- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设Lyapunov代数方程有两个正定矩阵解 P1 和 P2, 则将 P1 和 P2 代入该方程后有 P1A+ATP1=-Q
P2A+ATP2=-Q
两式相减,可得 (P1-P2)A+AT(P1-P2)=0 因此,有
AT t At 0 e [( P e (P 1 -P 2 ) A A (P 1 -P 2 )]e 1 -P 2 )e AT t T At
系统,但其稳定性判据则有较大差别。 下面先给出一般离散系统的渐近稳定性的判据。
定理11-8 设系统的状态方程为
x(k+1)=f(x(k),k) 其中xe=0为其平衡态。
如果存在一个连续的标量函数V[x(k),k]且正定, 则有:
1) 若V[x(k),k]的差分V[x(k),k]=V[x(k+1),k+1]-V[x(k),k]为 负定的, 则系统在原点处的平衡态是一致渐近稳定的; 2) 若V[x(k),k]为非正定的,则该系统在原点处的平衡态 是一致稳定的; 更进一步, 若V[x(k),k]对任意初始状态的解序列 x(k), V[x(k), k]不恒为零,那么该系统在原点处的 平衡态是一致渐近稳定的; 3) 更进一步, 若||x(k)||→, 有V[x(k),k]→, 那么该系统在原 点处的一致渐近稳定平衡态是大范围一致渐近稳定的。
T
例11-9 控制系统方块图如下所示。
要求系统渐近稳定, 试确定增益的取值范围。
k s 1
x3
1 s2
x2
1 s
x1
解 由图可写出系统的状态方程为
1 0 x x 2 0 3 k x 1 2 0 0 x1 x 1 2 1 x3
所以,对任意的t,下式均成立:
At e (P P )e 常数 1 2 ATt
令 t=0 和 t=T(0), 则有
P 1 -P 2 e
ATT
AT (P P )e 常数 1 2
由定理11-7可知,当 P1 和 P2 为满足 Lyapunov 方 程的正定矩阵时,则系统为渐近稳定的。
从而得到P为正定矩阵的条件
12 2k 0,
即
3k 0,
6 k /3 0
0<k<6
由上例可知,选择 Q 为某些非负定矩阵,也可以判断系统 稳定性,益处是可使数学运算得到简化。
10.4.2 线性离散系统的稳定性分析
前两节讨论的为连续系统的Lyapunov稳定性的定
义和稳定性判据定理,其稳定性定义可延伸至离散
本小节将讨论对线性系统,包括 线性定常连续系统 线性定常离散系统 线性时变连续系统 如何利用Lyapunov第二法及如何选取Lyapunov函数来 分析该线性系统的稳定性。
11.4.1 线性定常连续系统的稳定性分析
设线性定常连续系统的状态方程为 x’=Ax 这样的线性系统具有如下特点: 1) 当系统矩阵A为非奇异时, 系统有且仅有一个平衡态xe=0,
P e Qe At dt
AT t 0
(4 a )
将矩阵 P 的表达式 (4-a) 代入矩阵方程 PA+ATP = -Q 可得:
PA A P e Qe dtA A
T AT t At 0 T
0
e Qe At dt
0
AT t
d ATt At AT t e Qe dt e Qe At 0 dt Q
0 0 k p11 1 2 0 p 12 0 1 1 p13 p12 p22 p23 p13 p11 p23 p12 p33 p13 p12 p22 p23 p13 0 p23 0 p33 k 1 0 0 0 0 0 0 0 2 1 0 1 0 0 1
11.4 线性定常系统的 Lyapunov稳定性分析
本节主要研究Lyapunov方法在线性系统中的应用。 讨论的主要问题有:
基本方法: 线性定常连续系统的Lyapunov稳定性分析
矩阵Lyapunov方程的求解 线性时变连续系统的Lyapunov稳定性分析 线性定常离散系统的Lyapunov稳定性定理 及稳定性分析
解出 p11, p12 和 p22, 得
p11 p12 1 3 1 P p p 1 2 2 12 22
为了验证对称矩阵P的正定性, 用合同变换法检验如下:
1 3 1 行( 2)(1) / 3( 2) 1 9 0 P 0 5 2 1 2 6 列( 2)(1) / 3( 2)
于是, 矩阵 P 的元素可按如下Lyapunov代数方程:
PA+ATP=-I 求解, 然后根据P的正定性来判定系统的渐近稳定性。
下面通过一个例题来说明如何通过求解矩阵Lyapunov方程
来判定线性定常系统的稳定性。
例11-8 试确定用如下状态方程描述的系统的平衡态稳定性。
0 1 x1 x1 x 1 1 x 2 2
展开后得
2 p12 p p p 22 11 12
p11 p12 p22 1 0 2 p12 2 p22 0 1
因此,得如下联立方程组:
2 p12 1 p11 p12 p22 0 2 p 2 p 1 12 22
证明过程为: 已知满足矩阵方程 PA+ATP=-Q 的正定矩阵P存在,故令
V(x)=xTPx.
由于V(x)为正定函数,且V(x)沿轨线对时间t的全导数为 V’(x)=(xTPx)’ =(xT)’Px+xTPx’ =(Ax)TPx+xTPax =xT(ATP+PA)x =-xTQx 而Q为正定矩阵,因此V’(x)为负定函数。
由上节知, Lyapunov第二法是分析动态系统的稳定性的有效 方法, 但具体运用时将涉及到如何选取适宜的Lyapunov函数
来分析系统的稳定性。
由于各类系统的复杂性,在应用Lyapunov第二法时, 难于建立统一的定义Lyapunov函数的方法。
目前的处理方法是,针对系统的不同分类和特性,分别 寻找建立Lyapunov函数的方法。
因此,必要性得证。
上述定理给出了一个判别线性定常连续系统渐近稳定性的简 便方法,该方法
不需寻找Lyapunov函数,
不需求解系统矩阵 A 的特征值, 只需解一个矩阵代数方程即可,计算简便。 该矩阵方程又称为Lyapunov矩阵代数方程。 由上述定理, 可得如下关于正定矩阵 P 是Lyapunov矩阵
故系统矩阵 A 为渐近稳定的矩阵,矩阵指数函
数 eAT 将随着 T→ 而趋于零矩阵,即
P1-P2=0
或 P1=P2
在应用上述基本定理和推论时, 还应注意下面几点: 若V’(x,t)=-xTQx沿任一条状态轨线不恒为零, 则 Q 可取 为非负定矩阵, 而系统在原点渐近稳定的充要条件为: 存在正定矩阵 P 满足Lyapunov代数方程。 Q 矩阵只要选成正定的或根据上述情况选为非负定的, 那么最终的判定结果将与 Q 的不同选择无关。 由定理11-7及其推论11-1可知, 运用此方法判定系统的 渐近稳定性时, 最方便的是选取 Q 为单位矩阵, 即Q=I。
求得
k 2 12k 1 P 6k 2(6 k ) 0 6k 3k k 0 k 6
为使原点处的平衡状态是大范围渐近稳定的, 矩阵 P 须 为正定。
采用合同变换法, 有
k 2 12k 6k 0 6k 3k k 0 行 (1) (2)2(1) k 2 k 0 列(1) (2)2 (1) 0 6 0 3k k 0 行 (3) (2) / 3(3) k 2 k 0 列(3) (2) / 3(3) 0 6 0 3k 0 0 0 6 k / 3
PA+ATP=-Q
的正定矩阵P。
证明过程为: 对任意给定的正定矩阵 Q, 构造矩阵 P 如下
P e Qe At dt
AT t 0
(4 a)Βιβλιοθήκη 由矩阵指数函数 eAt 的定义和性质知, 上述被积矩阵函数
的各元素一定是具有 t k e t 形式的诸项之和, 其中 是 A 的特征值。
由于变换后的对角线矩阵的对角线上的元素都大于零,
故矩阵P为正定的。因此, 系统为大范围渐近稳定的。
此时,系统的Lyapunov函数和它沿状态轨线对时间 t 的 全导数分别为
1 T 3 1 V (x) x Px x x0 2 1 2 0 T T 1 V (x) x Qx x x0 0 1
根据渐近稳定性定理(定理11-4), 即证明了系统的平衡态 xe=0是渐近稳定的, 于是充分性得证。
(2) 再证必要性。 Necessity. 即证明: 若系统在xe=0处是渐近稳定的, 则对任意给定的 正定矩阵Q, 必存在正定矩阵P满足矩阵方程 PA+ATP=-Q 证明思路: 由正定矩阵Q构造满足矩阵方程
因为系统是渐近稳定的, 则矩阵 A 的所有特征值
的实部一定小于零, 因此上述积分一定存在, 即P 为 有限对称矩阵。
P e Qe At dt
AT t 0
(4 a )
又由于
Q 正定,
矩阵指数函数 eAt 可逆, 则由方程 (4-a)可知,P为有限的正定矩阵。 因此,P 为正定矩阵。
即为状态空间原点;
2) 若该系统在平衡态xe=0的某个邻域上是渐近稳定的,则 一定是大范围渐近稳定的; 3) 对于该线性系统,其Lyapunov函数一定可以选取为二 次型函数的形式。