新人教版八年级下学期数学第十六章二次根式单元测试题
- 格式:doc
- 大小:220.50 KB
- 文档页数:3
2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a4-a 1a;(2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .19.(本题满分10分 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x 2+2的有理化因式是1+x 2+2. (2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如: 11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2.【知识理解】(1)填空:2x 的有理化因式是________; (2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n .参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是(D)A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( C)A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( C) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022【解析】先求出a 1,a 2,a 3,…,a n 的值,代入原式利用公式1n (n +1)=1n -1n +1进行化简与计算,即可求解. 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-52__. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3; 解:原式=⎝⎛⎭⎪⎫33-233÷3=73. (2)20.75+12-|3-2|; 解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224; 解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a 1a ; 解:原式=2a +12a - a =32a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a . 解:原式=⎝⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a =-1623. 19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a +2a 2-6a +9a =-2 022.解:(1)小亮. (2)∵a =-2 022,∴a +2a 2-6a +9=a +2(a -3)2=a +2|a -3| =a +2(3-a)=-a +6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm3).22.(本题满分10分)先化简,再求值.⎝ ⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3. 解:原式=6xy +3xy -4xy -6xy=-xy , 当x =32,y =3时,原式=-32×3=-322. 23.(本题满分12分) 已知x =3+2,y =3-2,求:(1)x 2-y 2的值;(2)x y +y x的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22, ∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1, 则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10.24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h 5(不考虑风速的影响). (1)求从40 m 高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x 的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________. 【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n. 解:(1)∵2x ×x =2x ,∴2x 的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6. ②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n +1-n (n +1+n )(n +1-n ), =2-1+3-2+2-3+…+n +1-n ,=n +1-1.。
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
《第十六章二次根式》单元测试题一、选择题(本大题共10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一项符合题意)1.要使代数式x +1x -1有意义,则x 的取值范围是( ) A .x ≥-1且x ≠1 B .x ≠1C .x >-1且x ≠1 D .x ≥-1 2.下列各等式成立的是( )A .(-3)2=-3 B.2-2=-2C .(5 3)2=15 D.(-3)2=33.下列运算正确的是( )A.2+3=6B.3×2=6C.()3-12=3-1 D.52-32=5-3 4.计算412+3 13-8的结果是( ) A.3+2B.3C.33D.3- 2 5.若a =2 2+3,b =2 2-3,则下列等式成立的是( ) A .ab =1 B .ab =-1C .a =b D .a =-b6.已知k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n7.实数a ,b 在数轴上对应点的位置如图1所示,且|a |>|b |,则化简a 2-|a +b |的结果为( )图1A .2a +bB .-2a +bC .2a -bD .b 8.若y =x -2+2-x3-3,则(x +y )x 的值为( )A .2B .-3C .7-4 3D .7+4 39.一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定10.按图2所示的程序计算,若开始输入的x 值为2,则最后输出的结果是( )图2A .14B .16C .8+5 2D .14+ 2二、填空题(本大题共7小题,每小题3分,共21分)11.若最简二次根式a 与-32a -5能够合并,则a =________. 12.若整数x 满足|x |≤3,则使7-x 为整数的x 的值为________. 13.计算:8-2(3-2)0+⎝⎛⎭⎫12-1=_________.14.当a =15时,代数式2a -3-5a +7a +3的值为________. 15.计算:(54-1496)÷27=________.16.已知x =3+1,y =3-1,则x 2+2xy +y 2=________. 17.若a =2+1,则a 3-5a +2019=________. 三、解答题(本大题共5小题,共49分) 18.(9分)计算: (1)20+55-13×12; (2)512÷1550×1532;(3)(3 2-1)(1+3 2)-(3 2-1)2.19.(8分)已知a =2-2,b =2+2,求a 3b +a 2b 2a 2+2ab +b 2÷a 2-aba 2-b 2的值.20.(10分)已知x =7+4 3,y =-7+4 3,求下列各式的值. (1)1x +1y ;(2)x y +y x .21.(10分)若无理数A 的整数部分是a ,则它的小数部分可表示为A -a .例如:π的整数部分是3,因此其小数部分可表示为π-3.若x 表示47的整数部分,y 表示它的小数部分,求代数式(47+x )y 的值.22.(12分)一个三角形三边的长分别为a ,b ,c ,设p =12(a +b +c ),根据海伦公式S =p (p -a )(p -b )(p -c )可以求出这个三角形的面积.若a =2,b =3,c =2 2,求: (1)三角形的面积S ; (2)长为c 的边上的高h .详解详析1.[解析] A 要使代数式有意义,应满足⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1且x ≠1.2.[解析] D 选项A 的被开方数为负数,无意义;2-2=122=⎝⎛⎭⎫122=12;()5 32=52×()32=25×3=75;()-32=|-3|=3.3.[解析] B A 项,2+3已是最简形式,不能再合并,故错误; B 项,3×2=6,故正确;C 项,()3-12=(3)2-2×3×1+1=3-2 3+1=4-2 3,故错误; D 项,52-32=16=42=4,故错误.故选B. 4.[解析] B 412+3 13-8=4×22+3×33-2 2= 3. 5.[解析] B ab =(2 2+3)(2 2-3)=(2 2)2-32=8-9=-1. 故选B. 6.[解析] D135=k 15=15×9=3 15,所以k =3;450=15m =15×15×2=15 2,所以m =2;180=6n =36×5=6 5,所以n =5.所以m <k <n .7.[答案] D8.[解析] C 由二次根式有意义的条件,得⎩⎪⎨⎪⎧x -2≥0,2-x ≥0,解得x =2.于是y =- 3.所以(x+y )x =(2-3)2=7-4 3.故选C.9.[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,5 3=75,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.10.[解析] C 将2代入x (x +1)运算:2(2+1)=2+ 2.∵2+2<15,∴将2+2再次代入x (x +1)运算:(2+2)(2+2+1)=(2+2)(3+2)=8+5 2.∵8+5 2>15,∴将8+5 2输出.故选C.11.[答案] 5[解析] 由题意,知a 与-3 2a -5的被开方数相同,所以a =2a -5,解得a =5.12.[答案] -2或3[解析] 当x 取-2或3时,原式的值为整数,分别等于3或2. 13.[答案] 2+2[解析] 先把零指数幂和负整数指数幂按公式a 0=1(a ≠0),a -p =1a p (a ≠0)化简,8-2(3-2)0+⎝⎛⎭⎫12-1=2 2-2+2=2+2.14.[答案] 4 3[解析] 将a =15代入代数式得27-75+108,化简结果为4 3. 15.[答案]2 23[解析] 原式=(3 6-14×4 6)÷3 3=2 6÷3 3=2 23.16.[答案] 12[解析] 由x =3+1,y =3-1,得x +y =2 3,∴x 2+2xy +y 2=(x +y )2=(2 3)2=4×3=12.17.[答案] 2021[解析] ∵a 2=(2+1)2=3+2 2,∴原式=a (a 2-5)+2019=(2+1)(3+2 2-5)+2019=2(2+1)(2-1)+2019=2+2019=2021.18.解:(1)原式=2 5+55-33×2 3=3-2 =1.(2)原式=⎝⎛⎭⎫5×5×1512×150×32=5 36100=3.(3)方法一:原式=(3 2)2-12-[(3 2)2-2×3 2+12] =(3 2)2-1-(3 2)2+6 2-1 =6 2-2.方法二:原式=(3 2-1)[(1+3 2)-(3 2-1)] =(3 2-1)×2 =6 2-2.19.解:a 3b +a 2b 2a 2+2ab +b 2÷a 2-ab a 2-b 2=a 2b (a +b )(a +b )2·(a +b )(a -b )a (a -b )=ab ,当a =2-2,b =2+2时, 原式=(2-2)(2+2)=2.20.解:∵x =7+4 3,y =-7+4 3, ∴x +y =(7+4 3)+(-7+4 3) =7+4 3-7+4 3=8 3, xy =(7+4 3)(-7+4 3) =(4 3)2-72=48-49=-1. (1)1x +1y =x +y xy =8 3-1=-8 3. (2)x y +y x =x 2+y 2xy =(x +y )2-2xy xy=(8 3)2-2×(-1)-1=-194.21.[解析] 解决该问题的关键在于确定出47的整数部分,然后再表示出它的小数部分,最后代入代数式求值.解:∵6<47<7, ∴47的整数部分为6, 即x =6,则47的小数部分y =47-6,∴(47+x )y =(47+6)(47-6)=(47)2-62=47-36=11. 22.解:(1)p =12(2+3+2 2)=32(2+1),p -a =3+22,p -b =32(2-1),p -c =3-22,S =p (p -a )(p -b )(p -c )=32(2+1)×3+22×32(2-1)×3-22=347.(2)∵S =12ch ,∴h =2S c =327÷2 2=3814.。
【人教版八年级数学(下)单元测试】第十六章 二次根式单元测试(题数:20道 测试时间:45分钟 总分:100分) 班级:________ 姓名:________ 得分:________一、单选题(每小题3分,共24分) 1.要使式子52xx +有意义,则x 的取值范围是( ) A. 2x ≠B. 2x >-C. 2x <-D. 2x ≠-2.下列二次根式: ()112; ()222; ()233; ()427.能与3合并的是( ) A. ()1和()4B. ()2和()3C. ()1和()2D. ()3和()43.下列各式计算正确的是( ) A.633-= B. 1236⨯= C.3535+= D. 1025÷=4.把45220化成最简二次根式的结果是( ) A.32B.34C.52D. 255.计算(3+2)2018(3–2)2019的结果是( ) A. 2+3B.3–2C. 2–3D.36.若a b +与a -b 互为倒数,则( ) A. a =b -1B. a =b +1C. a +b =1D. a +b =-17.若3,m ,5为三角形三边,化简: ()222-)8m m --(得( ) A. -10B. -2m +6C. -2m -6D. 2m -108.若220x x --=,则()2222313x x xx -+--+的值等于( )A.233B.33C.3D.3或33二、填空题(每小题4分,共28分) 9.当x ________ 时,式子31-x 有意义10.若y =3x -+3x -+2,则x y =____.11.若最简二次根式243a a b -+与a b -是同类根式,则2a b -=__________. 12.当x =2+3时,式子x 2﹣4x +2017=________. 13.已知三角形三边的长分别为27cm,12cm, 48cm ,则它的周长为_____cm.14.如果一个直角三角形的面积为8,其中一条直角边为10,求它的另一条直角边____. 15.如图,将6,3,2,,1按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(15,2)表示的两数之积是 .三、解答题(共48分) 16.(10分)化简: (1)1262⨯ (2)1220-555+17.(8分)计算: ()()()551515231523-++-18.(8分)先化简,再求值:已知82a b ==,,试求144aa b b a +-+的值.19.(10分)已知长方形的长a =1322,宽b =1183. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.20.(12分)(1)已知x =512-,y =512+,求y x x y +的值;(2)已知x ,y 是实数,且满足y <2x -+2x -+14,化简: 244y y -+-(x -2+2)2.参考答案1.B【解析】依题意得:x +2>0,解得x >-2. 故选B . 2.A【解析】(1)12=23;(2)22=2;(3)26=33;(4)2733=. ∴(1)(4)能与3合并, 故选A . 3.B【解析】A 选项中,∵63、不是同类二次根式,不能合并,∴本选项错误; B 选项中,∵123=36=6⨯,∴本选项正确;C 选项中,∵35=35⨯,而不是等于3+5,∴本选项错误;D 选项中,∵10102=52÷≠,∴本选项错误; 故选B. 4.B 【解析】45353.4220225==⨯ 故选B. 5.B【解析】(3+2)2018(3–2)2018(3–2) =[(3+2)(3–2)]2018(3–2) =(-1)2018(3–2) =3–2. 故选B. 6.B【解析】根据倒数的定义得:()()1.a ba b a b +-=-=即 1.a b =+ 故选B.7.D【解析】根据题意,得:2<m <8, ∴2−m <0,m −8<0,∴原式=m −2+m −8=2m −10.故选D. 8.A【解析】∵220x x --=, ∴22x x -=,∴原式=()()()22+23332232+234323==632133+33+3)33-+==-+-(.故选A. 9.x ≥0且x ≠9【解析】由题意得,030≠-≥x x 且,解得.90≠≥x x 且 10.9【解析】根据题意得: 3030,x x ≥-≥⎧⎨⎩- 解得: 3.x =当3x =时, 2,y =239.y x ∴==故答案为: 9. 11.9【解析】∵243a a b -+是最简二次根式, ∴242a -=, ∴3a =3a b a b -=+22b a =- 3b a =-=-,∴()2233639a b -=⨯--=+=. 故答案为:9. 12.2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x 2﹣4x +2017=(x ﹣2)2+2013 =(3)2+2013=3+2013=2016. 故答案是:2016.【解析】三角形的周长为: 27124833234393++=++=.故本题应填93. 14.1.610【解析】根据三角形的面积公式可直角求出另一条直角边. 解:设直角三角形的另一直角边为x ,∵一个直角三角形的面积为8,其中一条直角边为10,11082x ∴⋅=, 161610810.5101010x ∴===⨯即它的另一条直角边是810.515.6【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m -1排有(m -1)个数,从第一排到(m -1)排共有:1+2+3+4+…+(m -1)个数((1)2m m-),根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.因此可由(5,4)可知是第5排第4个数,是2,然后由(15,2)可知是第15排第2个数,因此可知(1)2m m -=14152⨯=105,所以可得是第105+2个数,因此可知107÷4=26……3,因此这个数为3,这两个数的积为6. 16.(1) 6;(2) 45【解析】 (1)根据二次根式的乘法法则计算分子后化简,再约分即可;(2)把各项化简成最简二次根式后合并即可. 解:(1)原式=236218626.222⨯=== (2)原式=45-5 +5 =45. 17.853-【解析】第一项运用乘法分配律进行计算;第二项运用平方差公式进行计算即可. 解:原式=553-+15-1218.32ab +,42. 【解析】先把二次根式化成最简二次根式,然后合并同类二次根式,再代入求值. 解:1423422a a a ab b a b b b a +-+=+-+=+, 当82a b ==,时, 原式832232422=+=+=. 19.(1)62;(2)长方形的周长大于正方形的周长. 【解析】(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 解:(1) ()1111223218242322326 2.2323a b ⎛⎫⎛⎫+=⨯+=⨯⨯+⨯=⨯=⎪ ⎪⎝⎭⎝⎭∴长方形的周长为6 2. . (2)长方形的面积为:111132184232 4.2323⨯=⨯⨯⨯= 正方形的面积也为4.边长为4 2.= 周长为: 428.⨯=628.>∴长方形的周长大于正方形的周长. 20.(1)3;(2)-y【解析】()1先根据已知条件求出,.x y xy + 再化简所求式子,整体代入即可.()2根据二次根式有意义的条件,可求出x 的值和y 的范围,再结合求出的范围进行化简.解:()15151,,22x y -+== 5, 1.x y xy ∴+==()()22225212 3.1x y xy y x x yx y xy xy-⨯+-++====(2) 由已知,得20{20,x x -≥-≥ 2x ∴= ,1122.44y x x ∴<-+-+= 即14y <, 则20y -<, 原式()()22222222.y y y =---+=--=-。
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112;④a a a =-23。
做错的题是( )A. ①B. ②C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=aB. 34=a C. 1=a D. 1-=a 10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。
12.2)52(-=__________。
13. 若m < 0,则332m m m ++=_______________。
14.231-与23+的关系是____________。
15. 若35-=x ,则562++x x 的值为___________________。
16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。
人教版八年级数学下册 第十六章 二次根式 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分) 1.下列的式子一定是二次根式的是( ) A .B .C .D .2.当x 分别取-3,-1,0,2时,使二次根式值为有理数的是( )A . -3B . -1C . 0D . 2 3.实数x 取任何值,下列代数式都有意义的是( ) A . B . C .D .4.式子y =中x 的取值范围是( )A .x ≥0B .x ≥0且x ≠1C . 0≤x <1D .x >1 5.化简得( )A . ±4B . ±2C . 4D . -4 6.下列计算正确的是( ) A . 3×4=12B .=×=(-3)×(-5)=15 C . -3==6 D .==57.计算÷÷的结果是( )A .B .72C .D .8.下列式子中,属于最简二次根式的是( ) A . B .C .D .9.计算-9的结果是( )A .B . -C . -D .10.对于任意的正数m 、n 定义运算※为:m ⊗n =计算(3⊗2)+(8⊗12)的结果为()A .+B. 2C.+3D.-二、填空题(共8小题,每小题3分,共24分)11.在,,,,中是二次根式的个数有________个.12.若实数a满足=2,则a的值为________.13.若二次根式有意义,则x的取值范围是________.14.已知实数a在数轴上的位置如图,则化简|1-a|+的结果为________.15.计算×结果是______________.16.已知x=3,y=4,z=5,那么÷的最后结果是____________.17.若二次根式是最简二次根式,则最小的正整数a=__________.18.设的整数部分为a,小数部分为b,则的值等于________.三、解答题(共8小题,每小题8分,共66分)19.(6分)判断下列各式,哪些是二次根式,哪些不是,为什么?,-,,,(a≥0),.20. (8分)计算(1)(2+)(2-);(2)(-)-(+).21. (8分)先化简,再求值: (a -)(a +)-a (a -6),其中a =+21.22. (8分)已知a ,b 为等腰三角形的两条边长,且a ,b 满足b =++4,求此三角形的周长.23. (8分)若实数a 、b 、c 在数轴上的对应点如图所示,试化简:-+|b +c |+|a -c |.24. (8分)有这样一道题: 计算+-x 2(x >2)的值,其中x =1 005,某同学把“x =1 005”错抄成“x =1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.25. (10分)观察下列各式及其验证过程2=.验证:2=×====;3=.验证:3====.按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证.26. (10分)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==(一)==(二)===-1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====-1.(四)(1)请用不同的方法化简.①参照(三)式得=__________;②参照(四)式得=__________.(2)化简:+++…+答案解析1.【答案】C【解析】A.当x=0时,-x-2<0,无意义,错误;B.当x=-1时,无意义;故本选项错误;C.∵x2+2≥2,∴符合二次根式的定义;正确;D.当x=±1时,x2-2=-1<0,无意义;错误;故选C.2.【答案】D【解析】当x=-3时,=,故此数据不合题意;当x=-1时,=,故此数据不合题意;当x=0时,=,故此数据不合题意;当x=2时,=0,故此数据符合题意;故选D.3.【答案】C【解析】A.由6+2x≥0,得x≥-3,所以,x<-3时二次根式无意义,错误;B.由2-x≥0,得x≤2,所以,x>2时二次根式无意义,错误;C.∵(x-1)2≥0,∴实数x取任何值二次根式都有意义,正确;D.由x+1≥0,得x≥-1,所以,x<-1二次根式无意义,又x=0时分母等于0,无意义,错误.4.【答案】B【解析】要使y=有意义,必须x≥0且x-1≠0,解得x≥0且x≠1,故选B.5.【答案】C【解析】=4.故选C.6.【答案】D【解析】3×4=24,A错误;==3×5=15,B错误;-3=-=-,C错误;==5,D正确.故选D.7.【答案】A【解析】原式==.故选A.8.【答案】A【解析】是最简二次根式,A正确;=3,不是最简二次根式,B不正确;=2,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确,故选A.9.【答案】B【解析】-9=2-9×=2-3=-.故选B.10.【答案】C【解析】(3⊗2)+(8⊗12)=-++=-+2+2=+3.故选C.11.【答案】2【解析】当a<0时,不是二次根式;当a≠0,b<0时,a2b<0,不是二次根式;当x<-1即x+1<0时,不是二次根式;∵x2≥0,∴1+x2>0,∴是二次根式;∵3>0,∴是二次根式.故二次根式有2个.12.【答案】5【解析】平方,得a-1=4.解得a=5.13.【答案】x≥1【解析】根据二次根式有意义的条件,x-1≥0,∴x≥1.14.【答案】1-2a【解析】由数轴可得出:-1<a<0,∴|1-a|+=1-a-a=1-2a.15.【答案】2【解析】原式===2.16.【答案】【解析】当x=3,y=4,z=5时,原式=÷===.17.【答案】2【解析】二次根式是最简二次根式,则最小的正整数a=2.18.【答案】7-12【解析】∵3<<4,∴a=3,b=-3,∴===7-12.19.【答案】解,-,(a≥0),符合二次根式的形式,故是二次根式;,是三次根式,故不是二次根式;,被开方数小于0,无意义,故不是二次根式.【解析】根据形如(a ≥0)的式子是二次根式,可得答案.20.【答案】解 (1)原式=(2)2-()2=20-3 =17; (2)原式=2---=-.【解析】(1)利用平方差公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可. 21.【答案】解原式=a 2-3-a 2+6a =6a -3,当a =+21时,原式=6+3-3=6.【解析】先理由平方差公式,再化简.22.【答案】解 ∵,有意义,∴∴a =3, ∴b =4,当a 为腰时,三角形的周长为3+3+4=10; 当b 为腰时,三角形的周长为4+4+3=11.【解析】根据二次根式有意义:被开方数为非负数可得a 的值,继而得出b 的值,然后代入运算即可.23.【答案】解 根据题意,得a <b <0<c ,且|c |<|b |<|a |, ∴a +b <0,b +c <0,a -c <0,则原式=|a |-|a +b |+|b +c |+|a -c |=-a +a +b -b -c -a +c =-a .【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果.24.【答案】解原式=+-x2=+-x2=-x2=-2因为化简结果与x的值无关,所以该同学虽然抄错了x的值,计算结果却是正确的.【解析】将二次根式进行分母有理化,根据题中给出的条件准确计算,计算结果是正确的,因为通过根式化简结果与x的值无关.25.【答案】解4=;理由:4====.【解析】观察上面各式,可发现规律如下规律:n=,按照规律计算即可26.【答案】解(1)===-,===-.(2)原式=+++…+=+…+=.【解析】仿照题中的方法将原式分母有理化即可.。
一、选择题(每题2分,共20分) 1. 下列各式中一定是二次根式的是( )A.B.C. 12+xD.2.则x 应满足的条件是()A.52x =B.52x <C. x ≥52D. x ≤523. 当x=3时,在实数范围内没有意义的是( )A.B.C. D.4.得()A.- B. C. 18 D. 65.=成立的条件是( ) A.1a ≥-B. 1a ≤C. 1<1a -≤D.11a -≤≤6. 下列各式计算正确的是( ) A.= B. =C.= D.=7. 若A = ) A.23a +B. 22(3)a +C.22(9)a +D.29a +8. )A.152B. ±C.52D.9. = )A. 0x ≥B. <1xC. 0<1x ≤D.x ≥且1x ≠10. 当3a <- )A. 32a +B. 32a --C. 4a -D. 4a -二、填空题(每题3分,共24分)11. 如果是二次根式,则x的取值范围是 。
12. 若<0n = 。
13. 化简= ,= ,= 。
= 。
14. 计算15. 已知126=,则a=。
416. 若m= 。
17. 2a=-成立的条件是。
18. 若<n m= 。
三、解答题(共56分)19. 分别指出x取哪些实数时,式子有意义。
(每小题3分,共6分)(1)(220. 计算(每小题4分,共16分)(1);(2)(3)(4(3- (4)>)m n21. 已知5x y +=,3x y •=,计算(5分)22. 已知实数,,a b c 满足2|1|440b c c ++-+=,求1001003a b c ++的值。
(5分)23. 若1a b -=,ab =,求代数式(1)(1)a b +-的值。
(6分)24. 已知A B ==求1111A B +--的值。
(6分)25. 已知11a a+=-221a a +的值。
(6分)。
⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。
有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。
合并的是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
4.下列各式计算正确的是()A.错误!未找到引⽤源。
+错误!未找到引⽤源。
=错误!未找到引⽤源。
B.4错误!未找到引⽤源。
-3错误!未找到引⽤源。
=1C.2错误!未找到引⽤源。
×3错误!未找到引⽤源。
=6错误!未找到引⽤源。
D.错误!未找到引⽤源。
÷错误!未找到引⽤源。
=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2B.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2C.错误!未找到引⽤源。
=x-1D.错误!未找到引⽤源。
=错误!未找到引⽤源。
·错误!未找到引⽤源。
6.已知a=错误!未找到引⽤源。
+1,b=错误!未找到引⽤源。
,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。
÷错误!未找到引⽤源。
×错误!未找到引⽤源。
的结果为()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。
+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。
-1,ab=错误!未找到引⽤源。
人教版八年级数学下册 第十六章 二次根式 单元测试题(含答案)一、选择题。
(15小题,第小题2分,共30分) 1.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有( ) A .1个B .2个C .3个D .4个2.若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是( ) A .x ≥12B .x ≤12C .x =12D .x ≠123.使式子1x +3+4-3x 在实数范围内有意义的整数x 有( ) A .5个B .3个C .4个D .2个4.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.下列运算正确的是( ) A .-(-6)2=-6 B .(-3)2=9 C .(-16)2=±16 D .-(-5)2=-256.若a <1,化简(a -1)2-1的结果是( ) A .a -2B .2-aC .aD .-a7.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是( )A .-2a +bB .2a -bC .-bD .b8.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是( ) A .m >6B .m <6C .m >-6D .m <-69.50·a 的值是一个整数,则正整数a 的最小值是( ) A .1 B .2 C .3 D .5 10.已知m =(-33)×(-221),则有( ) A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-511.下列各式计算正确的是( )A .483=16B .311÷323=1 C .3663=22D .54a 2b 6a=9ab12.计算113÷213÷125的结果是( ) A .275B .27C . 2D .2713.若x 与2可以合并,则x 可以是( ) A .0.5 B .0.4 C .0.2D .0.114.计算|2-5|+|4-5|的值是( ) A .-2 B .2 C .25-6 D .6-2 515.计算412+313-8的结果是( ) A.3+ 2B. 3C.33D.3- 2二、填空题(6小题,每小题2分,共12分)7.计算5÷5×15所得的结果是_______8.计算:32-82=_____ 9.计算:(3+2)3×(3-2)3=_____. 10.已知x =5-12,则x 2+x +1=_____. 11.已知16-n 是整数,则自然数n 所有可能的值为________.12.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为______三、计算题。
新人教版八年级下学期数学第十六章二次根式
单元测试卷
一、选择题
1.已知233x x +=-x 3+x ,则………………………………………………( )
A .x ≤0
B .x ≤-3
C .x ≥-3
D .-3≤x ≤0
2.化简a
a 3
-(a <0)得……………………………………………………………( ) A .a - B .-a C .-a - D .a
3.当a <0,b <0时,-a +2ab -b 可变形为…………………………………( )
A .2)(b a +
B .-2)(b a -
C .2)(b a -+-
D .2)(b a ---
4.在根式①22b a + ②5x ③xy x -2 ④ abc 27中,最简二次根式是( )
A .①②
B .③④
C .①③
D .①④
5.下列二次根式中,可以合并的是…………………………………………………( )
A .23a a a 和
B .232a a 和
C .a
a a a 132和 D .2423a a 和 6.如果1122=+-+a a a ,那么a 的取值范围是……………………………( )
A .0=a
B .1=a
C .1≤a
D .10==a a 或
7.能使22-=-x x x x 成立的x 的取值范围是…………………………………( )
A .2≠x
B .0≥x
C .2≥x
D .x >2
8.若化简|1-x|2x-5,则x 的取值范围是………………( )
A .x 为任意实数
B .1≤x ≤4
C .x ≥1
D .x <4 9.已知三角形三边为a 、b 、c ,其中a 、b 两边满足0836122=-++-b a a ,那 么这个三角形的最大边c 的取值范围是……………………………………………( )
A .8>c
B .148<<c
C .86<<c
D .142<<c
10.小明的作业本上有以下四题①24416a a =;②25105a a a =⋅;
③a a
a a a =⋅=112; ④a a a =-23。
其中做错误的是………( ) A .① B .② C .③ D .④
二.填空题:
11.0
21⎪⎭
⎫ ⎝⎛-的平方根是 ,36的算术平方根是 。
12.(7-52)2008·(-7-52)2009=______________。
13.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________。
14.若1
32-=x ,则322+-x x 的值为______。
15.已知xy <0= 。
16. 若化简1x -2x -5,则x 的取值范围是_____________。
17.当x __________时,式子3
1-x 有意义。
18.方程2(x -1)=x +1的解是____________。
19.比较大小:-721
_________-
341。
20.我们赋予“※”一个实际含义,规定a ※3※5=_______。
三.解答题:
21.求下列式子有意义的x 的取值范围:
(1)
x
341- (2 (3
(4 (5 (6
22.计算与化简
(125
(2⎛- ⎝
(3)5x
(x >0,y >0). (4)22)25()25(--+
23.已知
2a =21211a a a a
-+--。
24.若x ,y 为实数,且y =x 41-+14-x +
21。
求x y y x ++2-x y y x +-2的值。
参考答案
二.填空题:
11:±1、6; 12:-7-52; 13:5; 14:11; 15:y x -; 17:x ≥0且x ≠9; 18:x =3+22; 19:<; 20:1556。
三.解答题:
21:(1)x <34
、 (2)x ≤3且x ≠2、(3)x ≥3、 (4)x =0、 (5)x 为一切实数、
(6)x =23。
22:(1)3259
+、 (2)75
-、 (3)x y 245
、 (4)104。
23:原式=31-。
24:∴ 原式=2y x ,当x =41,y =21时,原式=22
1
41
=2。
25:332=c 、333331
=h 。
26:(1)222244b a b a ab
DE ++=;
(2)结论是与(1)相同。