ANSYS结构声振耦合解决的方案
- 格式:ppt
- 大小:2.54 MB
- 文档页数:41
ANSYS是一种广泛应用于工程领域的仿真软件,它提供了多物理场耦合分析的能力,用于模拟和解决多个物理现象相互作用的问题。
以下是ANSYS多物理场耦合技术和方法的一些常见应用:1. 结构-热耦合(Thermo-Structural Coupling):这种耦合方法用于分析结构在热载荷下的变形和应力响应。
它可以考虑热传导、热辐射、温度梯度等对结构性能的影响,并通过结构和热传导方程之间的相互作用来解决这些问题。
2. 结构-电磁耦合(Electromagnetic-Structural Coupling):这种耦合方法用于研究结构在电磁场作用下的响应。
它可以考虑电磁场的电流、磁场、电磁感应等对结构的影响,并通过结构和电磁场方程之间的相互作用来解决这些问题。
3. 流体-结构耦合(Fluid-Structure Interaction, FSI):这种耦合方法用于模拟流体和结构之间的相互作用。
它可以考虑流体力学中的压力、速度、湍流、流体-固体界面等对结构的影响,以及结构对流体的阻力、振动等反馈作用。
4. 流体-热耦合(Fluid-Thermal Coupling):这种耦合方法用于模拟流体和热传导之间的相互作用。
它可以考虑流体在流动过程中的热对流、辐射等对热传导的影响,以及热传导对流体温度分布的影响。
5. 电磁-热耦合(Electromagnetic-Thermal Coupling):这种耦合方法用于模拟电磁场和热传导之间的相互作用。
它可以考虑电磁能量的吸收、热产生和热扩散等对系统温度分布的影响,以及温度对电磁特性的影响。
以上只是ANSYS多物理场耦合技术和方法的一些例子,实际中还有其他类型的耦合分析,如声-结构耦合、声-流体耦合等。
通过使用这些耦合技术和方法,工程师可以更准确地模拟和分析不同物理场之间的相互作用,从而更好地优化设计和解决实际问题。
ANSYS耦合场分析指南第三章2007-11-20 作者:安世亚太来源:e-works发表时间:关键字:ANSYS耦合场分析CAE教程3.141 静态分析对于静态分析,施加在换能器上的电压将产生一个作用在结构上的力。
例如如图 3 —3给机电换能器单元(TRANS126 )施加电压(V l>V2 )将产生静电力使扭梁旋转。
转换器单元本身就同时具有稳定和非稳定解,根据开始位置(初始间隙值),该单元可以收敛到任一个解。
静电换能器的静平衡可能是不稳定的。
增加电压电容板间的吸力增加间隙减少。
对间隙距离d,弹簧的恢复力正比于1/d静电力正比于1/d 2。
当电容间隙减少到一定值,静电吸引力大于弹簧恢复力电容板贴在一起。
相反地,当电压减小到一定值,静电吸引力小于弹簧恢复力电容板张开。
如图3 —4换能器单元有迟滞现象。
电压渐变到牵引值然后回复到释放值。
PositionPULL-IN 陽尸RELEASE__PULL-IN 忠赫療图3 —4机电迟滞如图及3 —5换能器单元本身有稳定及非稳定解。
该单元收敛到哪一个解依赖于起始位置(初始间隙大小)Force 8PULL-INVOLTAGEPOEASEFKJLLIM RELEASE图3 —5 TRANS126 单元静态稳定特性系统刚度由结构刚度和静电刚度组成,它可能是负的。
结构刚度是正的因为当弹簧拉长力增加。
但是平行板电容器的静电刚度是负的。
随间隙增加平行板间的吸力减少。
如果系统刚度是负的,在接近不稳定解时可能有收敛问题。
如果遇到收敛问题,用增强的刚度方法(KEYOPT(6)= 1)。
这个方法静电刚度设置为零保证正的系统刚度。
达到收敛之后,静电刚度自动重新建立可以进行后处理及后续的分析。
在静态分析中,必须完整定义横跨换能器的电压。
还可以施加节点位移和力,使用IC命令来施加初始位移可有助于问题收敛。
《ANSYSStructural Analysis Guide 》第二章对静力分析有详细描述。
基于有限元分析法的声振耦合问题研究一、引言声振耦合是工程和科学领域中常见的一个问题。
在振动发生时,结构的振动会导致其所在的介质中的声波产生,这种现象就称为声振耦合。
声振耦合在机械、建筑、航空、汽车等领域中具有非常重要的应用和研究价值。
目前,常用的声振耦合分析方法包括实验法和数值计算法。
实验法通常采用声耦合实验室设备来测量实际结构的声学振动响应,并通过有限元分析法进行数值模拟。
而数值计算法中,有限元法是最常用的一种。
这种方法通过将结构分割成小单元,并对结构进行数值模拟,以预测结构在特定外部激励下的振动响应和声学振动响应。
本文旨在探讨基于有限元分析法的声振耦合问题,并重点关注其数值计算的基本原理、优点和局限性。
二、有限元分析法有限元分析法是一种基于数值计算的结构力学方法,被广泛应用于各种汽车、航空、建筑和机械等工程应用中。
该方法是基于数值离散化技术,将无限维度问题转化为有限的维度问题,利用已知的科学原理建立数学模型。
有限元分析法采用离散化的思想将结构分成小单元,通过计算每个小单元的特征值和特征向量,得到整个结构的振动特征。
小单元的振动特征可以以几何刚度、惯性、阻尼、刚度矩阵、质量矩阵等形式表示。
在声振耦合分析中,有限元分析法包括两个步骤。
首先,需要对待分析物进行结构动力分析和声学分析。
这种分析包括结构动力学和声学模型的建立,确定外部激励下结构和声学子系统的响应。
接着,将这些响应合并成一个总响应,然后对其进行分析。
三、声振耦合的数值模拟声振耦合的数值模拟过程通常分为以下几个步骤:1、建立有限元模型在数值模拟前,需要进行结构的建模和网格划分。
结构的建模包括对结构几何形状和材料参数的设定,网格划分可以根据结构的大小和形状进行。
2、结构动力学分析结构动力学分析是声振耦合分析中的重要步骤,其中的关键在于计算结构在外部激励下的振动响应。
这一步骤中,需要确定结构的固有频率和模态形式,并通过有限元法求出结构的振动响应。
2.6。
Solution命令这类命令加载并求解模型。
命令按功能分组:表2.48:常规分析选项 (2)表2.49:非线性选项 (4)表2.50:动态选项 (5)表2.51:频谱选项 (6)表2.52:加载步骤选项 (8)表2.53:固体约束 (8)表2.54:实体模型力 (9)表2.55:固体表面载荷 (9)表2.56:固体载荷 (9)表2.57:惯性载荷 (10)表2.58:其他负载 (11)表2.59:加载步骤操作 (12)表2.60:主自由度 (12)表2.61:间隙条件 (12)表2.62:重新分区 (12)表2.63:2-D到3-D分析 (13)表2.64:生与死选项 (13)表2.65:有限元约束 (13)表2.66:有限元节点力 (14)表2.67:有限元表面载荷 (14)表2.68:有限元体载荷 (15)表2.69:海洋载荷 (15)表2.70:状态命令 (16)表2.71:光能传递 (16)表2.72:增材制造 (17)表2.48:常规分析选项这些SOLUTION命令可设置常规分析选项。
ABEXTRACT提取用于瑞利阻尼的alpha-beta阻尼乘数。
ACCOPTION指定GPU加速器功能选项。
ADAMS执行解决方案并将弹性体信息写入模态中间文件。
ANTYPE指定分析类型和重新启动状态。
ASCRES指定声散射分析的输出类型。
ASOL激活指定的声学解决方案。
BCSOPTION设置稀疏求解器的内存选项。
CECHECK检查约束方程和刚体的耦合运动。
CHECK检查当前数据库项目的完整性。
CINT定义与轮廓积分计算相关的参数。
CMATRIX执行静电场解决方案,并计算多个导体之间的自电容和互电容。
CMSOPT指定组件模式综合(CMS)分析选项。
CNCHECK提供和/或调整接触对的初始状态。
CNKMOD修改接触单元的关键选项。
CNTR将接触对信息输出到文本文件。
CUTCONTROL在非线性解决方案中控制时间步缩减。
浅谈ANSYS中车桥耦合的实现方法与应用作者:黄江广安区交通运输局摘要:弹簧移动质量的振动问题可通过大型通用结构有限元软件ANSYS进行分析解决,解决方法有三种,分别为:位移耦合法、生死单元法和位移接触法。
这三种方法各有优势与适用范围,本文对相关方法的具体情况作出简要介绍,并采用简单算例通过位移接触法进行应用介绍,阐述了车桥耦合振动仿真模拟的一般步骤,有利于读者了解这方面的内容。
关键词:位移耦合生死单元位移接触1前言车桥耦合振动问题是桥梁振动理论中的一项难题,随着大型通用有限元软件的开发,车桥振动模型在逐步得到精确化模拟,根据不同的车桥模型应有不同的模拟方法。
以下结合大型通用结构有限元软件ANSYS将三种模拟方法及应用作简要介绍。
2方法介绍位移耦合法位移耦合法的思路是仅创建一个质量单元模拟移动质量,根据移动速度对移动质量施加不同的水平约束位移,将移动质量与所移动到位置处的节点竖向位移耦合。
采用位移耦合法时赢注意以下几点:①因移动质量与梁上节点耦合,因此移动质量只能从梁上一个节点移动到下一节点,而从一个节点移动到下一节点为一个荷载步。
在一个荷载步中若设置多个子步,当KBC=0时会造成还没有移动到下一节点时就耦合自由度,也就是耦合位置不对;当KBC=1时,虽然在第一子步到达下一节点位置,即耦合位置正确,但中间收敛结果所产生的速度和加速度会对计算造成“污染”,因此无论KBC 如何设置,宜将NSUBST设置为1。
②阻尼问题。
ANSYS完全法瞬态动力分析不能设置模态阻尼比,但可用质量阻尼系数α和刚度阻尼系数β等效(Rayleigh阻尼假定),但正是因为Rayleigh 阻尼假定会造成ANSYS计算时产生“虚假”阻尼(α×质量矩阵),而理论推到中没有此项。
因此考虑阻尼进行结果对比时可仅考虑刚度阻尼。
③采用CP命令耦合自由度时,因自由度为线性耦合,不适合大变形情况。
如打开大变形,ANSYS计算的梁体位移、速度和加速度正确,但移动质量位移和加速度虽然趋势基本一致,但数值均存在很大误差或数值不正确,且误差随速度增大而增大。
CAE仿真技术在船舶总体设计中的应用简介✓船舶总体结构静强度分析✓船舶分段、上层建筑、甲板、龙骨、外板、机座等局部静强度分析✓引擎、管路系统热应力分析船舶总体结构设计中需要考虑船体在各种环境下的变形和应力分布。
ANSYS Mechanical 软件可以帮助解决在正常工况下,结构零部件的强度、刚度及稳定性校核问题。
✓船体自由振动分析✓机械设备引起的船体受迫振动分析✓机座的减振设计船体的动力学问题ANSYS Mechanical动力学分析包含模态分析、瞬态分析、谐响应分析、响应谱分析和随机振动分析,能模拟船体的自由振动和受迫振动。
并在此基础上进行设备的减振设计。
✓研究船体设备的振动引起的声辐射✓水下舰艇的声辐射性能研究✓阻尼与隔振技术分析✓声学-结构耦合场分析船体噪音主要来源于机械噪音和流体噪音。
借助ANSYS Mechanical软件声振耦合分析功能,通过合理地优化船舶总体结构与各部件,达到减振降噪的目的。
✓冲击、碰撞或水下爆炸作用下舰艇局部抗爆性分析ANSYS LS-DYNA或ANSYS AUTODYN软件是显式动力学分析软件,模拟船体在短时间高峰值载荷作用下的时间历程响应,包括材料的变形、失效以及断裂等,为结构抗爆性问题提供完备的解决方案。
✓船体结构疲劳分析✓局部焊缝疲劳分析船舶受到波浪、风、惯性等交变载荷作用,易造成结构的疲劳损伤。
疲劳破坏是船体结构的主要破坏形式之一。
Fe-safe或ANSYS nCode Designlife高级疲劳分析和设计软件可分析船体与零部件由于反复运动引起的高、低周疲劳问题及板架焊缝疲劳问题。
✓船舶水动力性能ANSYS CFD能对不同的设计方案给出正确的排序。
比之水池试验,ANSYS CFD分析的长处是它允许对更宽范围的备选船型方案进行测试。
比较理想的做法是,它适合用来选择有希望的备选设计方案作进一步的水池试验。
ANSYS CFD也指明对设计方案进行改进的部位和方法,比如,显示出船身上的压力分布的细节。
计算声学响应的时候,是利用ANSYS软件计算并得到结构模态,采用LMS b软件计算声模态,并将结构模态结果导入LMS b软件,求解声固耦合模型。
接着,我们可以得出结构的振动位移和场内某点的声压。
CDB文件:在进行空腔模态分析时,我们假设结构为刚性壁,将用ANSYS划分的声学系统网格输出为CDB文件格式导入LMS b软件对乘坐室空腔声学系统式模型模态分析。
问题:CDB格式文件如何导出?(cdwrite命令?一般情况下可以写为cdwrite,all,filename,cdb)。
结构模型建造完成,划分好网格后,用CDB命令导出,即时surrogate o可以把sysnoise->Tools->Environment Variables->ANSYSREVISION 中的数值变为 5.7,且把CDB文件用记事本打开,把首行中8.1变为5.7,注意ANSYS保存CDB文件时,要使用Associated FE and IGES(2 files)项在使用ANSYS进行声学动态响应分析时需要自己编制程序,将ANSYS计算的结果转变为声压级,以符合声学响应分析的要求。
在LMS b中计算时,则是读入ANSYS建立的结构和声学网格中性文件CDB文件,同时读入前面在ANSYS中计算的结构模态,并在LMS b中计算声学模态,利用计算的结构和声学模态进行耦合的声振响应分析。
(有没必要在ANSYS中计算声学动态响应?)问题:结构模型和声腔模型导入时,它们是怎样在位置上定位的?答案:模型导入时,各点坐标不变。
声网格和结构网格上的坐标在建模时已经定义好了。
问题:吴为东视频FEM分析开始时,引入一个汽车的外部网格文件,是.op2格式的。
这个文件是在哪里生成的?。
答案:Patran/Nastran求解时生成的结果文件之一。
问题:如何读入前面在ANSYS中计算的结构模态?。
答案:可能是.mode文件。
在进行声场边界元分析的时候,一般是以结构体表面的法向速度作为边界条件,而这些数据主要是通过其他数值方法(如有限元法)计算得到或者通过实验测得。