第一章 化学热力学基础
- 格式:ppt
- 大小:2.09 MB
- 文档页数:90
第一章2.计算下行反应的标准反应焓变△r Hθm:解:①2Al(s) + Fe2O3(s) → Al2O3(s) + 2Fe(s)△f Hθm(kJ•mol-1) 0 -824.2 -1675.7 0 △r Hθm=△f Hθm(Al2O3,s)+2△f Hθm(Fe,s)-2△f Hθm(Al,s)- △f Hθm(Fe2O3 ,s)= -1675.7 + 2×0 - 2×0 - (-824.2)= - 851.5 (kJ•mol-1)②C2H2 (g) + H2(g) → C2H4(g)△f Hθm(kJ•mol-1) 226.73 0 52.26△r Hθm = △f Hθm(C2H4 ,g) - △f Hθm(C2H2,g) - △f Hθm(H2,g)= 52.26 - 226.73 - 0= -174.47 (kJ•mol-1)3. 由下列化学方程式计算液体过氧化氢在298 K时的△f Hθm(H2O2,l):① H2 (g) + 1/2O2 (g) = H2O (g) △r Hθm = - 214.82 kJ•mol-1② 2H(g) + O(g) = H2O (g) △r Hθm = - 926.92 kJ•mol-1③ 2H(g) + 2O(g) = H2O2 (g) △r Hθm = - 1070.6 kJ•mol-1④ 2O(g) = O2 (g) △r Hθm = - 498.34 kJ•mol-1⑤ H2O2 (l) = H2O2 (g) △r Hθm= 51.46 kJ•mol-1解:方法1:根据盖斯定律有:[(方程①-方程②+方程③-方程⑤)×2-方程④]÷2可得以下方程⑥H2(g)+O2(g)=H2O2(l) △r Hθm△r Hθm=[(△r Hθ1-△r Hθ2+△r Hθ3-△r Hθ5) ×2-△r Hθ4] ÷2={[-214.82-(-926.92)+(-1070.6)-51.46] ×2-(-498.34)} ÷2=[(-409.96)×2+498.34] ÷2=(-321.58) ÷2= -160.79(kJ•mol-1)△f Hθm(H2O2 ,l)= △r Hθm= -160.79 kJ•mol-1方法2:(1)由①可知H2O的△f Hθm(H2O,g)= - 214.82 kJ•mol-1(2)根据④计算O的△f Hθm(O,g)2O(g) = O2 (g) △r Hθm = - 498.34 kJ•mol-1△r Hθm = △f Hθm(O2 ,g)- 2△f Hθm(O,g)= 0 - 2△f Hθm(O,g)= - 498.34 kJ•mol-1△f Hθm(O,g)= 249.17 kJ•mol-1(3) 根据②求算△f Hθm(H,g)2H(g) + O(g) = H2O (g) △r Hθm = - 926.92 kJ•mol-1△f Hθm(kJ•mol-1) 249.17 - 214.82△r Hθm = △f Hθm(H2O,g) - 2△f Hθm(H,g) -△f Hθm(O,g)= - 214.82 - 2△f Hθm(H,g)- 249.17= - 926.92△f Hθm(H,g)= 231.465 kJ•mol-1(4) 根据③求算△f Hθm(H2O2 ,g)2H(g) + 2O(g) = H2O2 (g) △r Hθm = - 1070.6 kJ•mol-1△f Hθm(kJ•mol-1) 231.465 249.17△r Hθm = △f Hθm(H2O2 ,g) - 2△f Hθm(H,g) -2△f Hθm(O,g)=△f Hθm(H2O2 ,g) -2×231.465 - 2×249.17= - 1070.6△f Hθm(H2O2 ,g)= - 109.33 kJ•mol-1(5) 根据⑤求算△f Hθm(H2O2 ,l)H2O2 (l) = H2O2 (g) △r Hθm= 51.46 kJ•mol-1△f Hθm(kJ•mol-1) -109.33△r Hθm = △f Hθm(H2O2 ,g) - △f Hθm(H2O2 ,l)= -109.33 - △f Hθm(H2O2 ,l)= 51.46△f Hθm(H2O2 ,l)= -160.79 kJ•mol-14. 在373 K,101.3 kPa下,2.0 mol H2和1.0 mol O2反应,生成2.0 mol的水蒸气,总共放热484 kJ的热量,求该反应的△r H m和△U。
第一章化学热力学基础第一节热力学第一定律一、基本概念和常用术语1、体系和环境体系:被选作研究对象的部分。
环境:体系之外并与体系密切相关的部分。
敞开体系:与环境有物质交换、有能量交换。
封闭体系:与环境无物质交换、有能量交换。
孤立体系:与环境无物质交换、无能量交换。
2、状态和状态函数状态:体系的宏观性质的综合表现。
状态函数:确定体系状态的物理量。
(p, V, T, U, H, S, G)状态函数特征:状态函数的改变量只与体系的始态、终态有关,而与变化途径无关。
分类:广度性质(具有加和性)强度性质(不具有加和性T, p )3、过程和途径过程:当体系的状态发生变化时,发生变化的经过。
途径:完成状态变化过程的具体步骤。
等容过程等温过程等压过程绝热过程二、热力学第一定律1、热和功(体系与环境能量交换的两种形式)规定:体系吸热:Q >0体系放热:Q <0环境对体系做功:W >0体系对环境做功:W <0特 点: 热和功不是状态函数其数值与具体途径有关2、热力学能U特 点: 是状态函数,广度性质,其绝对值未知。
3、热力学第一定律该定律的实质是能量守恒与转化定律。
第二节 化学反应的热效应一、反应热在封闭体系、非体积功=0的前提下,当反应物和生成物温度相同时,化学反应过程中吸收或放出的热量。
1. 恒容反应热(QV)W =0+(- p e x V )=0U= QV + W= QVQV 全部用于改变系统的热力学能2.恒压反应热 U Q V ∆=Vp Q U p ∆-=∆ex()12ex 12V V p Q U U p --=- 定义焓: ()111222)(V p U V p U Q p +-+=状态函数,广度性质焓变:Qp = H pV U H +=3. 反应进度ξ(读作“克赛”)a A + d D = g G + h H0= – a A – d D + g G + h H写成通式式中符号B 表示反应中的物质,而νB 为数字或简分数,称为物质B 的化学计量数。
第一章 化学热力学基础1.计算下列体系热力学能的变化(ΔU )(1) 体系吸收了60kJ 的热,并对环境做了40kJ 的功。
(2) 体系放出了50kJ 的热和环境对体系做了70kJ 的功。
解:(1)Q = +60kJ W = -40kJ;ΔU = Q + W = +(60) + (-40) = +20KJ (2) Q = -50KJ W = +70KJΔU = Q + W = (-50) + 70 = +20KJ2.298K 时,在恒容量热计中测得1.00mol C 6H 6 (1)完全燃烧生成H 2O (1)和CO 2 (g )时,放热3263.9KJ 。
计算恒压下1.00mol C 6H 6 (1)完全燃烧时的反应热效应。
解:C 6H 6完全燃烧时的反应式:C 6H 6(l)+7.5O 2(g)=3H 2O (l)+6CO 2(g) 实验是在恒容条件下, 即 Q V=-3263.9KJ Δn=6-7.5= -1.5据Q p = Q V +ΔnRT = -3263.9 + (-1.5) × 8.314 × 298 × 10 -3 = -3267.6(KJ·mol -1) 3.在弹式量热计里燃烧氮化铌反应为: NbN (s) + 45O 2 (g) =21Nb 2O 5 (s) + 21N 2 (g)在298下测得热力学能的变化为-712.97KJ.mol -1,求此反应的焓变。
解:在弹式量热计里测量恒容反应热:Q V =ΔU = -712.97KJ·mol -1 Δn==21 - 45 = -43据Q p = Q V +ΔnRTQ p = H r ∆ = -712.97+(-43) × 8.314 × 298 × 10 –3 = -714.83(KJ·mol -1)4.已知反应: A + B = C + DΘ∆1H r = -40.0 KJ·mol -1 C + D = E Θ∆2H r = +60.0 KJ·mol -1试计算下列反应的Θ∆H r :(1)C + D = A + B (2)2C + 2D = 2A + 2B (3)A + B = E解:(1)Θ∆H r =-Θ∆1H r = +40.0 KJ·mol -1 (2) Θ∆H r =2(-Θ∆1H r )= +80.0 KJ·mol -1(3) Θ∆H r = Θ∆1H r + Θ∆2H r = (-40.0) + ( +60.0) = +20.0 (KJ·mol -1)5.已知下列热化学方程式:(1)Fe 2O 3 (s) + 3CO(g) = 2Fe(s) +3CO 2(g) Θ∆1H r =-27.6 KJ·mol -1 (2)3 Fe 2O 3 (s) + CO(g) = 2Fe 3O 4(s) +CO 2(g) Θ∆2H r =-58.58 KJ·mol -1(3) Fe 3O 4 (s) + CO(g) = 3FeO(s) +CO 2(g) Θ∆3H r =+38.07 KJ·mol -1不查表计算下列反应的Θ∆H r : FeO (s) +CO (g) = Fe (s) +CO 2 (g) 解:[(1)×3-(2)-(3)×2]/6 为下式: FeO (s) +CO (g) = Fe (s) +CO 2 (g)Θ∆H r =[3Θ∆1H r -Θ∆2H r -2Θ∆3H r ]/6 =[3×(-27.6)-(-58.58)-2×(+38.07)]/6 = -16.73(KJ·mol -1) 6.已知: (1)Cu 2O (s)+21O 2 (g)=2CuO (s) Θ∆1H r =-143.7 KJ·mol -1; (2)CuO (s)+Cu (s)=Cu 2O (s) Θ∆2H r =-11.5 KJ·mol -1计算CuO (s)的标准生成热(Θ∆m f H )解:(1) + (2) 式得: CuO (s) +21O 2 (g) = CuO (s) 故标准生成热:Θ∆m f H = Θ∆1H r +Θ∆2H r = (-143.7)+( -11.5) =-155.2(KJ·mol -1)7. 已知:(1)MnO 2 (s) =MnO (s) +21O 2 (g) Θ∆1H r =+134.8 KJ·mol -1; (2)Mn (s)+ MnO 2 (s) = 2MnO (s) Θ∆2H r =-250.1KJ·mol -1计算MnO 2 (s)的Θ∆m f H 值。
第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程。
定温可逆时:Wmax=-Wmin=4.焓定义式 H = U + PV在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H5.摩尔热容 Cm ( J ·K —1·mol —1 ):定容热容 CV(适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程适用对象 : 任意的气体、液体、固体物质 )定压热容 Cp⎰=∆21,T T m p dTnC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程适用对象 : 任意的气体、液体、固体物质 )单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2。
5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp ,m = 4RCp ,m = Cv ,m + R6。
理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结7。
定义:△fHm θ(kJ ·mol —1)-- 标准摩尔生成焓△H —焓变; △rHm —反应的摩尔焓变 △rHm θ-298K 时反应的标准摩尔焓变;△fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B ) —298K 时物质B 的标准摩尔燃烧焓。
8.热效应的计算1221ln ln P PnRT V V nRT =nCC m =⎰=∆21,T T m V dTnC U由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程△rHm (T2) = △rHm (T1) +如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1)10。