出平面区域,可以判断出z 的几何意义是直线mx +y -z =0在y 轴上的截距,只有直线mx +y -z =0与直线x -2y =0重合时,才符合题意,此时,相应z 的最小值为0.答案:C4.(2012·海淀模拟)P (2,t )在不等式组⎩⎪⎨⎪⎧x -y -4≤0,x +y -3≤0表示的平面区域内,则点P (2,t )到直线3x +4y +10=0距离的最大值为( )A .2B .4C .6D .8解析:如图所示,结合图形可知点A (2,1)到已知直线距离最大,则最大值为|3×2+4×1+10|32+42=4.答案:B5.(2012·郑州模拟)设双曲线4x 2-y 2=1的两条渐近线与直线x =2围成的三角形区域(包含边界)为D ,P (x ,y )为D 内的一个动点,则目标函数z =12x -y 的最小值为( )A .-2B .-322C .0D .-522解析:双曲线4x 2-y 2=1的两条渐近线方程为2x -y =0,2x +y =0,与直线x =2围成的三角形区域如图中的阴影部分所示,所以目标函数z =12x -y 在点P (2,22)处取得最小值为z =122-22=-322.答案:B 二、填空题6.如图,点(x ,y )在四边形ABCD 内部和边界上运动,那么2x -y 的最小值为________.解析:令b =2x -y ,则y =2x -b ,如图所示,作斜率为2的平行线y =2x -b ,当经过点A 时,直线在y 轴上的截距最大,为-b ,此时b =2x -y 取得最小值,为b =2×1-1=1.答案:17.(2012·西安模拟)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域内的面积等于2,则a 的值为________.解析:不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0表示的区域为图中阴影部分.又因为ax -y +1=0恒过定点(0,1), 当a =0时,不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0.所表示的平面区域的面积为12,不合题意;当a <0时,所围成的区域面积小于12,所以a >0,此时所围成的区域为三角形,其面积为S =12×1×(a +1)=2,解之得a =3.答案:3 三、解答题8.若点P 在区域⎩⎪⎨⎪⎧2y -1≥0,x +y -2≤0,2x -y +2≥0内,求点P 到直线3x -4y -12=0距离的最大值.解:不等式组⎩⎪⎨⎪⎧2y -1≥0,x +y -2≤0,2x -y +2≥0所表示的可行域如图所示,当目标函数z =3x -4y 所表示的平行直线系过点A (0,2)时,目标函数取得最小值,此时对应的直线方程为3x -4y +8=0,其与直线3x -4y -12=0的距离为d =8+1232+42=4,即得点P 到直线3x -4y -12=0距离的最大值为4.9.变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx ,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围.解:由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0.x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0 解得A (1,225). 由⎩⎪⎨⎪⎧x =1,x -4y +3=0解得C (1,1). 由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0解得B (5,2). (1)∵z =y x =y -0x -0.∴z 的值即是可行域中的点与原点O 连线的斜率. 观察图形可知z min =k OB =25.(2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29. ∴2≤z ≤29.10.(2012·泰安模拟)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元.那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解:设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54.即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.让目标函数表示的直线2.5x +4y =z 在可行域上平移, 由此可知z =2.5x +4y 在B (4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.。
课时分层训练(三十三)二元一次不等式(组)与简单的线性规划问题
A 组 基础达标 (建议用时:30分钟)
一、选择题
1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )
【导学号:31222205】
A .(-24,7)
B .(-7,24)
C .(-∞,-7)∪(24,+∞)
D .(-∞,-24)∪(7,+∞)
B [根据题意知(-9+2-a )·(12+12-a )<0, 即(a +7)(a -24)<0,解得-7<a <24.]
2.不等式组⎩⎪⎨⎪
⎧
x ≥0,x +3y ≥4,
3x +y ≤4
所表示的平面区域的面积等于( )
【导学号:31222206】
A.3
2 B.2
3 C.43
D.34
C [平面区域如图中阴影部分所示.
解⎩
⎪⎨
⎪⎧
x +3y =4,3x +y =4得A (1,1),
易得B (0,4),C ⎝ ⎛⎭
⎪⎫0,43, |BC |=4-43=83,∴S △ABC =12×83×1=4
3.]
3.(2016·北京高考)若x ,y 满足⎩⎪⎨⎪
⎧
2x -y ≤0,x +y ≤3,
x ≥0,则2x +y 的最大值为( )
A .0
B .3
C .4
D .5
C [根据题意作出可行域如图阴影部分所示,平移直线y =-2x ,当直线平移到虚线处
时,目标函数取得最大值,由⎩
⎪⎨
⎪⎧
2x -y =0,
x +y =3,可得A (1,2),此时2x +y 取最大值为2×1+2
=4.]
4.(2017·广州综合测试(二))不等式组⎩⎪⎨⎪
⎧
x -y ≤0,x +y ≥-2,
x -2y ≥-2的解集记为D ,若(a ,b )∈
D ,则z =2a -3b 的最大值是( )
A .1
B .4
C .-1
D .-4
A [由题意得a ,b 满足约束条件⎩⎪⎨⎪
⎧
a -
b ≤0,a +b ≥-2,
a -2
b ≥-2,
以a 为横轴,b 为纵轴建立平面
直角坐标系,则不等式组表示的平面区域为以(-2,0),(-1,-1),(2,2)为顶点的三角形区域(包含边界),
由图易得当目标函数z =2a -3b 经过平面区域内的点(-1,-1)时,z =2a -3b 取得最大值z max =2×(-1)-3×(-1)=1,故选A.]
5.(2017·贵阳适应性考试(二))若函数y =kx 的图象上存在点(x ,y )满足约束条件
⎩⎪⎨⎪
⎧
x +y -3≤0,x -2y -3≤0,x ≥1,
则实数k 的最大值为( )
A .1
B .2 C.3
2
D.12
B [约束条件对应的平面区域是以点(1,2),(1,-1)和(3,0)为顶点的三角形,当直线
y =kx 经过点(1,2)时,k 取得最大值2,故选B.]
二、填空题
6.设变量x ,y 满足约束条件⎩⎪⎨⎪
⎧
x ≥1,x +y -4≤0,
x -3y +4≤0,
则目标函数z =3x -y 的最大值为
__________.
【导学号:31222207】
4 [根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.]
7.(2016·江苏高考)已知实数x ,y 满足⎩⎪⎨⎪
⎧
x -2y +4≥0,2x +y -2≥0,
3x -y -3≤0,
则x 2+y 2
的取值范围是
________.
⎣⎢⎡⎦
⎥⎤45,13 [根据已知的不等式组画出可行域,如图阴影部分
所示,则(x ,y )为阴影区域内的动点.d =x 2
+y 2
可以看做坐标原点O 与可行域内的点(x ,y )之间的距离.数形结合,知d 的最大值是OA 的长,d 的最小值是点O 到直线2x +y -2=0的距离.由
⎩
⎪⎨
⎪⎧
x -2y +4=0,3x -y -3=0可得A (2,3),
所以d max =22
+32
=13,d min =
|-2|22
+1
2
=2
5
,所以d 2
的最小值为45,最大值为13,所
以x 2+y 2
的取值范围是⎣⎢⎡⎦
⎥⎤45,13.]
8.(2016·郑州第二次质量预测)已知实数x ,y 满足⎩⎪⎨⎪
⎧
2x +y ≥0,x -y ≥0,
0≤x ≤a ,设b =x -2y ,
若b 的最小值为-2,则b 的最大值为__________.
10 [画出可行域,如图阴影部分所示.由b =x -2y ,得y =1
2x
-b
2.易知在点(a ,a )处b 取最小值,故a -2a =-2,可得a =2.在点(2,-4)处b 取最大值,于是b 的最大值为2+8=10.]
三、解答题
9.若直线x +my +m =0与以P (-1,-1),Q (2,3)为端点的线段不相交,求m 的取值范围.
【导学号:31222208】
[解] 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,5分
则点P ,Q 在同一区域内,于是⎩
⎪⎨
⎪⎧
-1-m +m >0,
2+3m +m >0,或⎩
⎪⎨
⎪⎧
-1-m +m <0,
2+3m +m <0,
所以m 的取值范围是m <-1
2
.12分
10.若x ,y 满足约束条件⎩⎪⎨⎪
⎧
x +y ≥1,x -y ≥-1,
2x -y ≤2.
(1)求目标函数z =12x -y +1
2
的最值;
(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.
[解] (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).2分
平移初始直线12x -y +1
2=0,
过A (3,4)取最小值-2, 过C (1,0)取最大值1, 所以z 的最大值为1, 最小值为-2.6分
(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a
2<2,解得-4<a <2.10
分
故所求a 的取值范围为(-4,2).12分
B 组 能力提升 (建议用时:15分钟)
1.(2015·重庆高考)若不等式组⎩⎪⎨⎪
⎧
x +y -2≤0,x +2y -2≥0,
x -y +2m ≥0
表示的平面区域为三角形,且其
面积等于4
3
,则m 的值为( )
A .-3
B .1
C.43
D .3
B [作出可行域,如图中阴影部分所示,易求A ,B ,
C ,
D 的坐标分别为A (2,0),B (1-m,1+m ),C ⎝
⎛⎭
⎪⎫2-4m 3,2+2m 3,D (-2m,0).
S △ABC =S △ADB -S △ADC =12|AD |·|y B -y C |=12
(2+2m )⎝
⎛⎭⎪⎫1+m -
2+2m 3=(1+m )⎝
⎛⎭⎪⎫1+m -23=43,
解得m =1或m =-3(舍去).]
2.(2017·东北三省三校二模)已知实数x ,y 满足条件⎩⎪⎨⎪
⎧
x ≥1,x +y ≤2,
2x -y -3≤0,
则目标函
数z =y
x
的最大值为__________.
1 [不等式组对应的可行域是以点(1,1),(1,-1)⎝ ⎛⎭
⎪⎫53,13为顶点的三角形及其内部,z =y x 可看作可行域内的点与原点所连线的斜率,当目标函数z =y x
经过点(1,1)时,z 取得最大值1.]
3.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? [解] (1)依题意每天生产的伞兵个数为100-x -y , 所以利润ω=5x +6y +3(100-x -y )=2x +3y +300.5分 (2)约束条件为
⎩⎪⎨⎪
⎧
5x +7y +4 100-x -y ≤600,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N ,。