列向量只有一列的矩阵
- 格式:ppt
- 大小:1.86 MB
- 文档页数:49
第1单元 矩阵的概念及二阶矩阵与平面列向量的乘法【教学目标】1. 了解矩阵的相关知识,如行、列、元素,零矩阵的意义和表示; 2. 掌握二阶矩阵与平面列向量的乘法规则; 3. 理解矩阵对应着向量集合到向量集合的映射.【教学过程】1 矩阵的概念1.1 从表到矩阵向量OP =(1,3),将坐标写入表 1中,可简记为13⎡⎤⎢⎥⎣⎦.表 2表示甲、乙两名选手成绩,可表示成一张矩形数表,记为80908688⎡⎤⎢⎥⎣⎦.将方程组{231,3242x y mz x y z ++=-+=中未知数x ,y ,z 的系数按原来的次序排列可得到表 3,可记为23324m ⎡⎤⎢⎥-⎣⎦. 1.2 矩阵的概念我们把形如[]10,13⎡⎤⎢⎥⎣⎦,80908688⎡⎤⎢⎥⎣⎦,23324m ⎡⎤⎢⎥-⎣⎦这样的矩形数字(或字母)阵列称作矩阵.1.3 矩阵的表示一般地,用黑体大写字母A ,B ,…或者()ij a 来表示矩阵,其中i ,j 分别表示元素ij a 所在的行与列.1×2矩阵:[]10(只有一行的矩阵叫做行矩阵,也叫做行向量);2×1矩阵:13⎡⎤⎢⎥⎣⎦(只有一列的矩阵叫做列矩阵,也叫做列向量,并用希腊字母α,β,…来表示.通常用来表示向量、坐标系内的点…);{231,3242x y mz x y z ++=-+=2×2矩阵:80908688⎡⎤⎢⎥⎣⎦(叫做二阶矩阵,n 阶矩阵即n ×n 矩阵).2×3矩阵:23324m ⎡⎤⎢⎥-⎣⎦(注意矩阵的表示:n ×m 矩阵表示有n 行,m 列).1.4 特殊的矩阵零矩阵——所有元素都为0的矩阵叫做零矩阵,记为0.例如[]00,0000⎡⎤⎢⎥⎣⎦等.单位矩阵——今后学习.1.5 矩阵相等的充要条件两个矩阵A ,B ,则A =B 当且仅当它们的行数与列数分别相等,且对应位置的元素也分别相等.1.6 数学运用例1 用矩阵表示△ABC ,其中()1,0A -,(0,2)B ,()2,0C .变式:矩阵M =01340220⎡⎤⎢⎥⎣⎦表示怎样的平面图形?例2 将方程组{2313242x y mz x y z ++=-+=的系数表示为矩阵.例3 已知342x ⎡⎤=⎢⎥-⎣⎦A ,12y z ⎡⎤=⎢⎥-⎣⎦B ,若=A B ,求x ,y ,z 的值.1.7 行向量与列向量一般地,我们把像[]1112a a 这样只有一行的矩阵称为行矩阵,而把像1121aa ⎡⎤⎢⎥⎣⎦这样只有一列的矩阵称为列矩阵,并用希腊字母α,β,…来表示.根据上述定义,平面上的向量(),x y =a 和平面上的点(),P x y 都可以看做是行矩阵[]xy ,也可以看做是列矩阵xy ⎡⎤⎢⎥⎣⎦.因此我们常将[]xy 称为行向量,而将xy ⎡⎤⎢⎥⎣⎦称为列向量.习惯上,我们把平面向量(),x y 坐标写成列向量xy ⎡⎤⎢⎥⎣⎦的形式,又因为(),P x y OP ←−−−−→ 一一对应平面向量,因此,x y ⎡⎤⎢⎥⎣⎦既可以表示点(),x y ,也可以表示以()0,0O 为起点、以(),P x y 为终点的向量xy ⎡⎤⎢⎥⎣⎦.故在不引起混淆的情况下,对它们不加以区别.2 二阶矩阵与平面列向量的乘法2.1 行向量与列向量的乘法怎样的两个矩阵可以做乘法? 一个n ×1行向量可以与一个1×n 列向量相乘,得到的结果是一个1×1矩阵(即一个数).我们规定行矩阵[]1112a a 与列矩阵1121bb ⎡⎤⎢⎥⎣⎦的乘法规则为[][]1111121111122121ba a ab a b b ⎡⎤=⨯+⨯⎢⎥⎣⎦;2.2 二阶矩阵与平面列向量的乘法二阶矩阵11122122a a a a ⎡⎤⎢⎥⎣⎦与平面列向量00xy ⎡⎤⎢⎥⎣⎦的乘法规则为1112011012021220210220a a x a x a y a a y a x a y ⨯+⨯⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⨯+⨯⎣⎦⎣⎦⎣⎦.例4 计算2001x y ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.解:20202010x x y x y x y y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦. 2.3 平面变换的定义一般地,对于平面上的任意一点(向量)(),x y ,按照对应法则T ,总能对应惟一的一个平面点(向量)()','x y ,则称T 为一个变换,简记为()() ,','T x y x y →:或''x x T y y ⎡⎤⎡⎤→⎢⎥⎢⎥⎣⎦⎣⎦:2.4 二阶矩阵与平面列向量的乘法的几何解释——平面变换一般地,对于平面向量的变换T ,如果变换规则为' 'x x ax by T y y cx dy +⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦:,也可记为矩阵形式' 'x x a b x T y y c d y ⎡⎤⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦: 由矩阵M 确定的变换T ,通常记作T M .根据变换的定义,它是平面内点集到其自身的映射.当α=xy ⎡⎤⎢⎥⎣⎦表示某个平面图形F 上的任意一点时,这些点就组成了图形F ;它在T M 的作用下,将得到一个新的图形F ′——原象集F 的象集F ′.例5 计算:(1)1020530406⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)103014-⎡⎤⎡⎤⎢⎥⎢⎥-⎣⎦⎣⎦.(教材P11题6)例6 设点(),P a b 在矩阵1000⎡⎤⎢⎥⎣⎦对应的变换作用下得到点P ′,求P ′点的坐标.(教材P11题7)例7 已知点P 在矩阵3123⎡⎤⎢⎥-⎣⎦对应的变换作用下得到点()'2,5P -,求点P 的坐标.(教材P11题10)例8 (1)已知'10'02x x x y y y ⎡⎤⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,试将它写成坐标变换的形式;(2)已知'3'x x x y y y y +⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,试将它写成矩阵乘法的形式.(教材P11题11)例9 已知变换T 把平面上的点()2,0,(分别变换成点(,(1-,试求变换T 所对应的矩阵.解:设变换T 所对应矩阵为M =a b c d ⎡⎤⎢⎥⎣⎦,则22020202a b a b a c d c d c +⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦,a b a c d c ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦.所以:1,2a c ==112=-=1,2a c ==b =,12d =. 所以M=112⎡⎢⎥⎥⎦.(相当于绕原点逆时针方向旋转60︒).例10 直线l :x -y +1=0在矩阵M =1203⎡⎤⎢⎥⎣⎦对应的变换作用下得到直线l ′,求直线l ′的方程.解:(法1)直线l 过点(-1,0),(0,1),因为1012101201030103---⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦M ,故点(-1,0),(2,3)在直线l ′上.则直线l ′的方程为x -y +1=0.(法2)设点(x 0,y 0)为直线l 上一点,它在矩阵M 对应的变换下得到点(x ,y ),则001203x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得{0002,3.x x y y y =+=解得002,31.3x x y y y ⎧=-⎪⎨⎪=⎩ 因为(x 0,y 0)为直线l 上一点,故x 0-y 0+1=0,故有211033x y y --+=,即x -y +1=0. 所以,直线l ′的方程为x -y +1=0.【课后作业】姓名:____________________1. 设M 是一个2×2的矩阵,规定其元素23,,{1,2}ij a i j i j =-∈,求M .2. 设矩阵M =31x y ⎡⎤⎢⎥⎣⎦,N =52y m n m n ++⎡⎤⎢⎥-⎣⎦,若M =N ,求x ,y ,m ,n 的值.(类教材P10题5)3. (1)已知'32'0.54x x x y y y -⎡⎤⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,试将它写成坐标变换的形式;(2) 已知'5'6x x yy y x ⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,试将它写成矩阵乘法的形式.4. 计算(1)2581062-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)1213⎡⎢⎢⎥-⎣⎦.5. (1)求点(2,3)在矩阵1234-⎡⎤⎢⎥-⎣⎦对应变换的作用下所得点的坐标;(2)已知点P 在矩阵1012⎡⎤⎢⎥⎣⎦对应的变换作用下变为点()1,1-,求点P 的坐标.6. 已知变换T 把平面上的点()()2,1,0,1-分别变换为点()()0,1,2,1--,试求变换T 所对应的矩阵M .7. 直线l :y =2x 在矩阵M =1012-⎡⎤⎢⎥⎣⎦对应的变换作用下得到直线l ′,求直线l ′的方程.8. 求三角形121032-⎡⎤⎢⎥⎣⎦在矩阵M =1301-⎡⎤⎢⎥⎣⎦对应变换的作用下所得的象,并求该象的面积.。
秩为1的矩阵的特征值的公式
一个秩为1的矩阵是指矩阵A的列向量线性相关,可以表示为A =
uv^T,其中u为列向量,v为行向量。
特征值是一个矩阵对于线性变换的
特定方向上的放大或缩小的因子,表示为λ。
对于一个秩为1的矩阵,
其特征值有一个特定的公式来计算。
要计算秩为1的矩阵A的特征值,首先需要找到该矩阵的特征向量。
特征向量是一个非零向量,通过矩阵乘法仅发生比例变化,即Av = λv,其中v为特征向量。
由于A是秩为1的矩阵,可以表示为A = uv^T,所
以Av = uv^Tv = λv。
根据这个等式,我们可以将v^Tv移到等式的左边,得到(A-λI)
v=0,其中I是单位矩阵。
由于v是非零向量,根据线性代数的基本原理,(A-λI)的行列式必须为0,即,A-λI,=0。
上述等式可以给出一个关于λ的方程,即特征值方程。
对于秩为1
的矩阵A = uv^T,特征值方程为,A - λI, = 0,展开可得:uv^T - λI, = 0
uv^T - λ[1 0; 0 1], = 0
[uv^T - λ, 0; 0, uv^T - λ] = 0
[u-λ,0;0,v-λ]=0
(u-λ)(v-λ)=0
由此得到两个特征值λ1=u,λ2=v。
特征值λ的两个值分别对应于矩阵A对于两个特定方向的放大或缩小因子。
在秩为1的矩阵中,只有一个非零的特征向量,因此只有一个特征值。
综上所述,秩为1的矩阵的特征值公式为,A - λI, = 0,其中A = uv^T,λ为特征值。
特征值方程的解即为特征值。
matlab 两个一维矩阵组合结果-概述说明以及解释1.引言概述部分的内容可以根据你的文章主题进行具体说明。
以下是一个示例:1.1 概述在计算机科学和工程等领域,矩阵是一种非常重要的数据结构,它在各种数学运算和数据处理中起着重要作用。
一维矩阵特指只有一行或一列的矩阵,其在计算中常常被用来表示向量或序列等抽象概念。
本文主要关注一维矩阵的组合问题,即如何将两个一维矩阵进行合并或拼接得到一个新的矩阵。
这个问题在很多实际应用中都十分常见,例如在信号处理、图像处理、数据分析等领域都需要对不同的一维矩阵进行组合。
在介绍组合方法之前,我们将首先对一维矩阵进行定义和表示方法的说明。
然后,我们将详细介绍不同的组合方法,并探讨它们在实际应用中的意义和效果。
最后,我们将总结组合结果的应用,并展望未来可能的改进和扩展方向。
通过对一维矩阵的组合方法的研究和探讨,我们可以更好地理解和应用这一重要的数据结构,进一步提高计算机科学和工程领域的相关技术和应用。
该研究对于提高数据处理的效率和准确性,以及优化相关算法和模型具有重要意义。
1.2文章结构1.2 文章结构:本文主要介绍了关于Matlab 中两个一维矩阵组合结果的相关内容。
全文分为引言、正文和结论部分。
在引言部分,首先概述了本文的主题和研究背景,说明了一维矩阵在科学计算和数据处理中的重要性。
接着介绍了文章的整体结构,以便读者能够更好地理解和掌握本文的内容。
最后,明确了本文的目的,即为读者提供一种在Matlab 中实现一维矩阵组合的方法。
正文部分主要包括两个部分:一维矩阵的定义和表示方法以及一维矩阵的组合方法。
首先,详细介绍了一维矩阵的定义及其在Matlab 中的表示方法,包括向量的概念和表示方式,矩阵的行向量和列向量的表示方法等。
其次,提供了在Matlab 中实现一维矩阵组合的方法,包括元素逐个组合和向量连接两种方法,并给出了相应的代码实例和操作步骤。
结论部分主要对组合结果的应用进行讨论,并对结果进行评价和展望。
第一章 矩阵与行列式第一节 矩阵及其运算一、矩阵的概念人们在从事经济活动、科学研究、社会调查时, 会获得许多重要的数据资料, 将这些数据排成一个矩形的数表111212122212n nm m mn a a a a a a a a a L L M M M L以便于进行储存、运算和分析, 这种矩形的数表就是矩阵.定义1 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==L L 排成m 行n 列的矩形 数表111212122212n n m m mn a a a a a a a a a ⎛⎫⎪ ⎪⎪⎪⎝⎭L L M M M L称为m 行n 列矩阵, 简称为m n ⨯矩阵, 其中ij a 称为矩阵的位于第i 行、第j 列的元素. 通常, 我们用大写字母,,A B L 表示矩阵. 例如, 记111212122212.n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭L L M M M L其中小括号“()” 也可用方括号“[]”代替. 有时, 矩阵也简记为()ij m nA a ⨯=或()ij A a =. 特别地, 当m n =时, 称A 为n 阶矩阵或n 阶方阵, 其中一阶方阵()a 是一个数, 括号可略去.元素全为实数的矩阵称为实矩阵, 元素全为复数的矩阵称为复矩阵. 本书主要在实数范围内讨论问题.对于由n 个未知量、m 个方程组成的线性方程组:11112211211222221122,,.n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.1.1) 称矩阵A 11121121222212n n m m mn m a a a b a a a b a a a b ⎛⎫⎪⎪= ⎪⎪⎝⎭LL M M M M L(1.1.2)为线性方程组(1.1.1)的增广矩阵;称矩阵A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪⎪⎪⎝⎭L L M M M L(1.1.3) 为线性方程组(1.1.1)的系数矩阵;矩阵12m b bB b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M (1.1.4)称为线性方程组(1.1.1)的常数项矩阵.显然, 线性方程组(1.1.1)由矩阵(1.1.2)完全地确定.下面介绍一些特殊的矩阵.(1) 零矩阵 元素都是零的矩阵称为零矩阵, 记为O . (2) 列矩阵、行矩阵 在矩阵A 中, 如果1n =, 则11211m a a A a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M , 称这种只有一列的矩阵为列矩阵;同样, 如果1m =, 则()11121n A a a a =L ,称这种只有一行的矩阵为行矩阵.我们也将列矩阵和行矩阵分别称为列向量和行向量. 列向量和行向量统称为向量. 向量的元素称为分量, 有n 个分量的向量称为n 维向量. 矩阵与 向量有密切的联系, 矩阵()ij m nA a ⨯=可以看成由n 个m 维列向量12,1,2,,j j mj a a j n a ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭L M 组成, 也可以看成由m 个n 维行向量()12,1,2,,i i in a a a i m =LL 组成.(3) 负矩阵 如果矩阵()ij m nA a ⨯=, 则()ij m nA a ⨯-=-称为矩阵A 的负矩阵.(4) 行阶梯形矩阵 如果矩阵每一行的第一个非零元素所在的列中, 其下方元素全为零, 则称此矩阵为行阶梯形矩阵. 例如矩阵10234023450056700018A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 12102032210003100000B --⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭均为行阶梯形矩阵, 而矩阵10232023450056700418C ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 则不是行阶梯形矩阵.(5) 行最简形矩阵 如果行阶梯形矩阵中, 非零行的第一个非零元素均为1, 且其所在列的其余元素均为0, 则称此矩阵为行最简形矩阵. 例如, 矩阵1060301205000110000⎛⎫⎪⎪⎪- ⎪⎝⎭是行最简形矩阵.(6) 上(下)三角矩阵 n 阶方阵的左上角到右下角元素的连线称为主对角线, 左下角到右上角元素的连线称为次(副)对角线. 如果方阵的主对角线下(上)方元素全为0, 则称此矩阵为上(下)三角矩阵. 矩阵11121222000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为上三角矩阵, 矩阵11212212000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭LL M M M L 为下三角矩阵.(7) 对角矩阵 如果方阵中除主对角线上的元素外, 其余元素全为0, 则称此矩阵为对角矩阵. 例如, 矩阵12000000n λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为对角矩阵.(8) 单位矩阵 在对角矩阵中, 如果()11,2,,i i n λ≡=L , 即为 100010001⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L, 则称此矩阵为单位矩阵. 单位矩阵一般用E 或I 表示.定义2 如果两个矩阵()ij A a =, ()ij B b =的行数相同、列数也相同, 则称矩阵A 与B 为同型矩阵.定义3 如果两个同型矩阵m n A ⨯, m n B ⨯的对应元素均相等, 即 ()1,2,,;1,2,,ij ij a b i m j n ===L L , 则称矩阵A 与B 相等, 记作A B =.二、矩阵的运算 1. 矩阵的加法定义4 由两个同型矩阵()m n ij m nA a ⨯⨯=, ()m n ij m nB b ⨯⨯=对应元素的和,即ij ij a b +()1,2,,;1,2,,i m j n ==L L 组成的m n ⨯矩阵称为矩阵A 与B 的和,记作A B +, 即111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫ ⎪+++ ⎪+= ⎪ ⎪+++⎝⎭L L M M M L . 由此定义及负矩阵的概念, 我们定义矩阵A 与B 的差为()A B A B -=+-.注 只有同型矩阵才能相加(减). 2. 数与矩阵相乘(简称数乘)定义5 数k 乘矩阵A 的每一个元素所得到的矩阵称为数k 与矩阵A 的积, 记作kA , 即111212122212.n n m m mn ka ka ka ka ka ka kA ka ka ka ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L L M M M L 矩阵的加法和数乘统称为矩阵的线性运算, 其满足如下性质:(1) A B B A +=+; (2) ()()A B C A B C ++=++; (3) ()()A A λμλμ=;(4) ()A A A λμλμ+=+; (5) ()A B A B λλλ+=+; (6) A O A +=; (7) 1A A =;(8) ()A A O +-=.上面的λ, μ都是任意常数.例1 设112034A -⎛⎫= ⎪⎝⎭, 403123B -⎛⎫= ⎪--⎝⎭, 求A B +和23A B -.解14102(3)5110(1)3(2)43117A B +-++---⎛⎫⎛⎫+== ⎪ ⎪+-+-+-⎝⎭⎝⎭;224120923068369A B --⎛⎫⎛⎫-=- ⎪ ⎪--⎝⎭⎝⎭102133121--⎛⎫= ⎪-⎝⎭.3. 矩阵与矩阵相乘(矩阵的乘法)n 个变量12,,,n x x x L 与m 个变量12,,,m y y y L 之间的关系式11111221221122221122,,.n n n nm m m mn n y a x a x a x y a x a x a x y a x a x a x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L L L L L L L L L L (1.1.5) 表示一个从变量12,,,n x x x L 到变量12,,,m y y y L 的线性变换.设有两个线性变换11111221332211222233,.z a y a y a y z a y a y a y =++⎧⎨=++⎩ (1.1.6)和111112222112223311322,,.y b x b x y b x b x y b x b x =+⎧⎪=+⎨⎪=+⎩ (1.1.7) 若要求出从12,x x 到12,z z 的线性变换, 可将(1.1.7)代入(1.1.6), 得 111111221133111112122213322221112221233112112222223322()(),()().z a b a b a b x a b a b a b x z a b a b a b x a b a b a b x =+++++⎧⎨=+++++⎩ (1.1.8) 线性变换(1.1.8)可看作是先作线性变换(1.1.7)、再作线性变换(1.1.6)的结果, 我们称线性变换(1.1.8)为线性变换(1.1.6)与(1.1.7)的乘积, 相应地, 我们将线性变换(1.1.8)所对应的矩阵定义为(1.1.6)与(1.1.7)所对应的矩阵的乘积,即 111211121321222122233132bb a a a b b a a a b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭111112211331111212221332211122212331211222222332.a b a b a b a b a b a b a b a b a b a b a b a b ++++⎛⎫= ⎪++++⎝⎭一般地, 我们有:定义6 设有矩阵()ij m sA a ⨯=和()ij s nB b ⨯=, 规定矩阵A 与B 的乘积是一个m n ⨯矩阵()ij m nC c ⨯=, 记为C AB =. 其中11221,1,2,,;1,2,,.ij i j i j is sjsik kj k C a b a b a b a b i m j n ==+++===∑L L L注 只有当前一个矩阵的列数等于后一个矩阵的行数时, 两个矩阵才能相乘, 且乘积矩阵C 中的元素ij C 就是A 的第i 行与B 的第j 列的对应元素乘积的和.例2 设201131012A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 100221B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求AB .解AB 201101310201221-⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭2100(1)22002(1)11130121032110110(2)20012(2)1⨯+⨯+-⨯⨯+⨯+-⨯⎛⎫ ⎪=-⨯+⨯+⨯-⨯+⨯+⨯ ⎪ ⎪⨯+⨯+-⨯⨯+⨯+-⨯⎝⎭ 0117.40-⎛⎫ ⎪= ⎪ ⎪-⎝⎭例3 求矩阵1111A -⎛⎫= ⎪-⎝⎭与1111B --⎛⎫= ⎪⎝⎭的乘积AB 及BA .解111122;111122AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭111100.111100BA ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭由以上例题可以看出矩阵乘法与数的乘法有两点显著不同:(1) 矩阵乘法不满足交换律:AB 与BA 未必同时有意义(如例2, BA 没有意义);即使都有意义也未必相等(如例3). 因此为明确起见, 称AB 为A 左乘B , 或B 右乘A . 只有在一些特殊情况下才有AB BA =, 这时称A 与B 是乘法可交换的. 容易验证数量矩阵aE 与任何同阶方阵A 乘法可交换, 即()().aE A A aE aA ==(2) 矩阵乘法不满足消去律:由AB O =不能得出A O =或B O =(如例3), 即,A O B O ≠≠但AB 有可能为O .有了矩阵相等和乘法的定义, 我们可以把线性方程组(1.1.1)写成矩阵形式:AX B =, 其中A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪ ⎪⎪⎝⎭L L M M M L, 1122,.n m x b x b X B x b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M若B O =, 则称(1.1.1)为齐次线性方程组;若B O ≠, 则称(1.1.1)为非齐次线性方程组. 也可以把线性变换(1.1.5)写成矩阵形式:Y AX =, 其中12,m y y Y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭MA 与X 同上所设.可以证明矩阵的乘法有下列性质: (1) ()()AB C A BC =;(2) ()A B C AB AC +=+;()B C A BA CA +=+; (3) ()()()AB A B A B λλλ==, λ为任意常数; (4) ()().m m n m n m n n aE A aA A aE ⨯⨯⨯==定义7 设A 为n 阶方阵, k 为正整数, 称k 个A 的连乘积为方阵A 的k次幂, 记作k A , 即.k kA AA A =L 14243当,k l 都为正整数时, 由矩阵乘法的性质, 得(1) k l k l A A A +=;(2) ()lk kl A A =.注 由于矩阵乘法不满足交换律, 所以, 一般地()kk k AB A B ≠. 例4 设1101A ⎛⎫= ⎪⎝⎭, 求nA (n 为正整数).解1101A ⎛⎫= ⎪⎝⎭;2111112010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 3121113010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 一般地, 有101n n A ⎛⎫= ⎪⎝⎭.其正确性可由数学归纳法证得, 证明略.4. 矩阵的转置定义8 把m n ⨯矩阵A 的行与列互换得到的一个n m ⨯矩阵, 称为A 的转置矩阵, 记作T A . 例如, 矩阵120311A ⎛⎫= ⎪-⎝⎭的转置矩阵为1321.01T A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭矩阵的转置也是一种运算, 满足下述运算规律:(1) ()TT A A = ;(2) ()TT T A B A B +=+ ;(3) ()TT A A λλ=, λ为一个数;(4) ()TT T AB B A = .例5 已知201132A -⎛⎫= ⎪⎝⎭, 171423201B -⎛⎫⎪= ⎪ ⎪⎝⎭,求().T AB解法1 因为1712010143423132171310201AB -⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,所以()0171413310TAB ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 解法214221017()72003141313112310T T T AB B A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭.定义9 设A 为n 阶方阵, 如果满足T A A =, 即 ,,1,2,,.ij ji a a i j n ==L则称A 为对称矩阵. 对称矩阵的特点是:关于主对角线对称的对应元素相等.定义10 设A 为n 阶方阵, 如果满足T A A =-, 即ij ji a a =-, ,1,2,,.i j n =L则称A 为反对称矩阵. 反对称矩阵的特点是:主对角线上的元素全为0, 其余关于主对角线对称的对应元素则互为相反数.习题1-11. 设111210111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 120124051B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭, 求23AB A -及T A B .2. 已知两个线性变换113212331232,232,45.x y y x y y y x y y y =+⎧⎪=-++⎨⎪=++⎩ 和 1122133233,2,.y z z y z z y z z =-+⎧⎪=+⎨⎪=-+⎩ 求从1z , 2z , 3z 到1x , 2x , 3x 的线性变换. 3. 计算下列乘积:(1) 401123520-⎛⎫ ⎪- ⎪ ⎪⎝⎭421⎛⎫⎪⎪ ⎪-⎝⎭;(2) ()123321⎛⎫ ⎪ ⎪ ⎪⎝⎭; (3) 321⎛⎫ ⎪⎪ ⎪⎝⎭()123;(4) 121232101110324-⎛⎫⎛⎫⎪⎪-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.4. 设A =1203-⎛⎫ ⎪⎝⎭, B =2032⎛⎫⎪-⎝⎭, 问(1) AB BA =吗?(2) ()2A B +=2A +2AB +2B 吗? (3) ()A B +()A B -=2A 2B -吗? 5. 举反例说明下列命题是错误的: (1) 若2A O =, 则A O =; (2) 若2A A =, 则A O =或A E =; (3) 若AX AY =, 且A O ≠, 则X Y =.6. 设A =1111⎛⎫ ⎪-⎝⎭, 1111B ⎛⎫= ⎪⎝⎭, 求2()AB , 22A B .第二节 矩阵的初等变换与初等矩阵一、初等变换的概念中学里, 已经学过用加减消元法解二、三元线性方程组.例1 解三元线性方程组1231231232344,23,226 2.x x x x x x x x x --+=⎧⎪+-=-⎨⎪+-=-⎩ (1.2.1) 解 为叙述方便, 方程组的第i 个方程记为(1,2,3)i r i =. i j r r ↔表示对调第i 、第j 个方程, (0)i kr k ≠表示用k 乘第i 个方程的两边, i j r kr +表示第j 个方程的两边乘以k 然后加到第i 个方程上.方程组(1.2.1)12312r r r ↔⨯−−−→12312312323,2344,3 1.x x x x x x x x x +-=-⎧⎪--+=⎨⎪+-=-⎩ (1.2.2)21311232232323,22,2 2.r r r r x x x x x x x +-+-=-⎧⎪−−−→+=-⎨⎪--=⎩ (1.2.3)321232323,22,00.r r x x x x x ++-=-⎧⎪−−−→+=-⎨⎪=⎩(1.2.4)方程组(1.2.4)呈阶梯状(其增广矩阵为行阶梯形矩阵), 称为阶梯形方程组. 方程组(1.2.4)有3个未知量但有效方程只有2个, 因此有1个未知量可以任意取值, 称为自由未知量. 我们不妨取3x 为自由未知量. 先由方程组(1.2.4)中的2r 得:2322x x =--, 再代入(1.2.4)中的1r 得:1351x x =+.方程组(1.2.4)与方程组(1.2.1)是同解的, 由于3x 取值的任意性, 因此方程组(1.2.1)有无穷多组解, 其一般形式(通解)是13233351,22,.x x x x x x =+⎧⎪=--⎨⎪=⎩ 若令3x c =, 即得123x X x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭=5122c c c +⎛⎫ ⎪-- ⎪ ⎪⎝⎭=521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭,其中c 为任意常数.解方程组(1.2.1)的过程中施行了3种变换:(1) 换位变换 即互换两个方程的位置;(2) 倍乘变换 即用一个非零常数乘某一方程;(3) 倍加变换 即把一个方程乘以常数后加到另一个方程上去. 这三种变换统称为线性方程组的初等变换.首先, 我们用换位、倍乘和倍加变换得到的新方程组可以用同类型变换变回原方程组(例如方程组(1.2.2)1232r r r ↔⨯−−−→方程组(1.2.1)), 因此线性方程组 的初等变换是同解变换;其次, 可以证明:任何线性方程组都可以用初等变换化为阶梯形方程组, 而阶梯形方程组很容易判定是否有解, 且有解时容易通过自下而上的“回代”得到解.由于线性方程组AX B =和其增广矩阵A 相互唯一地确定, A 的每一行 对应AX B =中的一个方程, 因此线性方程组的初等变换就对应着其增广矩阵的相应行变换.定义1 对矩阵施行的下列3种变换统称为矩阵的初等行变换: (1) 换位变换 对调矩阵的第i 行和第j 行, 记为i j r r ↔; (2) 倍乘变换 用常数0k ≠乘第i 行, 记为i kr ;(3) 倍加变换 把第j 行的k 倍加到第i 行上去, 记为i j r kr +.把上述定义中的“行”换成“列”(所有记号只要把""r 换成""c )即为矩阵的初等列变换. 矩阵的初等行变换和初等列变换统称为矩阵的初等变换.回顾例1, 方程组(1.2.1)的初等变换(消元)过程可以用增广矩阵的初等行变换表示如下:234412132262A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭12312r r r ↔⨯−−−→121323441131--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭=A 121312r r r r +-−−−→121301220122--⎛⎫ ⎪- ⎪ ⎪--⎝⎭=A 232r r +−−−→121301220000--⎛⎫⎪- ⎪ ⎪⎝⎭=A 3 122r r -−−−→105101220000-⎛⎫⎪- ⎪ ⎪⎝⎭=A 4,A 3是行阶梯形矩阵, A 4是行最简形矩阵, A 4对应的方程组为132351,22,00.x x x x -=⎧⎪+=-⎨⎪=⎩取3x 为自由未知量, 并令3x c =, 即得1235122x c X x c x c +⎛⎫⎛⎫ ⎪ ⎪==--=⎪ ⎪ ⎪⎪⎝⎭⎝⎭521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭, 其中c 为任意常数.利用初等行变换, 把一个矩阵化为行阶梯形矩阵和行最简形矩阵, 是一种很重要的运算. 行阶梯形矩阵不是唯一的, 但其非零行的行数是唯一确定 的(第五节将给出证明). 在解线性方程组AX B =时, 将增广矩阵A 化为行阶梯形矩阵, 就可以看出原方程组中是否有矛盾方程, 从而判断AX B =是否有解;在有解时, 进一步地将A 化为行最简形矩阵, 即可写出方程组AX B =的解.例2 将矩阵A =212341352012⎛⎫ ⎪ ⎪ ⎪⎝⎭化为行阶梯形矩阵和行最简形矩阵.解A =212341352012⎛⎫ ⎪⎪ ⎪⎝⎭21312212301110111r r r r --⎛⎫⎪−−−→--- ⎪ ⎪---⎝⎭32212301110000r r -⎛⎫ ⎪−−−→--- ⎪ ⎪⎝⎭(行阶梯形矩阵)1212(1)r r ⨯⨯-−−−→13112201110000⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭12121101201110000r r -⎛⎫ ⎪ ⎪−−−→ ⎪ ⎪ ⎪⎝⎭. (行最简形矩阵)例3 求解方程组123423412341234231,41,234,23 6.x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩解11231011411231423116A ⎛⎫ ⎪-⎪= ⎪- ⎪---⎝⎭31412111231011410114301578r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪- ⎪---⎝⎭3242211231011410000200639r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪ ⎪---⎝⎭34311231011410063900002r r A ↔⎛⎫ ⎪-⎪−−−→= ⎪--- ⎪⎝⎭,矩阵3A 是行阶梯形矩阵, 其对应的方程组为123423434231,41,639,0 2.x x x x x x x x x +++=⎧⎪+-=⎪⎨--=-⎪⎪=⎩ 第四个方程为02=, 这是不可能的, 故原方程组无解.例4 求解方程组1234123412341234231,234,324,23 6.x x x x x x x x x x x x x x x x +++=⎧⎪++-=-⎪⎨---=-⎪⎪+--=-⎩ 解11231123143112423116A ⎛⎫ ⎪-- ⎪= ⎪---- ⎪---⎝⎭ 213141321112310114504711701578r r r r r r A ---⎛⎫ ⎪--⎪−−−→= ⎪---- ⎪---⎝⎭ 3242421123101145003272700633r r r r A +-⎛⎫⎪--⎪−−−→= ⎪---⎪---⎝⎭4323112310114500327270005151r r A -⎛⎫ ⎪-- ⎪−−−→= ⎪--- ⎪⎝⎭1331451()411231011450019900011r r A ⨯-⨯⎛⎫⎪--⎪−−−→= ⎪⎪⎝⎭34241494351120201101001000011r r r r r r A -+--⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭231312261000101001001000011r r r r r r A ----⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭,3A 是行阶梯形矩阵, 6A 是行最简形矩阵, 6A 对应的方程组为12341,1,0,1.x x x x =-⎧⎪=-⎪⎨=⎪⎪=⎩故原方程组有唯一解, 即12341101x x x x -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 二、初等矩阵定义2 将单位矩阵作一次初等变换所得的矩阵称为初等矩阵. 对应于三类初等行、列变换, 有下列三种类型的初等矩阵:(1) 初等换位矩阵 对调单位矩阵的第i , j 两行或第i , j 两列而得到的矩阵, 即为11011(,)11011E i j ⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭O L M O M L O i j ←←第行第行 (2) 初等倍乘矩阵 用常数0k ≠乘单位矩阵的第i 行或第i 列而得到的矩阵, 即为11(())11E i k k i ⎛⎫ ⎪⎪ ⎪ ⎪=← ⎪ ⎪ ⎪⎪⎪⎝⎭O O 第行(3) 初等倍加矩阵 把单位矩阵的第j 行的k 倍加到第i 行上而得到的矩阵, 即为11(,())11k i E i j k j ⎛⎫ ⎪ ⎪ ⎪← ⎪= ⎪⎪← ⎪⎪⎪⎝⎭O L O M O 第行第行 (,())E i j k 也可看作是把单位矩阵的第i 列的k 倍加到第j 列上而得到的矩阵.下面我们用一个初等矩阵左乘或右乘一个矩阵. 例如111211112121222313233132321222100001010n n n n n n a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L L L L L ; 111213111312212223212322123132100001010m m m m m m a a a a a a a a a a a a a a a aa a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M M M M M .由此可见, 用三阶初等换位矩阵(2,3)E 左乘矩阵3n A ⨯, 相当于对矩阵3n A ⨯作一次相应的初等换位行变换(即对调矩阵3n A ⨯的第2,3两行);用三阶初等换位矩阵(2,3)E 右乘矩阵3m A ⨯, 相当于对矩阵3m A ⨯作一次相应的初等换位列变换(即对调矩阵3m A ⨯的第2,3两列).用初等倍乘矩阵或初等倍加矩阵左乘或右乘一个矩阵, 可得类似的结论.一般地, 有如下定理.定理 设A 是一个m n ⨯矩阵, 对A 施行一次初等行变换, 相当于在A 的左边乘一个相应的m 阶初等矩阵;对A 施行一次初等列变换, 相当于在A 的右边乘一个相应的n 阶初等矩阵.由定理可知, 对于同阶初等矩阵, 有(1) (,)(,);E i j E i j E ⋅= (1.2.5) (2) 1(());E i E i k E k ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭(1.2.6)(3) (,())(,()).E i j k E i j k E -⋅= (1.2.7)习题1-21. 把下列矩阵化为行阶梯形矩阵及行最简形矩阵:(1) 121131114302-⎛⎫ ⎪---- ⎪ ⎪⎝⎭;(2) 1111532114012211543314⎛⎫⎪⎪⎪⎪⎝⎭.2. 求解下面的方程组(1) 12341234123412343520,2350,7430,415790.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-+-+=⎪⎪+-+=⎩(2) 123423412341234231,41,234,236,x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩(3) 123451234512345321,335432,2244 3.x x x x x x x x x x x x x x x +++-=⎧⎪+++-=⎨⎪+++-=⎩第三节 行 列 式一、n 阶行列式的定义 对于二元线性方程组11112212112222,.a x a x b a x a x b +=⎧⎨+=⎩ (1.3.1) 用消元法可得:当112212210a a a a -≠ 时, 存在唯一的解122212*********,b a b a x a a a a -=-211121*********b a b ax a a a a -=-.如果我们将方程组(1.3.1)的系数矩阵11122122a a A a a ⎛⎫= ⎪⎝⎭所对应的二阶行列式定义为1112112212211222a a D A a a a a a a ===-, (1.3.2) 并记1D =112222b a b a , 2D =111212ab a b , 则方程组(1.3.2)的解可写成如下形式11D x D =, 22Dx D=. (1.3.3)同样, 可以用行列式表示三元线性方程组111122133121122223323113223333,,.a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩ (1.3.4) 的解. 为此定义111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++--- (1.3.5)为系数矩阵所对应的三阶行列式, 用()1,2,3j D j =分别记用方程组(1.3.4)右端的常数列替换D 中的第j 列所得的三阶行列式, 则当0D ≠时, 方程组(1.3.4)的解可写为11D x D =, 22Dx D =, 33D x D=. (1.3.6)式(1.3.3)和式(1.3.6)分别用二、三阶行列式来表示方程组(1.3.1)、(1.3.4)的解. 这些公式形式简单, 便于记忆, 明显地表示出线性方程组的解与方程组的系数和常数项的关系. 这就启发我们考虑:如果含有n 个未知量、n 个方程的线性方程组有唯一解, 能否给出类似的求解公式?回答是肯定的 . 为此, 必须推广二、三阶行列式.二阶及三阶行列式的定义, 即公式(1.3.2)及(1.3.5), 可以用“对角线法则”来记忆(见下图):11122122a a a a 111213111221222321223132333132a a a a a a a a a a a a a a a (-) (+) (-) (-) (-) (+) (+) (+)二阶行列式等于主对角线元素的乘积减去副对角线元素的乘积.三阶行列式等于主对角线及与其平行的两条线上各 3 个元素的乘积之和, 减去副对角线及与其平行的两条线上各3 个元素乘积之和.例1 求行列式的值:12(1)34-, 102(2)211313---. 解 (1)1214(2)31034-=⨯--⨯=; (2) 1022113(4)0(6)012313--=-+-+----=--.例2 求解方程211123049x x =. 解 方程左端的三阶行列式2223418129256,D x x x x x x =++---=-+由2560x x -+=, 解得2x =或3x =.分析三阶行列式的定义, 我们发现第一, 式(1.3.5)的右端有3!项, 除去带有的正、负号外, 每项都是这个行列式中的每一行和每一列中任取1个且仅取1个元素的积. 如果把元素的第1个下标, 即行标(表示元素所在的行)按照123顺序排列, 则它的任意 一项可写成123123j j j a a a , 这里123,,j j j 是1, 2, 3 的一个排列(由1, 2, 3这三个数按某种次序所排成的一个有序数组), 元素的第2个下标, 即列标k j 表示 该元素所在的列.第二, 这6项中带有正号的那些项, 列标123,,j j j 形成3个排列: 123, 231, 312;带有负号的那些项的列标也形成3个排列:321, 213, 132.我们感兴趣的是, 这2组排列的区别是什么?为了回答这个问题, 我们给出下面几个定义.定义1 由1,2,,n L 这n 个数按某种次序所排成的一个有序数组12n j j j L 称为一个n 元全排列.显然, n 元全排列的个数为n !定义2 对于n 个不同元素, 若事先规定各元素之间有一个标准次序(例如n 个不同的自然数, 可规定由小到大为标准次序), 于是在这n 个元素的任一排列中, 当某两个元素的先后次序与标准次序不同时, 就说有1个逆序.定义3 一个排列中所有逆序的总数称为这个排列的逆序数, 用τ表示. 定义4 逆序数为奇数的排列称为奇排列, 递序数为偶数的排列称为偶排列.标准排列12n L 的逆序数(12)0n τ=L , 为偶排列. 可以证明:当2n ≥时,n 元全排列中奇 、偶排列各占一半, 即各有!2n 个.例3 求排列32514的逆序数, 并指明奇偶性. 解 在排列32514中, 3排在首位, 没有逆序;2的前面比2大的数有一个(3), 故有1个逆序; 5是最大数, 没有逆序;1的前面比1 大的数有三个(3, 2, 5), 故有3个逆序;4的前面比4大的数有一个(5), 故有1个逆序, 于是这个排列的逆序数为(32514)1315τ=++=. 从而排列32514是奇排列.现在回过来考察三阶行列式展开式中各项正负号的取法, 因为(123)0τ=, (231)2τ=, (312)2τ=, (321)3τ=, (213)1τ=, (132)1τ=,由此可见:任一项带正号或负号完全由它的行标为标准次序时, 列标形成的 排列123j j j 的奇偶性来决定, 即当列标形成的排列为偶排列时, 该项取正 号;列标形成的排列为奇排列时, 该项取负号. 因此, 我们有1231231112133!()212223123313233(1)j j j j j j a a a a a a a a a a a a τ=-∑, (1.3.7) 其中3!∑表示对1,2,3的所有排列求和, 共有3!6=项.二阶行列式也可以表示成和式12122!1112()122122(1)j j j j a a a a a a τ=-∑.定义5 设()ij n n A a ⨯=是一个n 阶方阵(2)n ≥, 称121211121!21222()1212(1)n n nn nj j j j j nj n n nna a a a a a a a a a a a τ=-∑L L L L M M M L (1.3.8)为n 阶行列式, 也可称为方阵A 的行列式, 记为A 或det A . 规定一阶行列式a a =(注意不要与绝对值混淆).下面是n 阶行列式的等价定义:121211121!21222()1212(1)n n nn ni i i i i i n n n nna a a a a a a a a a a a τ=-∑L L L L M M M L , (1.3.9)上式右端各项的n 个因子是按列标组成标准次序的.由行列式的定义知, 若行列式的某行(列)的元素都是零, 则此行列式为零.例4 证明对角行列式(对角线以外的元素均为0)(1)1212n nλλλλλλ=L O; (2)1(1)2212(1)n n n nλλλλλλ-=-L N.证明 (1) 由行列式的定义即得.(2) 若记,1i i n i a λ+-=则由行列式的定义可得1122,11nn nn a a a λλλ-=NN12,1112(1)(1)n n n n a a a ττλλλ-=-=-L L , 其中τ为排列(1)21n n -L 的逆序数, 故(1)12(1)2n n n τ-=+++-=L . 例5 证明行列式112122112212000nn n n nna a a D a a a a a a ==L L L M M M L. 证明 由于当j i >时, 0ij a =, 故D 中可能不为0的元素i i p a , 其下标应有i p i ≤, 即121,2,,n p p p n ≤≤≤L .在所有排列12n p p p L 中, 能满足上述关系的排列只有一个排列12n L , 其逆序数0τ=, 所以D 中可能不为0的项只有一项1122(1)nn a a a τ-L , 即1122nn D a a a =L . 对角线以下(上)的元素都为零的行列式称为上(下)三角行列式, 它们的值与对角行列式一样, 都等于主对角线上元素的乘积.二、行列式的性质 记111212122212n n n n nn a a a a a a A a a a =L L M M M L, 112111222212n n T n n nna a a a a a A a a a =L LM M M L, 行列式T A 称为行列式A 的转置行列式.性质1 行列式与它的转置行列式相等. 例如3421=--3241-=-5.由性质1可知, 行列式对行成立的性质, 对列也成立, 反之亦然. 以下叙述行列式性质时, 只对行叙述.性质2 互换行列式的两行, 行列式变号. 例如3421=--5, 2134--=5-.推论 若行列式有两行元素完全相同, 则此行列式为零.性质3 行列式中某一行的所有元素乘同一数k 等于用k 乘原行列式(第i 行乘以k , 记作:i r k ⨯).推论1 行列式中某一行的所有元素的公因子可提到行列式记号外. 由此推论及矩阵的运算, 设A 为n 阶方阵, λ为数, 则n A A λλ=. 例如, 若A 是三阶方阵且2A =, 则322216A =⋅=.推论2 行列式中如果有两行的元素对应成比例, 则此行列式为零. 性质4 若行列式的某一行元素都是两数之和, 例如11121112212n i i i i in inn n nna a a D a a a a a a a a a '''=+++L M M ML MM M L,则行列式D 等于下面的两个行列式之和:111211212n i i in n n nn a a a D a a a a a a =L M M M L M M M L 111211212ni i in n n nna a a a a a a a a '''+L M M M LM M M L. 注 行列式的加法与矩阵的加法不同.性质5 把行列式的某一行的各元素乘以同一个数, 然后加到另一行对应的元素上去, 行列式不变.以上性质不难由行列式的定义证得, 以性质4为例, 证明如下. 性质4的证明 由(1.3.8)式, 得 1212!()12(1)()n i i n n j j j j j ij ij nj D a a a a a τ'=-+∑L L L 1212!()12(1)n i n n j j j j j ij nj a a a a τ=-∑LL L1212!()12(1)n i n n j j j j j ijnj a a a a τ'+-∑L L L 111211212n i i in n n nn a a a a a a a a a =LM MM LM M M L111211212ni i in n n nna a a a a a a a a '''+L M M M L M M M L. 例6 计算行列式121024*********3D -=---. 解D21314123r r r r r r -++ 1210003202110213-- 23r r ↔ 1210021100320213--- 42r r - 1210021100320022---4323r r + 12100211003210003--10123203=-⨯⨯⨯=-.例7 计算行列式3111131111311111D =. 解 这个行列式的特点是各列4个数之和都是6. 将第2, 3, 4行同时加到第一行, 提出公因子6, 然后各行减去第一行, 得D121314r r r r r r +++ 6666131111311111 116r ⨯ 11111311611311111213141r r r rr r --- 1111020064800200002=. 例8 设2113A -⎛⎫= ⎪⎝⎭, 3452B -⎛⎫= ⎪⎝⎭, 求,A ,B AB .解 217,13A -== 342652B -==. 因为21341101352182AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以110182182AB -==.我们注意到:AB A B =. 一般地, 有下列结论:定理1 若A , B 为同阶方阵, 则AB A B =, 从而.AB BA =三、行列式按行(列)展开在三阶行列式的定义式(1.3.5)中, 如果把含111213,,a a a 的项分别合并, 并提出公因子, 则有1112132223212223113233313233a a a aa a a a a a a a a a = 2123123133aa a a a - 2122133132aa a a a +. (1.3.10) 据此, 一个三阶行列式的计算可转化为三个二阶行列式的计算. 自然有一个问题:一个n 阶行列式的计算能否转化为n 个1n -阶行列式的计算, 从而达到降阶的目的?下面讨论这个问题.定义6 在n 阶行列式A 中划去第i 行和第j 列后所剩下的2(1)n -个元素按原来的相对位置所构成的1n -阶行列式称为ij a 在A 中的余子式, 记为ij M , 而称(1)i j ij ij A M +=-为ij a 在A 中的代数余子式, 这里1,i j n ≤≤.例9 在行列式123456789A =中, 求23M , 33M , 23A , 33A . 解 2312678M ==-, 232323(1)6A M +=-=, 3312345M ==-, 333333(1)3A M +=-=-. 利用代数余子式, 式(1.3.10)可以写成111112121313A a A a A a A =++,将上式推广到一般情况, 有下面的结论:定理2 n 阶行列式(2n ≥)等于它的任一行(列)各元素与其代数余子式乘积之和, 即1122i i i i in in A a A a A a A =+++L 1nij ij j a A ==∑, 1,2,,i n =L . (1.3.11)或1122j j j j nj nj A a A a A a A =+++L 1nij ij i a A ==∑, 1,2,,j n =L . (1.3.12)推论 行列式的任一行(列)的元素与另一行(列)的元素的代数余子式乘积之和等于零. 即11220i j i j in jn a A a A a A +++=L , (1.3.13) 11220i j i j ni nj a A a A a A +++=L , (1.3.14)其中i j ≠.定理1按行(列)展开计算行列式的方法称为降阶法. 计算行列式时, 将行列式按行(列)展开与行列式的性质结合起来用, 常常能够达到事半功倍的效果.例10 计算行列式 (即本节例6)1210241210213423D -=---.解 利用行列式的性质, 将行列式的某行(列)除某个元素外的其余元素化为0, 再按该行(列)展开.D21312c cc c-+1000203212113213---1r 按展开110321(1)211213+⨯--32r r -032211022-1c 按展开21322(1)22+⨯--21020=-⨯=-.例11 证明123213132222123111()()()x x x x x x x x x x x x =---. 证明123222123111x x x x x x 2131c c c c --121312222212131100x x x x x x x x x x ---- 213111212131311(1)()()()()x x x x x x x x x x x x +--=⨯--+-+2131213111()()x x x x x x x x =--++213132()()()x x x x x x =---.上例中的行列式称为三阶范得蒙德行列式. 类似可证n 阶范得蒙德行列式1222212111112111()n n n i j j i nn n n n x x x x x x D x x x x x ≤<≤---==-∏L L L M M M L . 四、克拉默法则下面介绍利用行列式求含有n 个未知量、n 个方程的线性方程组解的公式. 设方程组为11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.3.15) 由各方程中的未知量的系数构成的行列式111212122212n nn n nna a a a a a D a a a =L L M M M L(1.3.16) 称为方程组(1.3.15)的系数行列式, 用常数项12,,,n b b b L 替换D 中第j 列的相应元素得行列式记为j D , 即111,111,11212,122,121,1,1j j n j j nj n n j n n j nna ab a a a a b a a D a a b a a -+-+-+=L L L L M M M M M LL. 定理3 (克拉默法则)如果n 元线性方程组(1.3.15)的系数行列式0D ≠, 则方程组有唯一解,1,2,,j j D x j n D ==L .。
111的列向量的行列式1.引言文章1.1 概述部分的内容:在线性代数中,行列式是一种重要的数学工具,用于描述矩阵的性质和变换。
它在多个领域都有广泛的应用,包括线性方程组的求解、向量空间的性质、以及几何变换等。
本文将重点讨论一个特定的矩阵,即由所有元素为1的列向量组成的矩阵。
这个矩阵的大小为n×1,其中n代表向量的维度。
我们将研究这个矩阵的行列式,即所谓的"111的列向量的行列式"。
行列式在线性代数中具有重要的性质和意义。
它可以用来判断矩阵是否可逆,衡量矩阵的尺度变换,以及描述线性变换对向量的影响等。
而这个特殊的矩阵,由于其元素都相等且为1,其行列式的计算具有一定的特殊性。
我们将通过理论分析和数值计算的方法,深入探究这个矩阵的行列式特性。
通过对不同维度的矩阵进行计算和比较,我们将揭示其规律和性质。
同时,我们也将分析行列式与其他线性代数概念之间的关联,例如特征值、特征向量等。
最后,本文将总结我们的研究结果,并给出对于这个特殊矩阵行列式的结论。
我们希望这篇文章能够为读者提供有关行列式以及其在线性代数中的应用的深入理解,并为相关领域的研究提供一些新的思路和启发。
1.2 文章结构文章结构部分的内容可以描述文章按照何种结构和顺序来展开和整理思路。
以下是一种可能的写作内容:在本篇长文中,我们将围绕着“111的列向量的行列式”这一主题,通过引言、正文和结论三个部分来展开讨论和分析。
引言部分将提供对整篇文章的概述和背景介绍。
我们将首先简要介绍行列式的基本概念和性质,特别是列向量构成的矩阵的行列式计算方法。
同时,我们还将阐述为什么选择“111的列向量的行列式”作为研究对象,并明确文章的研究目的和意义。
在正文部分,我们将详细探讨111的列向量构成的矩阵的行列式性质及其相关的数学推导和证明。
其中,第一个要点将会介绍如何计算该矩阵的行列式,并说明其计算方法与一般行列式的计算方法是否有差异。
第二个要点将会深入研究该矩阵行列式的特殊性质,探讨其在数学和应用领域中的潜在应用和意义。