第一章化学热力学基础1
- 格式:ppt
- 大小:779.00 KB
- 文档页数:54
人教版高中化学选择性必修1全册课件目录CONTENCT•第一章化学反应的热力学基础01第一章化学反应的热力学基础化学反应的热效应化学反应过程中伴随着能量的吸收或释放,通常表现为热量的变化。
能量守恒定律在化学反应中,能量的总量保持不变,只是从一种形式转化为另一种形式。
化学反应的活化能反应物与活化分子间的能量差,决定了化学反应的速率。
03焓变与熵变对化学反应方向的影响ΔH和ΔS共同决定了化学反应在特定条件下的自发性。
01焓变化学反应在恒压条件下进行的热效应,用ΔH表示。
02熵变化学反应中体系混乱度的变化,用ΔS表示。
化学反应方向的判断吉布斯自由能变ΔG=ΔH-TΔS,用于判断化学反应在特定温度下的自发性。
平衡常数与反应方向平衡常数的大小可以反映化学反应进行的程度和方向。
盖斯定律及其应用盖斯定律化学反应的热效应只与反应的始态和终态有关,与反应途径无关。
盖斯定律的应用通过已知的热化学方程式计算未知反应的热效应。
化学反应速率化学反应速率的定义单位时间内反应物或生成物浓度的变化量。
化学反应速率的表示方法用单位时间内任何一种反应物或生成物浓度的变化量来表示。
1 2 3反应物浓度增大,反应速率加快;生成物浓度增大,反应速率减慢。
浓度对化学反应速率的影响温度升高,反应速率加快;温度降低,反应速率减慢。
温度对化学反应速率的影响催化剂可以降低反应的活化能,从而加快反应速率。
催化剂对化学反应速率的影响影响化学反应速率的因素化学平衡的建立与特征化学平衡的建立化学反应达到最大限度的状态,正逆反应速率相等且不为零。
化学平衡的特征动态平衡、定量平衡、可逆平衡。
01020304勒夏特列原理浓度对化学平衡的影响压强对化学平衡的影响温度对化学平衡的影响化学平衡的移动原理对于有气体参加或生成的反应,增大压强(减小容器体积),平衡向气体体积减小的方向移动;反之亦然。
增大反应物浓度或减小生成物浓度,平衡向正反应方向移动;反之亦然。
如果改变影响平衡的一个条件(如浓度、压强或温度等),平衡就向能够减弱这种改变的方向移动。
第一章化学热力学基础第一节热力学第一定律一、基本概念和常用术语1、体系和环境体系:被选作研究对象的部分。
环境:体系之外并与体系密切相关的部分。
敞开体系:与环境有物质交换、有能量交换。
封闭体系:与环境无物质交换、有能量交换。
孤立体系:与环境无物质交换、无能量交换。
2、状态和状态函数状态:体系的宏观性质的综合表现。
状态函数:确定体系状态的物理量。
(p, V, T, U, H, S, G)状态函数特征:状态函数的改变量只与体系的始态、终态有关,而与变化途径无关。
分类:广度性质(具有加和性)强度性质(不具有加和性T, p )3、过程和途径过程:当体系的状态发生变化时,发生变化的经过。
途径:完成状态变化过程的具体步骤。
等容过程等温过程等压过程绝热过程二、热力学第一定律1、热和功(体系与环境能量交换的两种形式)规定:体系吸热:Q >0体系放热:Q <0环境对体系做功:W >0体系对环境做功:W <0特 点: 热和功不是状态函数其数值与具体途径有关2、热力学能U特 点: 是状态函数,广度性质,其绝对值未知。
3、热力学第一定律该定律的实质是能量守恒与转化定律。
第二节 化学反应的热效应一、反应热在封闭体系、非体积功=0的前提下,当反应物和生成物温度相同时,化学反应过程中吸收或放出的热量。
1. 恒容反应热(QV)W =0+(- p e x V )=0U= QV + W= QVQV 全部用于改变系统的热力学能2.恒压反应热 U Q V ∆=Vp Q U p ∆-=∆ex()12ex 12V V p Q U U p --=- 定义焓: ()111222)(V p U V p U Q p +-+=状态函数,广度性质焓变:Qp = H pV U H +=3. 反应进度ξ(读作“克赛”)a A + d D = g G + h H0= – a A – d D + g G + h H写成通式式中符号B 表示反应中的物质,而νB 为数字或简分数,称为物质B 的化学计量数。
第一章 化学热力学基础1.计算下列体系热力学能的变化(ΔU )(1) 体系吸收了60kJ 的热,并对环境做了40kJ 的功。
(2) 体系放出了50kJ 的热和环境对体系做了70kJ 的功。
解:(1)Q = +60kJ W = -40kJ;ΔU = Q + W = +(60) + (-40) = +20KJ (2) Q = -50KJ W = +70KJΔU = Q + W = (-50) + 70 = +20KJ2.298K 时,在恒容量热计中测得1.00mol C 6H 6 (1)完全燃烧生成H 2O (1)和CO 2 (g )时,放热3263.9KJ 。
计算恒压下1.00mol C 6H 6 (1)完全燃烧时的反应热效应。
解:C 6H 6完全燃烧时的反应式:C 6H 6(l)+7.5O 2(g)=3H 2O (l)+6CO 2(g) 实验是在恒容条件下, 即 Q V=-3263.9KJ Δn=6-7.5= -1.5据Q p = Q V +ΔnRT = -3263.9 + (-1.5) × 8.314 × 298 × 10 -3 = -3267.6(KJ·mol -1) 3.在弹式量热计里燃烧氮化铌反应为: NbN (s) + 45O 2 (g) =21Nb 2O 5 (s) + 21N 2 (g)在298下测得热力学能的变化为-712.97KJ.mol -1,求此反应的焓变。
解:在弹式量热计里测量恒容反应热:Q V =ΔU = -712.97KJ·mol -1 Δn==21 - 45 = -43据Q p = Q V +ΔnRTQ p = H r ∆ = -712.97+(-43) × 8.314 × 298 × 10 –3 = -714.83(KJ·mol -1)4.已知反应: A + B = C + DΘ∆1H r = -40.0 KJ·mol -1 C + D = E Θ∆2H r = +60.0 KJ·mol -1试计算下列反应的Θ∆H r :(1)C + D = A + B (2)2C + 2D = 2A + 2B (3)A + B = E解:(1)Θ∆H r =-Θ∆1H r = +40.0 KJ·mol -1 (2) Θ∆H r =2(-Θ∆1H r )= +80.0 KJ·mol -1(3) Θ∆H r = Θ∆1H r + Θ∆2H r = (-40.0) + ( +60.0) = +20.0 (KJ·mol -1)5.已知下列热化学方程式:(1)Fe 2O 3 (s) + 3CO(g) = 2Fe(s) +3CO 2(g) Θ∆1H r =-27.6 KJ·mol -1 (2)3 Fe 2O 3 (s) + CO(g) = 2Fe 3O 4(s) +CO 2(g) Θ∆2H r =-58.58 KJ·mol -1(3) Fe 3O 4 (s) + CO(g) = 3FeO(s) +CO 2(g) Θ∆3H r =+38.07 KJ·mol -1不查表计算下列反应的Θ∆H r : FeO (s) +CO (g) = Fe (s) +CO 2 (g) 解:[(1)×3-(2)-(3)×2]/6 为下式: FeO (s) +CO (g) = Fe (s) +CO 2 (g)Θ∆H r =[3Θ∆1H r -Θ∆2H r -2Θ∆3H r ]/6 =[3×(-27.6)-(-58.58)-2×(+38.07)]/6 = -16.73(KJ·mol -1) 6.已知: (1)Cu 2O (s)+21O 2 (g)=2CuO (s) Θ∆1H r =-143.7 KJ·mol -1; (2)CuO (s)+Cu (s)=Cu 2O (s) Θ∆2H r =-11.5 KJ·mol -1计算CuO (s)的标准生成热(Θ∆m f H )解:(1) + (2) 式得: CuO (s) +21O 2 (g) = CuO (s) 故标准生成热:Θ∆m f H = Θ∆1H r +Θ∆2H r = (-143.7)+( -11.5) =-155.2(KJ·mol -1)7. 已知:(1)MnO 2 (s) =MnO (s) +21O 2 (g) Θ∆1H r =+134.8 KJ·mol -1; (2)Mn (s)+ MnO 2 (s) = 2MnO (s) Θ∆2H r =-250.1KJ·mol -1计算MnO 2 (s)的Θ∆m f H 值。